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Abstract

Additive Manufacturing (AM) is becoming data-intensive. The ability to identify Data Analytics (DA) opportunities for
effective use of AM data becomes a critical factor in the success of AM. To successfully identify high-potential DA oppor-
tunities in AM requires a set of distinctive interdisciplinary knowledge. This paper proposes a methodology that enables
collaborative knowledge management for identifying and prioritizing DA opportunities in AM. The framework of the pro-
posed methodology has three components: a team of experts, a DA Opportunity Knowledge Base (DOKB), and a prioritiza-
tion tool. The team of experts provides diverse knowledge that can be used to identify and prioritize DA opportunities. The
DOKB, developed by using the Web Ontology Language (OWL), captures diverse knowledge from the experts to identify
DA opportunities. The prioritization tool ranks the identified DA opportunities by using the Fuzzy integrated Technique of
Order Preference Similarity to the Ideal Solution (Fuzzy-TOPSIS). A case study, in which National Institute of Standards
and Technology (NIST) researchers participated, demonstrates our methodology. As a result, 264 DA opportunities for
AM’s Laser-Powder Bed Fusion (L-PBF) process are identified and prioritized. The prioritized DA opportunities help set a
DA direction for L-PBF AM. Our methodology keeps knowledge sharable, reusable, revisable, and extendable. Thus, this
methodology can continue to facilitate collaboration within the AM community to identify high potential and high impact
DA opportunities in AM.

Keywords Additive manufacturing - Big data - Data analytics - Data-driven decision support - Knowledge-based system -
Multiple criteria decision-making

Introduction characteristic of AM provides unique capabilities to achieve

shape complexity, material complexity, hierarchical com-
Additive manufacturing (AM) is an emerging manufacturing  plexity, and functional complexity (Gibson et al., 2015).
paradigm in which materials are joined layer-upon-layer to ~ The capabilities of AM are expected to provide the manu-
produce three-dimensional (3D) parts based on the 3D solid ~ facturing industry with numerous benefits, such as new
models (ASTM International, 2012). The layer-upon-layer
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opportunities for customization, an increased range of part
geometries, and reduced manufacturing costs (Gibson et al.,
2015).

To be practical and profitable, AM should achieve indus-
trial competitiveness in quality, cost, and delivery (Eyers
& Potter, 2017). Industrial competitiveness is affected by
decision-making throughout the AM lifecycle including
design process planning, building, post-processing, testing,
and validation. For example, decision-making in process
planning, such as setting scan speed, laser power, and scan
strategy, affects not only the mechanical performance of the
final part (Zhou et al., 2019), but also the cost of powder
usage and build time (Bosio et al., 2019). However, mak-
ing successful decisions is often limited by a lack of under-
standing of process-structure—property relationships in AM
(Yuan et al., 2020). Until now, most of the decision-making
techniques still rely on ad-hoc rules and engineering experi-
ence in AM (Mycroft et al., 2020). Thus, recent AM studies
have been trying to improve decisions by using a knowl-
edge-based approach (Mbow et al., 2021) or a data-driven
approach (C. Wang et al., 2020). Especially, Data Analytics
(DA) for decision-making has been attracting attention as
a data-driven approach to reveal hidden patterns, correla-
tions, and insights beyond the existing knowledge (C. Wang
et al., 2020).

DA can be defined as a process of examining data to
extract and create valuable information for decision-making
(Koohang & Nord, 2021). Technologies that support DA
applications in AM are continuously improved and devel-
oped. For example, advanced sensor technologies enable the
capture of AM big data that can serve as inputs to DA (L.
Wang & Alexander, 2016). Advanced High-Performance
Computing (HPC) technologies allow AM big data to be
processed more efficiently (L. Wang & Alexander, 2016).
DA techniques including Machine Learning (ML) are avail-
able to analyze AM big data (C. Wang et al., 2020). These
advanced technologies provide opportunities to exploit DA
to improve decision-making in AM. However, identifying
high-potential DA opportunities to exploit these advance-
ments remains a challenge.

The ability to identify and prioritize a set of DA opportu-
nities in AM is a critical factor in optimizing AM processes.
Identifying DA opportunities allows potential DA opportuni-
ties to be captured before undertaking DA projects. Prioriti-
zation can then determine a top set of important and feasible
DA opportunities. Our previous study (Park et al., 2019)
introduced the concept of DA opportunity and provided a
general framework for identification and prioritization. A
DA opportunity can be characterized by a set of five tiers:
“Goal”, “Activity”, “Data Analytics”, “Data”, and “Data
Source” (Park et al., 2019). However, each tier considers a
distinct area of knowledge (e.g., business, AM, DA, data),
so interdisciplinary knowledge is required to identify and
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prioritize DA opportunities. A single expert seldom pos-
sesses such interdisciplinary knowledge. According to a
Forbes Insight survey (Gagnon et al., 2017), the main dif-
ficulties encountered when designing DA initiatives are
(1) lack of coordination among experts from diverse back-
grounds and (2) lack of consistent methods and processes.
We extend our previous study (Park et al., 2019) to solve
these difficulties and enhance sharing, reuse, revision, and
extension of the DA-opportunity knowledge. Our methodol-
ogy systematically facilitates collaboration among diverse
experts, and manages their knowledge with formal methods
to identify the top DA opportunities in AM.

The developed methodology takes the Collaborative
Knowledge Management (CKM) approach, which enables
management of diverse knowledge from different experts.
The methodology incorporates three major components:
a team of experts, a DA Opportunity Knowledge Base
(DOKB), and a prioritization tool. The team of experts is
established to provide diverse knowledge for identifying
and evaluating DA opportunities. The DOKB is developed
by using the Web Ontology Language (OWL) (“OWL Web
Ontology Language Overview” 2004) to capture the diverse
knowledge and support identifying DA opportunities. The
prioritization tool extends Fuzzy integrated Technique of
Order Preference Similarity to the Ideal Solution (Fuzzy-
TOPSIS) (NAdAban et al., 2016) to prioritize the identified
DA opportunities by considering collaborative evaluation.
This paper introduces the proposed methodology. It also
provides a case study that demonstrates the proposed meth-
odology for a laser powder bed fusion (L-PBF) AM process.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the backgrounds of data-driven AM, ontol-
ogy-based CKM, and Fuzzy-TOPSIS. Section 3 presents a
methodology that uses the CKM approach to identify and
prioritize DA opportunities in AM. Section 4 provides a case
study of L-PBF AM. Section 5 concludes the paper.

Background

Data-driven AM, ontology-based CKM, and Fuzzy-TOPSIS
are the foundation of the proposed methodology. In this sec-
tion, the backgrounds of these three topics are introduced.

Data-driven additive manufacturing

Because of constant advances in sensor (Feng et al., 2020)
and data management technologies (Majeed et al., 2019),
AM is becoming increasingly data-intensive. AM processes
can generate up to 600 variables and 75 gigabytes of image
data per second (Razvi et al., 2019), resulting in a terabyte
or more of data per build (Razvi et al., 2019). This data is in
a variety of types including numerical data (e.g., machine
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logs), 2D images (e.g., thermal, optical), 3D (e.g., CAD
models, CT scans), audio (e.g., acoustic signals), videos
(e.g., thermal, optical), etc. (Razvi et al., 2019). The AM
data can be collected from all AM lifecycle stages such as
design (e.g., material properties and design parameters),
process planning (e.g., process parameters), building (e.g.,
process signatures), post-processing (e.g., part structure),
and testing and validation (e.g., part property and product
performance) (Park et al., 2019).

Analyzing AM lifecycle data can uncover hidden pat-
terns, correlations, and insights that help guide informed
decisions and reduce potential risks. Advanced DA, such
as Artificial Intelligence (AI) and ML, can effectively use
AM big data to produce actionable intelligence and new
knowledge for decision-makers. Advanced DA has success-
fully been applied to derive the relationships between (1)
process parameters and creep rates (Sanchez et al., 2021),
(2) process parameters and surface roughness (Xia et al.,
2021), and (3) part geometry and printability (Mycroft et al.,
2020). It has also been used to monitor layer defects and
melt pool conditions in real time by analyzing temperature
data (Mahato et al., 2020), acoustic signals (Ye et al., 2018),
optical images (Davtalab et al., 2020; Kwon et al., 2020),
and video-imaging data (Bugatti & Colosimo, 2021). AM
activities such as process-parameter setting and in-situ moni-
toring were studied recently through applying advanced DA
(C. Wang et al., 2020). To get maximum benefits from DA’s
capabilities, high-potential DA opportunities should be iden-
tified across the AM lifecycle.

