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ABSTRACT 

Although line edge and line width roughness (LER/LWR) have been key metrology challenges over the last 15 years, the 

advent of extreme-ultraviolet lithography (EUV) has increased the importance of its measurement and control. 

Lithographically printed features are now small enough that randomness in resist chemistry and in EUV photon during 

exposure results in noise in the patterned resist. This not only affects LER/LWR, but also defect density, including missing 

holes, shifted features, bridged lines and holes, and line shorts, among others.  

Well before these stochastic induced roughness variations, there have existed various techniques to analyze roughness. 

These include power spectral density algorithms, methods to account for instrument bias in the data, identify and filter 

noise, and specify measurement uncertainty. In this work, analysis methods to evaluate LER and LWR spatial wavelengths, 

including partitioning and filtering out instrument errors, such as noise and probe effects are presented.  

Our approach is based on wavelet-transform multiresolution analysis. One of the key advantages of wavelet transform over 

other signal processing techniques are its spatial-frequency localization and multi-scale view of the components of a profile 

or surface. This allows decomposing the data into different bands based on specific cutoffs and evaluating different 

approximations and surface-details at each cutoff band. A priori noise and probe information are used to determine and 

remove instrument-effects from the data, before calculating the unbiased roughness. The strength of this approach is that 

is it targeted only to specific spatial wavelengths that are associated with instrument noise or artifacts. 

Keywords: Line edge roughness, Linewidth roughness, Wavelet Transform, Spectral Analysis. 

1. INTRODUCTION

Although the effects of line edge and line width roughness on lithographically printed features have been studied for over 

twenty years[1,2], the introduction of extreme-ultraviolet lithography (EUVL) brings an added  degree of importance and 

urgency. Earlier on, the motivation for studying LER was due to the non-scaling of edge roughness with shrinking device 

sizes. For EUVL, the  randomness in resist chemistry and in EUV photon speed during exposure results in noise thereby 

increasing the occurrence and nature of LER [3]. This not only affects roughness, but also defect density, missing holes, 

shifted features, bridged lines and holes, and line shorts, among other effects[4-6]. 

Over the years,  several measurement and analysis methods have been developed for LER[7], including those  based on 

scanning electron microscopy (SEM)[8-10], atomic force microscopy (AFM)[11-14], optical critical dimension 

metrology[15], and small angle X-ray scattering[16]. Irrespective of technique, one of the most important aspects of LER 

analysis is the need to subtract noise[17-21] and instrument effects[22] from the data in order to get the real or unbiased 

roughness. This is because roughness is not an intrinsic parameter of the surface or line edge, but is affected by noise, 

evaluation length, pixel size, and instrument effects[23-25]. 

Here, we show the use of wavelet-based multiresolution analysis [26] for LER evaluation. Wavelets multiresolution 

analyses are windowing operations that divide the data into different-sized frequency components and are evaluated at a 

resolution that matches its scale. The strength of this techniques is that is it targeted to specific frequencies that are actually 

associated with instrument noise or artifacts.  This prevents the removal of uncorrelated high frequency information that 

are not due to instrument noise.  
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1.1 Line Edge and Linewidth Roughness 

The roughness of a line edge or width is defined as the deviation (or residuals) of the edge from normal, where the 

assumption is that the edge should be nominally straight. This deviation is defined in eq. 1, 

𝜎𝑇
2 = 𝜎𝑡𝑟𝑢𝑒

2 + 𝜎𝑛𝑜𝑖𝑠𝑒
2  (1) 

where 𝜎𝑇 is the total rms roughness, 𝜎𝑡𝑟𝑢𝑒  rms of the “true” roughness, and 𝜎𝑛𝑜𝑖𝑠𝑒  is the rms of the noise component.

𝜎𝑛𝑜𝑖𝑠𝑒  is mostly random and could be from different aspects of the measurement process. 𝜎𝑡𝑟𝑢𝑒 is defined in eq. 2, where

𝑥𝑘 are the edge locations. Other  analysis methods are frequency related parameters such as power spectral density (PSD),

autocovariance function (ACF), and height-height covariance function (HHCF)[27].   