Ontology-based collaborative knowledge
management

CKM enables users from diverse backgrounds to achieve
common goals by jointly creating, sharing, accessing, and
applying knowledge across domain-specific or functional
boundaries (Swarnkar et al., 2012). For example, Peng et al.
(2017) designed and developed a CKM system to facilitate
knowledge capture, retrieval, and reuse for users with dif-
ferent roles working on various tasks within the engineer-
ing design process. Other authors (Li et al., 2012; Wu &
Gu, 2009) developed CKM systems to enable individuals
in a series of organizations to collectively create, share,
access, and apply knowledge across company boundaries to
achieve the business objectives of the entire supply chain.
Other examples include (1) the global company Aramex
used CKM to manage its collective knowledge of disruptive
technologies (v. Alberti-Alhtaybat et al., 2019); (2) Kamsu-
Foguem and Noyes (2013) adopted CKM to compare and
integrate different viewpoints of experts for industrial main-
tenance; (3) a CKM solution was implemented across the
construction industry (Costa et al., 2013), which has a frag-
mented and ad-hoc nature; and, (4) the CKM approach was

used in some biomedical communities (Dessi et al., 2016)
where collaborative environments are required to share and
create new knowledge.

An ontology is a formal, explicit specification of a rep-
resentational vocabulary for a shared domain of discourse
(Gruber, 1993) that can be used to enhance the usage of
CKM. Ontologies are often used to share a common
understanding of the knowledge and to enable the reuse of
domain knowledge among people or software agents (Noy
& McGuiness, 2001).In addition, an ontology enables auto-
mated reasoning to infer implicit knowledge and detect
inconsistencies in a knowledge base (Keet, 2018).In AM
applications, ontologies have been proposed (1) to promote
the modeling and reuse of knowledge towards the assistance
of design (Kim et al., 2019; Ko et al.,2021) and process
planning (Liang, 2018) and (2) to be reused across computer
systems to support knowledge and data management in an
interoperable manner (Sanfilippo et al., 2019). Ontologies
have been demonstrated as suitable to build a knowledge
base for CKM (Abecker & van Elst, 2009). Adrian et al.
(2014) presented a system for CKM, in which an ontology
was used as a knowledge base to store, extract, and process
knowledge about threats in an urban environment.

OWL (“OWL Web Ontology Language Overview” 2004)
is a family of knowledge representation languages for author-
ing ontologies (Maniraj & Sivakumar, 2010). An ontology
that uses OWL consists of classes, properties, and indi-
viduals. A class defines a group of individuals that belong
together when they share certain properties (“OWL Web
Ontology Language Overview” 2004). Properties include
two types: an object property that represents the relationship
between two individuals, and a data property that represents
the relationship from some individual to a certain data value
(“OWL Web Ontology Language Overview” 2004). Individ-
uals are instances of classes. Property may be used to relate
one individual to another (“OWL Web Ontology Language
Overview” 2004). Semantic Web Rule Language (SWRL),
also a knowledge representation language, extends OWL
both syntactically and semantically by combining OWL with
a Rule Markup Language (Horrocks et al., 2005). SWRL
provides the ability to define complex rules and perform
advanced reasoning on the concepts in an ontology (Ameri
et al., 2012). Automated reasoning increases both the effi-
ciency of processing the accumulated knowledge and the
consistency of the inferred results. SWRL is in the form
of an implication between an antecedent (body) and conse-
quent (head) (Horrocks et al., 2004). Both antecedent and
consequent are conjunctions of predicates, and variables are
presented using the standard convention of prefixing them
with a question mark.
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Fuzzy-TOPSIS

TOPSIS (Hwang & Yoon, 1981) is a multiple-criteria,
decision-making (MCDM) method to prioritize a list of
alternatives. TOPSIS extends the concept that the chosen
alternative should have two characteristics. First, it has the
shortest distance to the Positive Ideal Solution (PIS), which
minimizes the cost criteria and maximizes the benefit cri-
teria. Second, it has the farthest distance from the Negative
Ideal Solution (NIS), which maximizes the cost criteria and
minimizes the benefit criteria. TOPSIS has four advantages
over other MCDM methods (Lima Junior et al., 2014). It
is: (1) able to produce a consistent preference order when a
new alternative or criterion is introduced, (2) able to perform
decision processes efficiently, (3) capable of prioritizing
numerous alternatives, and (4) applicable to group decision-
making. TOPSIS has proven its advantages when applied to
prioritization in different areas such as mutual funds (Chang
et al., 2010), suppliers (Sharma & Balan, 2013), intellectual
capital indicators (Sekhar et al., 2015), and manufacturing
equipment (P. Wang et al., 2017). However, TOPSIS and
other MCDM methods all have a limited ability to capture

vague information in an uncertain environment (Sirisawat &
Kiatcharoenpol, 2018).

Fuzzy set theory (Zadeh, 1965) has been widely used to
support decision-making when an evaluation or a judgment
is made under uncertainty or with imprecise information.
TOPSIS is therefore often integrated with the fuzzy set
theory; such an integrated method is called Fuzzy-TOPSIS.
Fuzzy-TOPSIS effectively prioritizes under fuzzy situations
such as infrastructure projects (Liu & Wei, 2018), reverse-
logistic solutions (Sirisawat & Kiatcharoenpol, 2018),
sustainable-energy planning strategy (Solangi et al., 2019),
and business models (Im & Cho, 2013). Because DA oppor-
tunities in AM are intangible, unmeasurable, uncertain, or
imprecise, and thus difficult to evaluate, Fuzzy-TOPSIS is a
good candidate to prioritize them.

Methodology

The methodology uses the CKM approach to identify and
prioritize DA opportunities in AM. Figure 1 presents a
framework of the proposed methodology. The framework
consists of three major components: a team of experts, a

Team of Experts DOKB
(3 :—’ \:
@ e
.\(,'5‘% AM Project { AM Business [
W Managers knowledge l
S e ~
S P . DA Opportunity
:“ """"""" - Knowledge for
AM System AM Activity Identification . Goal
l.‘; Engineers i knowledge ) DA + Target Activity
Knowledge T b Opportunity + DA Task
Engineers :‘% e Identification + Required Data
<:A> Data DA + Data Source —
Scientists knowledge + Prioritization -
A" ~ Results
R el e
AM Dat AM Data
 Data knowledge
Engineers

Knowledge for
Prioritization

Prioritization

Identified DA
Results

Opportunities

Prioritization Tool
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DA Results DA
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Fig.1 A framework of the methodology to identify and prioritize DA opportunities in AM
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DOKB, and a prioritization tool. The team of experts,
preferably including AM project manager(s), AM system
engineer(s), data scientist(s), AM data engineer(s), and
knowledge engineer(s), provides diverse knowledge for iden-
tifying and prioritizing DA opportunities. The knowledge
engineers lead both identification and prioritization tasks
by communicating with the other experts. The DOKB cap-
tures the diverse knowledge from the team of experts by
using OWL. This knowledge base supports the identification
of DA opportunities. The prioritization tool prioritizes the
identified DA opportunities by using the Fuzzy-TOPSIS. The
prioritization results are also captured in the DOKB.

Team of experts

The team preferably includes five different groups of experts.
Qualifications of each group are described as follows.

e AM project managers: knowledgeable about business
requirements of AM to determine ultimate AM goals.

e AM system engineers: (1) knowledgeable about AM
lifecycle and AM activities, (2) capable of identifying
the AM activities for the target goals, and (3) capable of
defining AM activities with input, control, output, and
mechanism.

e Data scientists: (1) capable of defining DA tasks, (2)
knowledgeable about DA techniques, and (3) capable of
defining required data for each DA task.

e AM data engineers: (1) capable of preparing and manag-
ing AM data for the DA tasks, (2) capable of matching
the required AM data to the AM data sources, and (3)
knowledgeable about data acquisition.

e Knowledge engineers: (1) capable of processing experts’
knowledge into the DOKB and (2) capable of supporting
evaluation tasks.

Data analytics opportunity knowledge base

The DOKB is described in this section with a focus on the
structure of the DOKB and how the DA opportunities are
identified using the DOKB.

Knowledge base structure

The requirements of a knowledge base are typically defined
using Competency Questions (CQs) (Griininger & Fox,
1995). A DA opportunity is an opportunity for DA to make
significant or other impacts on decision-making. In this
sense, some of the CQs for the knowledge base include:

e  Which goal should DA achieve?
e  Which activity can DA make an impact?
e  Which task can DA support for decision-making?

e  Which data should DA perform?

e Which data source is required to collect the required data
for DA?

e  Which DA opportunity has the most significant impact
considering importance and feasibility?

Considering these CQs, the DOKB uses the five-tier
approach (Sect. 1; Park et al., 2019) to develop its struc-
ture. The five tiers are “Goal Tier”, “Activity Tier”, “Data
Analytics Tier”, “Data Tier”, and “Data Source Tier”. In
the “Goal Tier”, the goals in the target domain are defined.
In the “Activity Tier”, the activities that require decisions to
meet individual target goals are defined. In the “Data Analyt-
ics Tier”, the potential DA tasks that can help make those
decisions are defined. In the “Data Tier”, the required data
for individual DA tasks are defined. In the “Data-Source
Tier”, the various sources that generate the required data
are defined. As shown in Fig. 2, the DOKB’s structure con-
tains six major classes: “DataAnalyticsOpportunity”, and
one for each of the five tiers: “ThingDefinedintheGoalTier”,
“ThingDefinedintheActivityTier”, “ThingDefinedinthe-
DataAnalyticsTier”, “ThingDefinedintheDataTier”, and
“ThingDefinedintheDataSourceTier”. The last five major
classes have sub-classes, as shown in Fig. 2. The subclasses
denoted as “...” in Fig. 2 are additional classes required to
enrich each tier’s information after DA implementation but
not essential in the identification process, so the additional
classes are beyond the scope of this paper.

The “ThingDefinedintheGoalTier” class has a subclass
“Goal” to define the goals to be achieved. The “Goal” class
has three subclasses, “Quality”, “Cost”, and “Delivery”,
which are traditional strategic goals used by the manufactur-
ing industry (Leong et al., 1990) including the AM industry
(Eyers & Potter, 2017). The “Quality” class includes the
target goals for the manufacture of product(s) that have high
quality standards (Leong et al., 1990). The “Cost” class
includes the target goals for production and distribution of
the product(s) at a desired or predefined cost (Leong et al.,
1990). The “Delivery” class includes the target goals to sat-
isfy demand at the expedited time or the accurate process
(Leong et al., 1990).

The “ThingDefinedintheActivityTier” class has three
subclasses, “Activity”, “ICOM”, and “Performancelndica-
tor”, to define the activities that could achieve target goals.
The concepts of classes “Activity” and “ICOM” are obtained
from the IDEFO method (National Institute of Standards &
Technology, 1993), which is a standardized activity mod-
eling method. The “Activity” class is used to describe AM
activities. “Generate AM Design”, “Plan Process”, “Build
Part”, “Post Process Part”, and “Test Part” are examples of
AM lifecycle activities. These activities can be decomposed
into sub-activities. For example, “Build Part” is decomposed
into “Create Powder Layer”, “Fuse Powders”, and “Monitor
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—» ThingDefinedintheGoalTier

—» ThingDefinedintheActivityTier

Owl:Thing —

— ThingDefinedintheDataTier

—» DataAnalyticsOpportunity

Fig.2 The structure of the DOKB

Fusion”. In IDEFO, inputs, controls, outputs, and mecha-
nisms are collectively called ICOM. The “ICOM?” class is
used to define the concept of the activity; it consists of four
subclasses: “Input”, “Control”, “Output”, and “Mechanism”.
The “Input” class includes a set of objects that are trans-
formed by the activity to produce outputs. The “Control”
class includes a set of conditions that must be met to ensure
that the activity produces the correct output. The “Output”
class includes a set of results that are produced by the activ-
ity. The “Mechanism” class includes the means that support
the execution of the activity. The “Performancelndicator”
class includes a set of quantitative indicators that are meas-
ured in certain activities to evaluate the target goal.

The “ThingDefinedintheDataAnalyticsTier” class has a
subclass “DataAnalyticsTask™ to define DA tasks that poten-
tially support decisions required in certain activities. The
“DataAnalyticsTask” class has four subclasses: “Descrip-
tive”, “Diagnostic”, “Predictive”, and “Prescriptive” (Sal-
lam et al., 2014). The “Descriptive” class includes DA
tasks that characterize context from data; these tasks help
decision-makers understand how their business or activity is

@ Springer

TGoa|

— ThingDefinedintheDataAnalyticsTier T DataAnalyticsTask ———

—7—» Data

—» ThingDefinedintheDataSourceTier T DataSource

—» Quality

— 1 » Cost
—— Delivery

Performancelndicator
Activity — Input
—— Control
— Output
— Mechanism

ICOM

—» Prescriptive
— Predictive
—» Diagnostic
—» Descriptive

— ForPrescriptiveAnalytics
— ForPredictiveAnalytics
— ForDiagnosticAnalytics
— ForDescriptiveAnalytics

—» Equipment
— Material
— Personnel
——» Software

HasSubClassOf ———»

performing. The “Diagnostic” class includes DA tasks that
determine why their business or activity is performing as it
is; those tasks use data mining techniques or other statisti-
cal analysis. The “Predictive” class includes DA tasks that
predict unknown states or futures; those tasks use predic-
tive ML techniques. The “Prescriptive” class includes DA
tasks that prescribe various courses of actions or controls to
maximize the goal. Those tasks use reinforcement learning,
optimization techniques, or simulation.

The “ThingDefinedintheDataTier” class has a subclass
“Data” to define required data for DA tasks. The required
data is mapped to a specific DA task with one-to-one map-
ping. Hence, the “Data” class is classified into four sub-
classes that are based on the “DataAnalyticsTask™ subclass
types. The “ForPrescriptiveAnalytics” class includes data
that have an objective variable, decision variables, and
blocking variables. An objective variable is to be opti-
mized, whereas decision variables are used to optimize
the objective variable. The objective variable is affected
by both decision variables and blocking variables, but
blocking variables are not of interest to be prescribed. The
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“ForPredictiveAnalytics” class includes data that have pre-
dictor variables and target variables. Predictor variables
are used to predict, and target variables are variables to be
predicted. The “ForDiagnosticAnalytics” class includes
data that have explanatory variables and response vari-
ables. Explanatory variables are used to explain variations
in responses, and response variables are variables to be
explained. The “ForDescriptiveAnalytics” class includes
data that are related to what DA should characterize. The
classes in the DA and data tier are used to represent DA-
specific knowledge with their properties. Table 11 and 12
(See Appendix.) show property examples of the classes.
The “ThingDefinedintheDataSourceTier” class has a
subclass “DataSource” to define the origins of data; it is
classified into four subclasses: “Equipment”, “Software”,
“Personnel”, and “Material”, by reference to a classification
of AM resources (Lu et al., 2015). The “Equipment” class
includes AM-build equipment, post-processing equipment,
and test equipment. The “Software” class includes CAD

software, process optimization software, and build software.
The “Personnel” class represents humans, such as designers,
operators, and controllers, who have an active role in the
AM lifecycle. The “Material” class includes raw material,
semi-manufactures, and finished products.

The “DataAnalyticsOpportunity” class lists a collection
of DA opportunities. To explicitly represent a DA opportu-
nity, this class should answer the previously mentioned CQs.
In this sense, each DA opportunity is defined as a set of a
goal, a target activity, a DA task, required data, and required
data sources; the information comes from “ThingDe-
finedintheGoalTier”, “ThingDefinedintheActivityTier”,
“ThingDefinedintheDataAnalyticsTier”, “ThingDefined-
intheDataTier”, and “ThingDefinedintheDataSourceTier”.
Figure 3 shows how “DataAnalyticsOpportunity” class is
associated with the other classes. Also, the “DataAnalytic-
sOpportunity” class has data properties for storing the pri-
oritization results, such as overall score, importance score,

—» Quality [

Goal —— ¥ Cost
—» Delivery

Activity [

Decision-
Supports
—» Prescriptive
—» Predictive [ N O, 'sé\s,
DataAnalyticsTask ) ] 4 - 07
—» Diagnostic /;?F
—— Descriptive Requires 'fsfp
—» ForPrescriptiveAnalytics ’%
(Y
—» ForPredictiveAnalytics |::> é . T
Data ForDi A Iy . : - 9‘/,%
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—» Personnel
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Fig.3 The associations with the “DataAnalyticsOpportunity” class

HasIndividualOf ——)
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and feasibility score. The prioritization results are generated
by the prioritization tool, which is explained in Sect. 3.3.

Data analytics opportunity identification

The team of experts collaboratively identifies DA opportuni-
ties by defining instances of the classes in the DOKB. The
DA opportunity identification process is shown in Fig. 4.

As described in Sect. 3.1, a team of experts may include
five expert groups: AM project managers, AM system engi-
neers, data scientists, AM data engineers, and knowledge
engineers. Each group plays its unique role in supporting the
identification of DA opportunities. Especially, knowledge
engineers help each group to perform every knowledge-
engineering task in this process.

The AM project managers define the “Goal” instances
in “Quality”, “Cost”, or “Delivery” based on their business
context. The AM system engineers define the activity-related
instances, such as “Activity”, “ICOM”, and “Performanceln-
dicator” instances, and the relationships among them based
on the “Goal” instances and the scope of the target activity.

The data scientists define goal-oriented and AM activity-
specific DA tasks by formulating and using SWRL rules.
SWRL, (Sect. 2.2), allows an ontology reasoner, a software
engine, to automatically identify properties of DA tasks in

Target Business Context Target Activity Scope SWRL Rules

a consistent manner. SWRL rules should be formulated for
“Prescriptive”, “Predictive”, “Diagnostic”, and “Descrip-
tive” individually by following the SWRL standard conven-
tion such as in the format of parent(?x,?y) » brother(?y,?z)
uncle(?x,?z). For example, a predictive analytics rule can
be formulated as.