𝜎2 =
1

𝑁
∑ (𝑥𝑘)2𝑁−1

𝑘=1    (2) 

Although the three spectral methods listed above measure slightly different things, they are statistically similar, and all 

provide an estimate of the spectral content of the signal and can be derived from each other. The PSD describes the variance 

of a signal with respect to unit frequency and in its general form is defined as 

𝑆(𝑓𝑗) =
∆𝑥

𝑁
|∑ 𝑥𝑘𝑒𝑥𝑝[(2𝜋𝑖)𝑗𝑘/𝑁]𝑁

𝑘=1 |2 at spatial frequency 𝑓𝑗 = 𝑗∆𝑓, where j=1,2,…N/2, and ∆𝑥 is spacing between

points.  The ACF is the covariance of a specific length of signal with a translated copy of itself as a function of the 

translation length, and is defined as 𝐴𝐶𝐹𝑘,𝑘+ℎ = [(𝑥𝑘 − 𝑥)(𝑥𝑘+ℎ − 𝑥)], and HHCF measures the mean square difference

of a signal from a translated copy of itself as a function of the translation length and is defined as 𝐻𝐻𝐶𝐹𝑘+ℎ =

[(𝑥𝑘) − (𝑥𝑘+ℎ)2]  [28].  𝜎2 can also be expressed in terms of the PSD  as  𝜎2 =
∆𝑥

𝑁
∑ 𝑑𝑥[𝑥𝑘]2𝑁

𝑘=1 , which serves as a useful

check on PSD computation.  𝑥𝑘 are the edge locations. All three methods have been applied to LER/LWR  analysis

including the impact of etch processes on roughness and EUV resist LER[29,30]. Applicability of different types of spectral 

methods to semiconductor LER, their associated uncertainties, and suitable measurement protocols, are all areas of active 

research and standardization [31-35].  

1.2 Wavelet Analysis 

All wavelets have the general form shown in eq. 3 in discrete form (discrete wavelet transform- DWT), with its discrete 

scaling function defined in eq. 4, where j and k are integers. 𝜓(𝑥) is the main or “mother” wavelet and must satisfy the 

following conditions: the average values should be zero, ∫ 𝜓(𝑥)𝑑𝑡 = 0
∞

−∞
; and the total power is finite, 

∫ |𝜓(𝑥)|2𝑑𝑡 < ∞
∞

−∞
.    A series of basis functions can be obtained by translating and dilating 𝜓(𝑥).  At higher frequencies, 

dilation of the mother wavelet is small, which provides good scale (time) resolution but weak frequency resolution, making 

it suitable for fast changing details. However, dilation is larger at low resolution, which results in weak scale (time) 

resolution but good frequency resolution. This time-frequency resolution is one of the most important attributes of 

wavelets, and have resulted in their use in image compression, time series and multiresolution analyses among others. For 

an overview of wavelets including their theory, applications, and implementations, see references [26,36,37]. 

𝜓𝑗,𝑘[𝑥] = 2𝑗 2⁄ 𝜓(2𝑗𝑥 − 𝑘) (3) 

𝜙𝑗,𝑘[𝑥] = 2𝑗 2⁄ 𝜙(2𝑗𝑥 − 𝑘)       (4) 

Wavelets have also been used extensively for surface roughness analysis, especially in bandwidth filtering and 

multiresolution analysis[38-42]. Part of the appeal in using wavelets for surface metrology is the ability to decompose the 

signal into roughness at different scales. Unlike Fourier transform methods, where all the frequencies are treated with equal 

resolution in both space and frequency domains, the variable size windowing approach of wavelets allows large windows 

to be used when low frequency information is needed and smaller windows when high frequency information is needed. 

Chen et al. [38] and Fu et al.[39] have used this method to evaluate the roughness of turned surfaces. Others have proposed 

ways to use different aspects of wavelets to evaluate edge roughness[43-45]. Here, we apply this wavelet multiresolution 

analysis and filtering to unbiased LER evaluation.  



2. MULTIRESOLUTION ANALYSIS USING WAVELETS

Broadly speaking, multiresolution filtering is a way to use the windowing capabilities of wavelets to separate the surface 

into different frequency domains before analysis. There are two broad categories of wavelets, orthogonal and biorthogonal 

wavelets[26]. Although both can be used for multiresolution analysis, biorthogonal wavelets are preferred due to their 

symmetry. The DWT (eq. 3) operates on scales and positions based on powers of two (dyadic sampling) and leads to a 

more compact, efficient implementation of wavelets. 

The main components of multiresolution analysis are decomposition and reconstruction. Decomposition involves 

sequentially dividing the data into different components at different resolutions.  Each decomposition produces two signals, 

referred to as approximation and details. The approximation or details signal (depending on the analysis being performed) 

is decomposed again. Each decomposition is called a level, and the total number of levels or decompositions will depend 

on the analysis being performed, the frequencies of interest and the selected filters. Consider a signal 𝑦 = 𝑓(𝑥), where 

𝑓(𝑥) is an edge segment or a series of linewidths. The wavelet decomposition of such a signal will be the linear combination 

of the approximations and details as shown in eq. 5, where A and D represent the approximations and details at all levels.  