IsEvaluatedBy(?G, ?PI) ~ IsMeasuredIn(?PlI,
?7A) N Predictive(?DA) N Aims(?DA, ?G) ~ Deci-
sion_Supports(?DA, ?A) "~ HaslnputAs(?A, ?I1) ~
HasControlAs(?A, ?C)—> Predicts(?DA, ?PI) "
Considers(?DA, ?I) " Considers(?DA, ?C).

This rule indicates when a predictive analytics task is
determined to support a certain activity and its goal, the
task predicts a performance indicator that is measured in the
activity to evaluate the goal by considering the information
retrieved from the inputs and controls of the activity.

Similarly, the data scientists define required data for indi-
vidual DA tasks using SWRL that include rules for “For-
PrescriptiveAnalytics”, “ForPredictive Analytics”, “ForDi-
agnosticAnalytics”, and “ForDescriptiveAnalytics”. For
example, a predictive analytics data requirement rule can
be formulated as.

IsRequiredBy(?D, ?DA) ~ Predictive(?DA) *
Predicts(?DA, ?Y) A Considers(?DA, ?X)—> HasPredictor
VariableAs(?D, 7X) » HasTargetVariableAs(?D, ?Y).

l A
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Define Activity Indicators
related R
instances 1
y y
A 4
Define DA | DA Tasks
related N
instances 1
Y ry - Required
Define Data Data
) related u N
instances
7'y 3 Data
Define Data | Sources
Sogrce related —
instances v DA
7y iti
Opportunities
) ) j Generate DA
B > opportunlty >
instances
.
|, —
) J
Knowledge AM Project AM System Ontology AM Data
Engineers  Managers Engineers Reasoner snineers
Data
Scientists

Fig. 4 DA opportunity identification process
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This rule indicates when data are required by a certain
predictive analytics task, the data should include the predic-
tor variables for what information the task should consider
and the target variables for what the task should predict.

The AM data engineers define the instances of “Data-
Source” from which the required data is collected. “Data-
Source” instances are established based on certain variables
defined in the “Data” instance. For example, when a “Data”
instance includes a variable of deviation of melt pool dimen-
sion, its “DataSource” instance may be a coaxial camera.

Finally, “DataAnalyticsOpportunity” instances are gen-
erated by composing the instances defined above. Thus, a
“DataAnalyticsOpportunity” instance is associated with
each of its source instances, as shown in Fig. 3. An SWRL
rule to generate “DataAnalyticsOpportunity” instances is
formulated as.

HasDataAnalyticsTaskAs(?DO, ?DA) ™ Deci-
sion_Supports(?DA, ?A) N Aims(?DA, ?G)
N Achieves(?A, ?G) ~ Requires(?DA, ?D) *
IsCollectedFrom(?D, ?DS)—> HasGoalAs(?DO, ?G)
HasTargetActivityAs(?DO, ?A) * HasRequiredDataAs(?DO,
7D) ~ HasDataSourceAs(?DO, ?DS).

where DO, G, A, DA, D, and DS represent a “DataAna-
lyticsOpportunity” instance, “Goal” instance, “Activity”
instance, “DataAnalyticsTask™ instance, “Data” instance,
and “DataSource” instance, respectively.

For example, a “DataAnalyticsOpportunity” instance
DO has a DA task instance that predicts Porosity. The DA
can support the FusePowders activity instance and aim at
the MechanicalPerformancelmprovement goal instance. In
the same example, DA requires a D data instance, which
has predictor variables of PowderLayer, QualityParameter,
RecoatingParameter, ControlParameter, and PowderFusion-
Parameter; and a target variable of Porosity. D requires data
sources as ProcessPlanningSoftware, LayerwiseCamera and
X-rayComputedTomographyScanner (XCT). Thus, the DO
has MechanicalPerformancelmprovement as its goal, Fuse-
Powders as its target activity, DA as its DA task, D as the
required data, ProcessPlanningSoftware, LayerwiseCamera,
and XCT as the required data sources.

Prioritization tool

For the sake of time, cost, and impact, there is no need
to realize all identified DA opportunities. The tool helps
to identify high potential and high impact DA opportuni-
ties. The prioritization tool includes two phases: Evaluation
and Prioritization. During the Evaluation phase, the team
of experts evaluates each identified DA opportunity. The
Prioritization phase focuses on prioritizing the DA oppor-
tunities by assessing the evaluation results from the team of
experts using the Fuzzy-TOPSIS. After prioritization, each
DA opportunity has an overall score, an importance score,
and a feasibility score.

Data analytics opportunity evaluation

The team of experts evaluates the identified DA opportuni-
ties using the six criteria in Table 1. Each DA opportunity
consists of the five-tier information, so each criterion is to
evaluate one of the five tiers of each DA opportunity. Benefit
criteriaC;, C,, and C;are related to goal, activity, and DA,
respectively. Cost criteria C,, Cs, and Cg are related to DA,
data, and data source, respectively.

Each DA opportunity is evaluated based on the six crite-
ria using seven linguistic variables: Very High (VH), High
(H), Slightly High (SH), Medium (M), Low (L), Slightly
Low (SL), and Very Low (VL). For example, an expert
evaluates DA opportunity DO, and DO,. DO, has a goal
MechanicalPerformancelmprovement, and DO, has a goal
MaterialSaving. If the expert thinks the benefit of achiev-
ing MechanicalPerformancelmprovement is very high and
achieving MaterialSaving is high; the expert can rate DO,
and DO, as VH and H on C;.

Each expert also self-evaluates his/her level of expertise
on each criterion by using the same variables. For example,
project managers may rate their expertise as VH on C; but
not on the other criteria.

Data analytics opportunity prioritization

The evaluated DA opportunities are prioritized using Fuzzy-
TOPSIS. Fuzzy sets allow for a concept called ‘partial truth’,

Table 1 Criteria for evaluating

- Criterion Description
DA opportunities
C, Benefit for achieving the goal
C, Benefit for improving the activity to achieve the corresponding goal
C; Benefit for performing the DA task to support making decisions to the cor-
responding activity
C, Difficulty of performing the DA task assuming the required data is available
Cs Difficulty of managing the required data to be prepared for the DA task
Ce Difficulty of collecting the required data from the data sources
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where the truth-value ranges between 0 and 1. The fuzzy sets
model uncertainty in judgment; this contrasts with binary
sets, which have two, deterministic elements (true and false).
Quantifying the concept of partial truth involves creating a
fuzzy set X in which elements are defined by a membership
function pu;(¢), which assigns each element t a membership
degree in the interval [0, 1]. A Triangular Fuzzy Number
(TEN) is a fuzzy set denoted as ¥ = (xl , Xy, X3 ) where x,, x,,
and x; are the lower limit, the value with the largest member-
ship function value, and the upper limit, respectively. The
membership function associated with a TFN is defined in

Eq. (1).

(t=x))/(xy—x)), x, <t<x,
(3=1)/(x3-%,), % <t<x )
0, otherwise

uz(t) =

A linguistic variable can be expressed as a TFN to
describe the subjective judgment quantitatively, as shown
in Table 2.

Algebraic operations with TFNs are described as
Eq. (2)—(6).

Leta = (aj,ay,a3)andb = (by, b,, by)be two TFNs.

a+b=(a +£b,a,+bya;+bs) 2
axb=(a;Xbj,ayXb,, a3Xbs) 3)
a+b=(a,+b,a,+b, a;3=+bs) @)
r><51=(r><a1,r><a2,r><a3) )

where r is a constant number

d(a.b) = \/{ (0=, + (a2 = b3) + (a3 = ) 13
®

where d(a, 13) is the distance between & and b.
Collaborative evaluation based on the Fuzzy-TOPSIS
method encounters a drawback: the knowledge levels of all

Table 2 Linguistic variables

> Linguistic variable TFN
and corresponding TFNs
Very High (VH) (6,7,7)
High (H) (5,6,7)
Slightly High (SH) (4,5,6)
Medium (M) (B4.5)
Slightly Low (SL) (2,3.4)
Low (L) (1,2,3)

Very Low (VL) (1,1,2)

@ Springer

evaluators are treated the same. We modified the existing
Fuzzy-TOPSIS to consider the expertise level of each expert
on each criterion. The process procedure of the modified
Fuzzy-TOPSIS is described as follows:

Step 1 Assign a TFN to each linguistic variable.

The linguistic variables are quantified as the correspond-
ing TFNs in Table 2. The fuzzy rating of the k™ expert about
the i DA opportunity DO; with respect to the j criterion

C;is denoted ¥\ = (x’.‘. , Xk Xk ) The expertise level of the
; ij ijl 527 i3
kth expert on criterion C]. is denoted Wk = (w’.‘ , W owk )

g J g2 3

Step 2 Compute weighted aggregated fuzzy ratings for
the DA opportunities.

The aggregated fuzzy rating of DO, with respect to C; is
computed using Eq. (7):

X = ()cl-jl,)cljz,)cll-,»3 ),Where
K K K
_ k _ k k _ k
Ky = X X Wi g = DX X W i = 3 Xy
k=1 k=1 k=1

(N

After this above operation, the aggregated fuzzy rating
reflects the expertise level of each individual expert.

Step 3 Compute the normalized fuzzy decision matrix.

Let the criteria (C,,...,C,,) be the benefit criteria and the
criteria (C,,,},...,C,) be the cost criteria. The normalized
fuzzy decision matrix is represented by Eq. (8).

R= [rlj],where.

~ * * * F i
Fy= (x,-jl/xj, xijz/xf, x,j}/xj)andxj —mlax{xijg}, j=1,....m
or

= ();j’/x£/3, xj’/xijz, xj’/xl_v/l> and xj’ = rnl_in{x,j] b, j=Em+1,....n
(3)
Step 4: Compute the Fuzzy Positive Ideal Solution (FPIS)

and Fuzzy Negative Ideal Solution (FNIS).
The FPIS and FNIS are calculated as Eq. (9) and (10):

FPIS = (?T, Pseee ,7:), where ?J* = mlax{riﬂ} )

FNIS = (r, 7y, ..., 7, ), where 7" = min{r; } (10)

Step 5: Compute the distances from each DA opportunity
to the FPIS and to the FNIS.

In this step, the distances from each DA opportunity to
the FPIS (d;‘j) and to the FNIS (d;) on each criterion are

computed as Eq. (11) and (12):

d;; = d(?ij,?j’."> (11)

dy =d(7,77) (12)
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Step 6: Compute the closeness coefficients for each DA
opportunity.

For each DO,, the closeness coefficients can be calcu-
lated for two different dimensions— importance /CC; and
feasibility FCC,—to represent importance score and feasibil-
ity score, respectively. OCC; is also calculated as an overall
score that considers both importance and feasibility. This
score is meant to provide a single metric to determine overall
high-impact DA opportunities.

ICC; is calculated using the benefit criteria:

ICC = Y d;/ Y (d+d)) (13)
j=1 j=1
FCC; is calculated using the cost criteria:
FCC= ), di/ ), (d;+d;) (14)
jEm+l o j=ml

OCC, is calculated using all criteria:

OCC;= Y dy/ Y (dy+dp) (15)
S =
Case Study

To demonstrate the feasibility of the proposed methodology,
we provide a case study that shows how high potential and
high impact DA opportunities are identified to support AM
research at NIST. NIST’s AM research goal is to help inno-
vate and improve AM industrial competitiveness. To achieve
this goal, NIST has developed the Additive Manufacturing
Metrology Testbed (AMMT) to conduct advanced research
on the L-PBF process (Lane et al., 2016). This study identi-
fies and prioritizes DA opportunities in AMMT, specifically
for the L-PBF process.

Team of Experts

NIST is a research institute where experts from various
backgrounds gather. Currently, NIST runs two AM projects
related to DA: Data-Driven Decision Support for Additive
Manufacturing (3DSAM) (Witherell & Lee, 2020) and Data
Integration and Management for Additive Manufacturing
(DIMAM) (Lu & Jones, 2020). The objective of the 3DSAM
project is to develop and deploy metrics, models, and best
practices for using product definition, advanced analyt-
ics, and DA methods in AM design and process planning
to achieve target AM goals (Witherell & Lee, 2020). The
objective of the DIMAM project is to develop models, meth-
ods, and best practices for data lifecycle management, data

integration, and data fusion in AM to facilitate the effective
and efficient curation, sharing, processing, and use of AM
data (Lu & Jones, 2020).

For this use case study, a six-expert team was formed
from the two projects. This team satisfies the qualification
requirements described in Sect. 3.1.

Identification of data analytics opportunities

A DOKB was developed using the Protégé tool, which is an
open-source software program for ontology development.
The structure of the DOKB in Protégé is presented in Fig. 5.

The expert team defined seven instances of the “Goal”
class: for the L-PBF process, Conformance, Aestheticlm-
provement, and MechanicalPerformancelmprovement are
defined in “Quality”; MaterialSaving and EnergySaving
are defined in “Cost”; and TimeEfficiency and ProcessSta-
bility are defined in “Delivery”. To define activity-related
instances, the experts adopted the existing IDEFO model
for the L-PBF process, which was previously developed by
NIST researchers (Kim et al., 2017). A set of activities that
can achieve the seven “Goal” instances was chosen from
the IDEFO model. As a result, 23 “Performancelndicator”
instances, 19 “Activity” instances, and all activity-instance
related “ICOM” instances were identified and associated.
For example, the “Performancelndicator” instance Porosity
and the “Activity” instance FusePowders were identified for
the “Goal” instance MechanicalPerformancelmprovement.
Figure 6 provides a visual representation of the example,
including the relationships among the instances.

The team of experts defined goal-oriented and AM activ-
ity-specific DA tasks by formulating five SWRL rules, as
shown in Table 13 (a) (See Appendix). Using the rules, 264
“DataAnalyticsTask” instances were automatically defined;
they include 66 instances for each subclass—i.e., “Prescrip-
tive”, “Predictive”, “Diagnostic”, and “Descriptive”. One
instance example of DA is shown in Fig. 7 (a). The “Pre-
dictive” instance DA is for supporting the activity Fuse-
Powders and the goal MechanicalPerformancelmprovement.
Six new properties (yellow box) of DA,y were inferred
using the Predictive Analytics Rule. DA is for predicting
Porosity using the information of QualityParameter, Recoat-
ingParameter, ControlParameter, PowderFusionParameter,
and PowderLayer. The expert team also defined required
data for individual DA tasks by formulating four SWRL
rules, as shown in Table 13 (b) (See Appendix). In total, 264
“Data” instances were defined for the “DataAnalyticsTask”
instances, including 66 instances for each subclass—i.e.,
“ForPrescriptiveAnalytics”, “ForPredictive Analytics”, “For-
DiagnosticAnalytics”, and “ForDescriptiveAnalytics”. One
instance example of D,y is shown in Fig. 7(b). The “For-
PredictiveAnalytics” instance, D) is required by DA . Six
new properties (yellow box) of Dy, were inferred using the
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\ owl:Thing
v 1.ThingDefinedintheGoallLayer
A 4 Goal
Cost
Delivery
Quality
\ 4 2.ThingsDefinedIntheActivityLayer
Activity
\ ICOM
Control
Input
Mechanism
Output
Performancelndicator
\ £ 3.ThingsDefinedIintheDataAnalyticsLayer
A 4 DataAnalyticsTask
Descriptive
Diagnostic
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DataAnalyticsOpportunity

Fig.5 Structure of DOKB in Protégé

Predictive Analytics Data Requirement Rule. D, includes
the predictor variables of QualityParameter, RecoatingPa-
rameter, ControlParameter, PowderFusionParameter, and
PowderLayer and a target variable of Porosity.

The experts defined the instances of “DataSource” by
referring to the variables of the required “Data” instances. In
total, 26 “DataSource” instances were identified: 16 “Equip-
ment” instances, three “Material” instances, one “Person-
nel” instance, and six “Software” instances. For example,
D6 can be collected from ProcessPlanningSoftware in the
“Software” class and from LayerwiseCamera and XCT in
the “Equipment” class (Fig. 8).

Finally, 264 DA opportunities were identified for the
L-PBF process (Fig. 9), with DO, as one of the identified
DA opportunities. DO, was developed based on the goal
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MechanicalPerformancelmprovement; the target activity
FusePowders; the DA task DA q; required data D,,; and
data sources XCT, LayerwiseCamera, and ProcessingPlan-
ningSoftware. Additional information about each instance
can be retrieved from the DOKB, as shown in Fig. 9. In
addition, DO, provides the prioritization results, which are
described in the next sub-section.

Evaluation and prioritization of data analytics
opportunities

The team of six experts (E; — E4) evaluated the identified
DA opportunities. Each expert has a unique knowledge
background. Table 3 shows how much each expert knows
about each criterion (described in Table 1) using the seven
linguistic variables described in Table 2. Table 4 presents
the results of the evaluation for each DA opportunity using
these same linguistic variables.

The linguistic variables in Tables 3 and 4 were quanti-
fied to the corresponding TFNs (described in Table 2). For
example, the expertise of E; on the criterion C, is SH, so
the fuzzy rating of the expertise is denoted as (4,5,6). The
linguistic rating of E, on DO, with respect to criterion C,
is SH, so E,’s fuzzy rating is also denoted as (4,5,6). Then,
the weighted, aggregated fuzzy rating was calculated using
Eq. (7). Table 5 presents the weighted aggregated fuzzy
matrix.

The normalized fuzzy decision matrix, R= [7,7], was com-
puted using Eq. (8). Table 6 presents the normalized fuzzy
decision matrix.

The FPIS and FNIS were calculated using Eq. (9) and
(10). Table 7 presents the results of FPIS and FNIS for all
criteria.