𝑓(𝑥) = 𝐴𝑓((𝑥)) + 𝐷𝑓((𝑥))   (5) 

In practice, an efficient implementation of multiresolution analysis is done using filter banks[46], where the data is sliced 

into different components using a series of filters depending on the frequencies of interest. To explicitly link wavelets and 

filters, in eqs. 6 and 7, we express 𝜓(𝑥) (wavelet equation) and 𝜙(𝑥)  (scaling function) as:  

𝜙(𝑥) = ∑ ℎ0(𝑘)√2  𝜙 (2𝑥 − 𝑘)𝑘   (6) 

𝜓(𝑥) = ∑ ℎ1(𝑘)√2  𝜓 (2𝑥 − 𝑘)𝑘  (7) 

where  ∑ ℎ0(𝑘) = 1𝑘 ,  ∑ (−1)𝑘ℎ0(𝑘) = 0𝑘 , and ℎ0 and ℎ1are low pass and high pass filters. Applying the functions shown

in eqs. 6 and 7 at each level in eq. 5, we get eq. 8, where 𝐴𝑗,𝑘  and  𝐷𝑗,𝑘 are coefficients.

𝑓(𝑥) = ∑ 𝐴𝑗,𝑘𝜙𝑗,𝑘(𝑥)  𝑘 + ∑ 𝐷𝑗,𝑘𝜓𝑗,𝑘(𝑥)𝑘  (8) 

Figure 1 shows an implementation of discrete wavelet transform using recursive filter bank. At each level, two filters are 

applied to the signal, a low pass filter to obtain the approximation and a high-pass filter for the details. This operation 

produces a new dataset with twice the size of the original input. This leads to a fair amount of redundant data, and loss of 

efficiency. To solve this problem, the output is down-sampled by 2, and the even-number output is used for the next filter 

sequence.  This process is schematically shown in figure 2. 

     Figure 1: Diagram of implementation of discrete wavelet transform using recursive filter bank shown with just the approximation 

and details coefficients at each decomposition level. 



Figure 2:  Sequential application of low and high pass filters and dyadic down-sampling. Each low pass and high pass operation 

produce twice the original data. Down-sampling by 2 (↓2), reduces the data size to the original level. 

3. ANALYSIS

3.1 LER Measurement 

All the data shown below were acquired from a critical dimension atomic force microscope (CD-AFM)[11,14,47]. This 

analysis can also be done using SEM data, albeit with different data processing and edge extraction methods.  We measured 

a 2 m segment of an EUV resist pattern, using a post tip with a width of 16.5 nm ±1 nm (k=1). The tip uncertainty was 

obtained using transmission electron microscopy based qualification methods, see refs  [48] and [49] for more details. The 

noise level of the instrument was evaluated using the “Disable scan method” described by Azarnouche et al.[50], where 

the scan along the length of the feature is disabled and the variance of the acquired signal is the noise. As Azarnouche et 

al[50] pointed out, for AFMs, the sources of this noise could be due to tip stiffness[51,52] and/or  the tip/sample 

interaction[53]. In addition, we also evaluated the instrument for systematic deviation that could affect the low frequency 

components of the signal. Figure 3 shows a profile of the edge roughness used in the analysis. Although the descriptions 

in the previous section are in terms of frequency, since our data have a strong spatial interpretation, we will use 

“wavelength” (inverse of frequency) where appropriate.  

Figure 3. Extracted edge profile from CD-AFM data. 

We selected a filter from the Biorthogonal family of wavelets – Biorthogonal-5.5, which is symmetric, has linear phase 

and can be implemented using a fast algorithm[26]. The two numbers indicate the number of vanishing moments for 

deconstruction and reconstruction. A wavelet of n vanishing moment is orthogonal to polynomials of degree n-1. 

Generally, the higher the vanishing moments, the more complex signals a wavelet basis can evaluate  (see Daubechies[26] 

and Strang and Nguyen[46] for additional information). Figure 4 shows the impulse response functions for the lowpass 

and high-pass decomposition filters. Applying the low and high pass filtering sequence shown in figure 2, we obtain the 

multiresolution decomposition for the edge profile in figure 3. This is shown in figure 5 for a 7-level decomposition, where 

the profiles in 5(a) are the approximations and those in 5(b) are the details.  The numbers next to the profiles are the 

wavelength cutoffs. For the approximations (figure 5(a)), these values are the low pass filter wavelength cutoff starting 

from 0.004 nm. The corresponding values for the details (figure 5(b)) are the bandpass wavelength cutoff range for each 



profile. Figure 6 shows the roughness at different levels of the decomposition and is obtained by applying a high-pass filter 

at each wavelength level.  