The distances from each DA opportunity to FPIS and to
the FNIS were computed using Eq. (11) and (12) after FPIS
and FNIS were determined. Finally, the closeness coeffi-
cients of DO, were calculated for importance (ICC,), feasi-
bility (FCC;), and overall (OCC;) using Eq. (13—15). Table 8
presents examples of the distances and the closeness coef-
ficients with priority rankings.

Analysis of prioritization results

The prioritization results of the identified DA opportunities
can be further analyzed using a prioritization matrix. The
feasibility dimension (x axis) and importance dimension
(y axis) in the matrix represent the closeness coefficients
FCC; and ICC; of DO;, respectively. The value of OCC, is
used to determine the circle size of DO; in the prioritiza-
tion matrix. The prioritization results (see Table 8 for exam-
ples) were sorted into four groups, as shown in Table 9 and
Fig. 10. By mapping DA opportunities to a prioritization
matrix, we are able to present the user with graphical means
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Fig.6 An illustrative example of the established relationship for L-PBF in the DOKB

for interpreting the overall results. Location of the oppor-
tunities in the four quadrants correlates with the potential
impact of DA opportunities. The first group G1 has critical
DA opportunities. The second group G2 has DA opportuni-
ties that are potentially critical. A DA opportunity in G2 can
be re-prioritized in G1 by making a special effort to improve
the feasibility. The third group G3 has DA opportunities with
the lowest priority. The fourth group G4 has DA opportuni-
ties that may be easy to develop, but most likely, the effort
is not beneficial; however, sometimes, such opportunities
might be helpful for proof of DA concept in emerging areas.

As shown in Table 10, the prioritization results of three
DA-opportunity examples were tabulated to summarize the
ICC, FCC, and OCC scores and ranks, as well as the five-
tier information of each example opportunity. Consider-
ing OCC, DO ;4 ranked first among the 264 identified DA

opportunities. It is therefore worth examining the opportu-
nity DO 3. The task for DO ;4 is to characterize support
structures to determine their number and size for the part
overhangs. The goal of this opportunity is to reduce the
amount of material used to build support structures, while
the target activity is meant to design a support for overhangs.
Many historical data of support structures on similar designs
from process planning software are now available to real-
ize this DA opportunity. Realizing this DA opportunity will
improve understanding of how much waste material can be
reduced.

DO,ys and DO, 4 are two special opportunities because
they have very high ICC scores and are ranked at the top;
however, they are considered potentially critical opportuni-
ties (G2). The goal of these two opportunities is to improve
mechanical performance, which is directly related to part
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Name

|Predictive Analytics Rule
Comment

l
Status
Ok
’Aims(?DA ?G) " Decision_Supports(?DA, ?A) * IsEvaluatedBy(?G, ?PI) * IsMeasuredIn(?PI, ?A) * HasInputAs(?A, ?I)*
Predictive(?DA) » HasControlAs(?A, ?C) -= Considers(?DA, ?C) * Considers(?DA, ?1) * Predicts(?DA, ?PI)

Property assertions: DA106

Object property assertions

.

Description: DA106

Types K

@ Predictive

Property assertions: DA106

Object property assertions

B Aims MechanicalPerformancelmprovement
B Decision_Supports FusePowders
B Considers QualityParameter

B Considers RecoatingParameter

B Aims MechanicalPerformancelmprovement W Considers ControlParameter

B Decision_Supports FusePowders

B Considers PowderFusionParameter
B Considers PowderLayer
B Predicts Porosity

(C))

Name

[Predictive Analytics Data Requirement Rule
Comment

Status
Ok

Considers(?DA, ?X) * Predicts(?DA, ?Y) * IsRequiredBy(?D, ?DA) * Predictive(?DA) -> HasPredictorvVariableAs(?D, ?X) *
HasTargetVariableAs(?D, ?Y)

Description: D106 Property assertions: D106

Types o et Object property assertions
) ForPredictiveAnalytics B m |sRequiredBy DA106
M HasPredictorVariableAs QualityParameter
SWRL mm HasPredictorvariableAs RecoatingParameter
MW HasPredictorVariableAs ControlParameter
M HasPredictorVariableAs PowderFusionParameter
B HasPredictorVariableAs PowderLayer
MW HasTargetVariableAs Porosity

Object property assertions

= sRequiredBy DA106

(b)

Fig.7 Examples of newly inferred properties using SWRLs (a) for a “Predictive” instance, and (b) for a “ForPredictiveAnalytics” instance
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Description: D106

Types

@ ForPredictiveAnalytics

Property assertions: D106

Object property assertions
B |sRequiredBy DA106
mm sCollectedFrom LayerwiseCamera*

M sCollectedFrom ProcessPlanning Software*
i sCollectedFrom XCT*

m HasPredictorVariableAs QualityParameter

B HasPredictorvariableAs RecoatingParameter
W HasPredictorVariableAs ControlParameter

M HasPredictorVariableAs PowderFusionParameter
W HasPredictorvariableAs PowderLayer

B HasTargetVariableAs Porosity

MW HasVariableAs QualityParameter

mm HasVariableAs RecoatingParameter

W HasVariableAs ControlParameter

W HasVariableAs PowderFusionParameter

W HasVariableAs Porosity

MW HasVariableAs PowderLayer

Fig.8 An example of data sources for D¢

quality. Poor AM part quality is a major obstacle that hinders
the widespread adoption of AM technology. DO, predicts
porosity by considering a powder layer and parameters for
quality, control, powder fusion, and recoating. The predic-
tion could improve real-time control when fusing powders
and lead to AM products having higher mechanical perfor-
mance. DO,y diagnoses residual stress by identifying a cor-
relation between 1) residual stress and 2) AM part and heat
treatment parameters. Newly identified data-driven knowl-
edge, if provided, could help set heat treatment parameters to
improve properties of AM parts. Despite their very high ICC
scores, DOy, and DO, 4 receive very low FCC scores (0.057
and 0.084, respectively). We suggest three reasons for these

Description: Equipment Description: Material
Equivalent To Equivalent To
SubClass Of SubClass Of

@ DataSource ) DataSource
General class axioms General class axioms
SubClass Of (Anonymous Ancestor) SubClass Of (Anonymous Ancestor)
Instances Instances

@ AMMachine* & Avmpart*

&cvm @ rFusedLayer

@cne @ pPowderLayer

@ Co-axialCamera*

&ceom

@ EnergyMeter*

@ HeatTreatmentMachine*

@ LayerwiseCamera* |

@ off-axisCamera*

@ photodiode*

@ pyrometer

@ TensileTestingMachine*

@ ThermalCamera*

@ TimeMeter*

0x-RayDiffractionlnstmmentation' DSClipﬁ'on: Software

XCT* I
Equivalent To

SubClass Of

@ DataSource

General class axioms
SubClass Of (Anonymous Ancestor)
@ DataSourc
Instances
General class axioms @ BOMFile*
@ BuildSoftware*
SubClass Of (Anonymous Ancestor) .CADSoﬂware‘

& camsoftware*
@ HeatTreatmentSoftware*
0 ProcessPlanning Software* I

Instances

@ PartDesigner*

low scores. First, these analytics require an advanced set of
DA skills, such as image processing, dimensionality reduc-
tion, and deep learning. Second, feature selection is difficult;
currently, selecting significant features from unstructured
data such as XCT data of porosity and layer-wise image
data of powder layer is still a problem. Third, the required
data are collected from multiple data sources. For example,
DO, requires data from XCT, layer-wise camera, and pro-
cess planning software. Data fusion for heterogeneous data
is challenging for reasons such as the difficulty in aligning
contexts among the data (Shen et al., 2021).

The prioritization matrix of the case study prior-
itizes DA opportunities; it also indicates the status of DA
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Description: MechanicalPerformancelmprovement Description: FusePowders
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operty assertions

EvaluatedBy Tensilestrength
= isEvaluatedBy ResidualStress
= isEvaluatedBy PackingDensity
= IsEvaluatedBy Porosity

= isAchievedBy FusePowders
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Object property assertions
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= HaslnputAs PowderLayer
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== HasControlAs PowderfusionParameter

= HasOutputAs FusedLayer
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== HasControlAs QualityParameter
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= Achieves Conformance

= Achieves MaterialSaving
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Fig. 9 An example of DA opportunity DO e

Table 3 Linguistic ratings of
expertise level of experts with

respect to the six criteria

DA Task

Description: DA106

Types

@ Predictive

Object property assertions

= Aims

Object property assertions:
DO105 HasRequiredDataAs D106
DO105 HasDataAnaiyicsTaskAs DA106
D105 HasGoalAs MachanicalPerlormancelmprovemant
DO105 HasDataSowceAs XCT*
DO105 HasDataSowceAs ProcessPlanningSoftware™
DO105 HasDataSowrceAs LayerwisaCamera®
DO105 HasTargetActivityAs FusePowders
Data property assertions:
\| 00106 Feaswityscore 0.057609025¢
DO105 ImportanceScore 1.0f
00108

# DO106 \

5165805¢

Required Data

Description: D106

Types

@ ForPredictiveAnalytics

Property assertions: FusePowders Property assertions: DA106 perty/asserl

Object property assertions

= isRequiredBy DA106

= Decision_Supports FusePowders
== Considers QualityParameter

== Considers RecoatingParameter
== Considers ControlParameter

= Considers PowderFusionParameter
= Considers PowderLayer
m=Predicts Porosity

m=Requires D106

-sC rom LayerwiseCamera*
-sC rom i
misCollectedFrom XCT*

== HasPredictorvariableAs QualityParameter

ingf
= HasPredictorVariableAs ControlParameter

= HasPredictorVariableAs PowderLayer
= HasTargetVariableAs Porosity

= HasVariableAs QualityParameter

= HasVariableAs RecoatingParameter

. HasVariableAs ControlParameter

. HasVariableAs PowderFusionParameter
= HasVariableAs Porosity
HasVariableAs PowderLayer

Prioritization Results
Data property assertions
W Feasibility Score 0.057609025f
= importanceScore 1.0f
i OverallScore 0.5165805f

Data Source

Description: XCT*

Types
@ Equipment
Property assertions: XCT*

Object property assertions

W Measures AMPart*

Description: LayerwiseCamera*
Types

@ Equipment
Property assertions: LayerwiseCamera*
Object property assertions

== Monitors PowderLayer*
Description: ProcessPlanningSoftware*

Types
@ Software

Expert
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Cost Criteria

G

c, C,

£
N
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VH
H

VH
VH

VH
VH

H VH
SH SH
M
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H
M

T T = T

zzz@gzrm
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T

technology in the L-PBF process. The ICC and FCC scores
showed a strong negative Pearson’s Correlation Coeffi-
cient (r= —0.695), which implies that the important DA
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opportunities have low feasibility. Similarly, the prioritiza-
tion matrix shows that many DA opportunities belong to the
second group (G2), in which the opportunities have high
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Table 4 Linguistic ratings of
the DA opportunities by the

experts

Table 5 The weighted
aggregated fuzzy matrix

Expert DA Opportunity Benefit criteria Cost criteria
C, C, Cs C, Cs Cs
E, DO, SH H H VH H SL
DO, SH H H H SH SL
DOy, SH SH M M L L
E, DO, VH VH SL H M M
DO, VH VH VH M M M
DOy, VH L L M H M
E, DO, H H H H SH SH
Do, SH SH SH SH SH SH
DOy H H H H VH VH
E, DO, SH M SL SL SL L
Do, SH SH SH M M H
DOy SH H H H H VH
E; DO, SH H H VH VH H
Do, SH H H H H H
DOy VH VH VH M H H
E, DO, H H SH M M M
DO, H H H SH M M
DOy VH VH H H H SH
DA Benefit criteria Cost criteria
Opportunity C, C, G, C, Cs Cs

DO,
DO,

DOy,

(144,209,260) (148,214,273) (113,171,241)
(138,202,253) (149,215,273) (139,203,273)

(162,230,267) (142,206,253) (124,184,249)

(118,176,224) (95,147,204) (87,139,196)
(103,158,218) (88,139,202) (107,163,224)

(95,150,212)  (99,155,217) (123,182,232)

Table 6 The normalized fuzzy decision matrix

DA Benefit criteria Cost criteria

Opportunity C, C, (0 C, Cs Cs

DO, (0.53,0.76,0.95) (0.52,0.75,0.95) (0.39,0.60,0.84) (0.25,0.32,0.47) (0.24,0.33,0.52) (0.14,0.20,0.32)
Do, (0.50,0.74,0.92) (0.52,0.75,0.95) (0.48,0.71,0.95) (0.26,0.35,0.54) (0.24,0.35,0.56) (0.13,0.17,0.26)
DOy, (0.59,0.84,0.97) (0.49,0.72,0.88) (0.43,0.64,0.87) (0.26,0.37,0.59) (0.23,0.32,0.49) (0.12,0.15,0.23)

@ Springer
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Table 7 FPIS and FNIS

Solution Benefit criteria Cost criteria

C, C, C; Cy Cs Ce
FPIS (0.63,0.89, 1) (0.61,0.86,1) (0.59,0.83,1) (0.38,0.59,1) (0.33,0.53,1) (0.24,0.41,1)
FNIS (0.33,0.53,0.70) (0.18,0.34,0.52) (0.24,0.41,0.62)) (0.22,0.30,0.45) (0.2,0.27,0.41) (0.10,0.13,0.19)

Table 8 The modified Fuzzy TOPSIS results

Benefit criteria Cost criteria ICC (#rank) FCC (#rank) OCC (#rank)
DA opportunity C,; C, C; C, Cs Cs

d 4 & 4 & 4 & 4 g 4 g 47
DO, 0.17 039 0.16 0.68 0.35 033 0.61 0.04 053 0.13 0.72 0.15 0.675 #56) 0.146 (#229) 0.405 (#135)
Do, 0.21 035 0.15 068 0.17 051 0.53 0.11 049 0.17 0.78 0.08 0.743 (#41) 0.169 (#222) 0.450 (#77)
DOy, 0.07 049 022 0.61 028 039 048 0.16 056 0.1 0.82 0.04 0.724 (#49) 0.140 (#231) 0.425 (#111)

Table 9 The case study results for the four prioritization groups

Group ID Group Name Conditions Case Study Result -No. of Remark about DA Opportunity
DA Opportunities
Gl High Importance ICC>0.5 & FCC>0.5 3 Critical
High Feasibility
G2 High Importance ICC>0.5& FCC<0.5 120 Potential critical; moving some opportunities
Low Feasibility from G2 to G1 is possible if feasibility is
improved
G3 Low Importance ICC<0.5&FCC<0.5 117 Negligible
Low Feasibility
G4 Low Importance ICC<0.5 & FCC>0.5 24 Nonessential

High Feasibility

ICC scores but low FCC scores. The reason for the low FCC
scores is that there exist technical difficulties that impede the
realization of the opportunity. This observation addresses
another research topic about how to improve the feasibility
of the DA opportunities to promote the opportunities from
the second group (G2) to the first group (G1).

Conclusion and Future Work

This paper proposes a methodology that uses the CKM
approach to identify high potential and high impact DA
opportunities in AM. The methodology has three compo-
nents: a team of experts, a DOKB, and a prioritization tool.
The team of experts provides diverse knowledge that is
vital for identifying and prioritizing DA opportunities. The

@ Springer

DOKB captures the diverse knowledge to support identi-
fication of DA opportunities. The prioritization tool helps
prioritize the identified DA opportunities. A case study
demonstrated the feasibility of the proposed methodology.
It successfully identified and prioritized 264 DA opportu-
nities in the L-PBF process using six experts from NIST.
The results revealed the important DA opportunities in the
L-PBF process.

The DOKB developed for the case study will continue
to be shared, reused, revised, and extended. The shareable
and reusable characteristics enable an increasing number of
AM users to participate in the CKM to identify or prioritize
DA opportunities, thus facilitating the spread of knowledge
across the AM industry. New discoveries related to AM
business, AM activity, DA, and AM data can be effectively
and efficiently used to revise the existing DOKB. For the
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Fig. 10 Prioritization matrix
for DA opportunities from the 1.0
case study

0.9 1

0.8 1

0.7 |
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same reason, the prioritization results can be changed if new
knowledge addresses DA-related technology, such as sensor
technologies, data management technologies, and DA tech-
niques. Furthermore, the DOKB can be extended to include
new purposes or approaches.

Our future work will focus on extending the scope of
the DOKB to include the realization results of the DA
opportunities and recommending DA techniques for real-
izing the DA opportunities. Once certain DA opportunities
are realized, their results—e.g., issues, solutions, perfor-
mance, and maturity—can be reviewed and stored into the
extended DOKB. We plan to automate the process of our
CKM approach for improving efficiency. The DOKB can

0?3 0;4 0i5 0j6 0:7 0:8 0:9 1.0
Feasibility

be improved by using ontology-learning techniques to auto-
matically capture required knowledge from experts.

Finally, the proposed methodology can also be applied to
other data-intensive manufacturing industries, where iden-
tifying important and feasible DA opportunities will con-
tribute to innovations in product quality, productivity, and
competitiveness.