Figure 4: Biorthogonal-5.5 impulse response filters for decomposition. (a) lowpass and (b) high-pass 

      Figure 5: (a) Approximation profiles. The numbers next to the profiles represent the low pass filter cutoff for the analysis. 

(b) Details profiles from multiresolution Wavelet decomposition of a line edge profiles. The numbers next to the profiles represent

the bandpass filter cutoff range used for the analysis.  The Wavelet filter is Biorthogonal-5.5.



Figure 6: Roughness at different wavelength levels after applying the wavelet transform. The values beside each profile represent the 

high-pass filter cutoff.  

3.2 Noise Removal and Unbiased LER 

To get unbiased edge roughness, we have to remove systematic and random noise from the data. From previous analysis 

[54,55]we know that the noise starts at below 0.029 m wavelength cutoff, meaning that we have to remove this portion 

of the data before roughness analysis. This is based on a combination of the random noise, tip size, data spacing, and probe 

dynamics[51,52,56]. This is done by setting all the coefficients below 0.029 m wavelength cutoff to zero and 

reconstructing the profile. Figure 7 shows the impulse response function for the high-pass and low pass Biorthogonal-5.5 

wavelets used. Figure 8 shows the reconstruction sequence analogous to the decomposition sequence shown in figure 2. 

The notable difference being that coefficients denoted as noise are set to zero.  The signal at each level is up-sampled by 

2, and zeros are inserted at odd-indexed locations, then convolved with the corresponding filter before moving to the next 

level. The original and reconstructed profiles are overlaid in figure 9. Using eq. 2, the original line edge profile yields a 

roughness of ≈1.54 nm, while the reconstructed (unbiased) roughness produces a value of ≈1.36 nm, a difference of more 

than 11 %.   

Figure 7 Biorthogonal-5.5 impulse response filters for reconstruction (a) lowpass and (b) high-pass. 



     Figure 8: Reconstruction by sequential application of up-sampling by 2 (↑2) and convolving with low and high pass filters. Unneeded 

      coefficients are set to zero. 

     Figure 9: Original and reconstructed profile. The reconstructed profile is the unbiased roughness profile after removing noise effects. 

3.3 Signal Averaging 

One method used to obtain unbiased roughness is by aligning and averaging a series of profiles collected from the 

same location.  This produces a profile of the same edge, but with reduced noise. We compared the roughness of the 

average of ten profiles obtained from repeated measurements at the same location and a reconstructed profile from the 

same ensemble.  The average edge profiles are shown in figure 10, plotted with their average. Applying the 

decomposition sequence to one of the profiles we get the approximation, details, and roughness profiles shown in figure 

11. 

The cutoff wavelengths in figure 11 are the same with those in figures 4 and 5 because the data have the same 

spacing and were sampled based on Nyquist criterion.  Since the data is from the same instrument, the noise behavior is 

the same as the previous data and shows up at ≈0.019 µm and below. Setting levels 6 and 7 to zero during the 

reconstruction, we get the data shown in figure 12, plotted with the original profile.  The reconstructed profile has an rms 

value of ≈1.41 nm. The average profile has an rms value of ≈1.6 nm, calculated from the PSD shown in figure 12. So, 

more noise was removed by multiresolution analysis than simple averaging. This is consistent with we have seen in 

previous analysis, at least for averages of up to 20 lines. An important takeaway from the PSD in figure 13 is that 10 

profiles are not enough to suppress the noise from LER data.   Additionally, is not clear if the reduction from simple 

averaging is consistent with the noise level of the instrument. The benefit of using the multiresolution analysis approach 

is that the noise removal is targeted specifically to the relevant wavelengths. 



  Figure 10: Edge profiles taken from the same location. The red profile in the middle is an average of 10 profiles. 

Figure 11: (a) Approximation, (b) decomposition, and (c) roughness profiles for a seven-level decomposition. 

Figure 12: Original and reconstructed profile of one of the profiles plotted in figure 10.  The reconstructed profile is the unbiased 

roughness profile after removing noise effects. 



Figure 13: PSD plot of the averaged profile shown in figure 10 

4. SUMMARY AND DISCUSSION

We showed the application of wavelet based multiresolution analysis to LER/LWR analysis, specifically for removing 

instrument effects from the signal and obtaining an unbiased roughness value.  Although CD-AFM data is used in this 

analysis, the data could be from any instrument that can measure LER.  Each instrument will have different noise 

characteristics and edge detection data requirements. A key consideration is not to do any type of image smoothing 

before edge detection. 

Although the cutoffs used for this analysis are based on sampling of the Nyquist frequencies, the procedure allows the 

flexibility to select specific cutoffs depending on a priori knowledge. The lowest wavelength cutoff used in the analysis 

were determined by multiples of the Nyquist sampling criterion, and then doubled (and rounded up) at each level. The 

instrument noise level is affected by the random noise, tip size, data spacing, and probe dynamics. Although the data 

spacing is 2 nm, the probe has a width of 16.5 nm ±1 nm, ensuring that the extreme high frequency limit (Nyquist 

criterion: = ½ (sampling interval) of the measurement is suppressed by mechanical filtering[57]. Although the tip-width 

is technically not a noise source, it is the dominant factor in the high-frequency roll-off of the instrument transfer 

function. So if using an AFM, careful consideration should be given to tip-size  selection.  Other factors are the pixel 

spacing, noise from the “disable scan method” (derived lateral component), and tip bending [51,58,59]. Our estimate of 

the cutoff wavelength was ≈18.2 nm. If additional information about the noise spatial wavelength is not available, the tip 

width should be used.  Note that the noise level is not 18.2 nm, rather an estimate of what the spatial wavelength cutoff 

should be.  Determining the smallest cutoff wavelength is important and will depend on a good understanding of 

instrument characteristics.  

𝑥, 𝜆𝐴𝑓(𝑥) ≤ 𝜆𝐷𝑓(𝑥) < 𝜆𝑞

The bandpass ranges shown in 5(b) and 11(b), are selected such that  𝐷𝑓((𝑥)𝐿 = {
0, 𝑓𝑜𝑟 𝑎𝑙𝑙 

𝐿

𝑜𝑡ℎ𝑒𝑟 
𝐿 , where 𝐷𝑓((𝑥)𝐿 is 

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠

the details component from eq. 6, 𝜆𝐴𝑓(𝑥)𝐿
 is the wavelength at the same approximation level and 𝜆𝑞 is the bandpass 

wavelength limit for that level. This explains why the approximation and details profiles start to converge after a certain 

wavelength cutoff.  Simply put, for the data shown in figure 5, after a wavelength cutoff of 0.114 µm there isn’t much

higher frequency detail to extract from the signal. The roughness profiles in figure 6 could be thought of as residuals of 

the approximation profile at each level with respect to the original profile, the details in figure 5(b)  are obtained solely 

from the approximation profile for that level using a bandpass filter that starts from the approximation cutoff wavelength. 

More broadly speaking, different frequencies of roughness in an edge pattern can be attributed to processing conditions or 

material[34], here the ability to separate and evaluate that information at a resolution that is matched to the scale is 

helpful. When compared with Fourier based techniques, wavelets provide both time (or spatial) and frequency 

information, whereas Fourier based spectral analysis where only time (or spatial) averaging frequency information 

without indicating the location of a specific frequency event.  This is evident in figures 5-7, where we can say not 

only what the dominant frequencies are, but what the profiles look like.  Compare this with the PSD shown in figure 13, 

where the less dominant frequencies appear as noise.  In addition, roughness is a non-stationary signal, and contains 

many time-varying  and transitory characteristics such as drift, trends, spikes and other components that represent 

specific attributes of the measurement system, and in some cases mathe signal. 



5. CONCLUSION

We showed the application of wavelet based multiresolution analysis to LER/LWR analysis. The above results show the 

multiresolution analysis could be used to remove unwanted data from LER/LWR profiles to obtain an unbiased value and 

is based on our knowledge of which frequencies (or wavelengths) are relevant for our system. We view multiresolution 

analysis as a complementary technique to Fourier based methods, due to the multi-scaled view of roughness they provide 

and the flexibility of their implementation.  Decomposing the data into approximations and details using a filter bank and 

sampled at specific frequencies allows the removal of unwanted portions of the signal, before reconstruction.  The need to 

obtain unbiased roughness data that closely represents the features being measured is good application of wavelet 

multiresolution analysis.  Although there are a wide range of noise filtering and smoothing algorithms, the specificity of 

multiresolution analysis makes them ideal for LER analysis. 
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