@ Springer
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Appendix

See Table 11, Table 12, Table 13

Table 11 The properties of the
classes in Things Defined in the

Data Analytics Tier

Table 12 The properties of the
classes in the Things Defined in

the Data Tier

Property Subproperty of Domain Range
Decision_Supports DataAnalyticsTask Activity

Aims DataAnalyticsTask Goal

Considers DataAnalyticsTask ICOM

Optimizes Prescriptive Performancelndicator
Maximizes Optimizes Prescriptive Performancelndicator
Minimizes Optimizes Prescriptive Performancelndicator
Prescribes Prescriptive Control

Predicts Predictive Performancelndicator
Diagnoses Diagnostic Performancelndicator
Characterizes Descriptive Performancelndicator
Property Subproperty of Domain Range

IsRequiredBy Data DataAnaltyicsTask
HasVariableAs Data ThingsDefinedintheActivityLayer
HasDecisionVariableAs HasVariableAs ForPrescriptiveAnalytics Control

HasObjectiveVariableAs HasVariableAs ForPrescriptiveAnalytics Performancelndicator
HasBlockingVariableAs HasVariableAs ForPrescriptiveAnalytics ICOM

HasPredictorVariableAs HasVariableAs ForPredictiveAnalytics ICOM

HasTargetVariableAs HasVariableAs ForPredictiveAnalytics  Performancelndicator
HasExplanatoryVariableAs HasVariableAs ForDiagnosticAnalytics 1COM

HasResponseVariableAs HasVariableAs ForDiagnosticAnalytics  Performancelndicator
IsRelatedTo HasVariableAs ForDescriptiveAnalytics ICOM

@ Springer
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Table 13 The SWRL rules for defining DA tasks and data requirements

SWRL rule (a): For the four types of DA tasks

Prescriptive Analytics Rule 1:

IsEvaluatedBy(?G, ?PI) » IsMeasuredIn(?PI, ?A) ~ Prescriptive(?DA) » Aims(?DA, ?G) " Decision_Supports(?DA, ?A) » HasInputAs(?A,
?1) » HasControlAs(?A, ?C) » MonotonePositivelmprovingDirection(?PI, true) » MonotoneNegativelmprovingDirection(?PI,
false)—> Prescribes(?DA, ?C) » Maximizes(?DA, ? PI) » Considers(?DA, ?I)

Prescriptive Analytics Rule 2:

IsEvaluatedBy(?G, ?PI) » IsMeasuredIn(?PI, ?A) * Prescriptive(?DA) * Aims(?DA, ?G) * Decision_Supports(?DA, ?A) » HasInputAs(?A,
1) ~ HasControlAs(?A, ?C) » MonotonePositivelmprovingDirection(?P1, false) » MonotoneNegativelmprovingDirection(?PI,
true)—> Prescribes(?DA, ?C) » Minimizes(?DA, ?PI) ~ Considers(?DA, 1)

Predictive Analytics Rule:

IsEvaluatedBy(?G, ?PI) » IsMeasuredIn(?P1, ?A) » Predictive(?DA) » Aims(?DA, ?G) " Decision_Supports(?DA, ?A) » HasInputAs(?A, 1)
A HasControlAs(?A, ?C)—> Predicts(?DA, ?PI) » Considers(?DA, ?I) ~ Considers(?DA, ?C)

Diagnostic Analytics Rule:

IsEvaluatedBy(?G, ?PI) » IsMeasuredIn(?PI, ?A) » Diagnostic(?DA) * Aims(?DA, ?G) " Decision_Supports(?DA, ?A)  HasInputAs(?A,
1) » HasControlAs(?A, ?C)—> Diagnoses(?DA, ?PI) ~ Considers(?DA, ?I)  Considers(?DA, ?7C)

Descriptive Analytics Rule:

IsEvaluatedBy(?G, ?PI) » IsMeasuredIn(?PI, ?A) » Descriptive(?DA) * Aims(?DA, ?G) " Decision_Supports(?DA,

?A)—> Characterizes(?DA, ?PI)

Where: G: Goal instance, PI: Performance indicator instance A: Activity instance, DA: DA task instance, I: Input instance, C: Control

instance

SWRL rule (b): For the four types of required data

Prescriptive Analytics Data Requirement Rule:

IsRequiredBy(?D, ?DA) ” Prescriptive(?DA) » Considers(?DA, ?X) » Optimizes(?DA, ?PI) " Prescribes(?DA,
?7C)—> HasDecisionVariableAs(?D, ?C) » HasObjectiveVariableAs(?D, ?PI) ~ HasBlockingVariableAs(?D, 7X)

Predictive Analytics Data Requirement Rule:

IsRequiredBy(?D, ?DA) * Predictive(?DA) * Predicts(?DA, ?Y) * Considers(?DA, 7X)—> HasPredictorVariableAs(?D, ?X) »

HasTargetVariableAs(?D, ?Y)
Diagnostic Analytics Data Requirement Rule:

IsRequiredBy(?D, ?DA) * Diagnostic(?DA) ~ Diagnoses(?DA, ?Y) » Considers(?DA, ?X)—> HasExplanatory VariableAs(?D, ?X) »

HasResponseVariableAs(?D, ?Y)
Descriptive Analytics Data Requirement Rule:

IsRequiredBy(?D, ?DA) ” Descriptive(?DA) ” Characterizes(?DA, ?7X)—> IsRelatedTo(?D, ?X)
Where: D: Data instance, DA: DA task instance, PI: Performance indicator instance, C: Control instance, X,Y: Parameters

Acknowledgements The authors acknowledge the support of the Addi-
tive Manufacturing Program at the National Institute of Standards and
Technology (NIST), US Department of Commerce. The authors thank
Dr. Yan Lu, Dr. Zhuo Yang, and Dr. Tesfaye Moges for their time and
efforts evaluating the DA opportunities. Certain commercial systems
are identified in this article. Such identification does not imply recom-
mendation or endorsement by NIST; nor does it imply that the products
identified are necessarily the best available for the purpose. Further,
any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of NIST or any other supporting U.S. government or corporate
organizations.

References

Abecker, A., & van Elst, L. (2009). Ontologies for Knowledge Manage-
ment. In S. Staab & R. Studer (Eds.), Handbook on Ontologies
(pp. 713-734). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-92673-3_32

@ Springer

Adrian, W. T., LigEza, A., Nalepa, G. J., & Kaczor, K. (2014). Distrib-
uted and collaborative knowledge management using an ontology-
based system. In IFIP Advances in Information and Communica-
tion Technology (Vol. 422, pp. 112-130). https://doi.org/10.1007/
978-3-642-54897-0_7

Alberti-Alhtaybat, V. L., Al-Htaybat, K., & Hutaibat, K. (2019). A
knowledge management and sharing business model for deal-
ing with disruption: The case of Aramex. Journal of Business
Research. https://doi.org/10.1016/j.jbusres.2017.11.037

Ameri, F., Urbanovsky, C., & McArthur, C. (2012). A systematic
approach to developing ontologies for manufacturing service
modeling. In CEUR Workshop Proceedings (Vol. 886, pp. 1-14).

ASTM International. (2012). ASTM F2792—12a, Standard Terminology
for Additive Manufacturing Technologies (Withdrawn 2015). West
Conshohocken, PA. www.astm.org

Bosio, F., Aversa, A., Lorusso, M., Marola, S., Gianoglio, D., Battez-
zati, L., et al. (2019). A time-saving and cost-effective method
to process alloys by Laser Powder Bed Fusion. Materials and
Design, 181, 107949. https://doi.org/10.1016/j.matdes.2019.
107949


https://doi.org/10.1007/978-3-540-92673-3_32
https://doi.org/10.1007/978-3-642-54897-0_7
https://doi.org/10.1007/978-3-642-54897-0_7
https://doi.org/10.1016/j.jbusres.2017.11.037
http://www.astm.org
https://doi.org/10.1016/j.matdes.2019.107949
https://doi.org/10.1016/j.matdes.2019.107949

Journal of Intelligent Manufacturing

Bugatti, M., & Colosimo, B. M. (2021). Towards real-time in-situ mon-
itoring of hot-spot defects in L-PBF: A new classification-based
method for fast video-imaging data analysis. Journal of Intelligent
Manufacturing. https://doi.org/10.1007/s10845-021-01787-y

Chang, C. H., Lin, J. J., Lin, J. H., & Chiang, M. C. (2010). Domes-
tic open-end equity mutual fund performance evaluation using
extended TOPSIS method with different distance approaches.
Expert Systems with Applications, 37(6), 4642-4649. https://doi.
org/10.1016/j.eswa.2009.12.044

Costa, R., Lima, C., Sarraipa, J., & Jardim-Gongalves, R. (2013).
Facilitating knowledge sharing and reuse in building and con-
struction domain: An ontology-based approach. Journal of Intel-
ligent Manufacturing, 27(1), 263-282. https://doi.org/10.1007/
$10845-013-0856-5

Davtalab, O., Kazemian, A., Yuan, X., & Khoshnevis, B. (2020). Auto-
mated inspection in robotic additive manufacturing using deep
learning for layer deformation detection. Journal of Intelligent
Manufacturing. https://doi.org/10.1007/s10845-020-01684-w

Dessi, N., Milia, G., Pascariello, E., & Pes, B. (2016). COWB: A
cloud-based framework supporting collaborative knowledge
management within biomedical communities. Future Generation
Computer Systems, 54, 399—408. https://doi.org/10.1016/j.future.
2015.04.012

Eyers, D. R., & Potter, A. T. (2017). Industrial additive manufactur-
ing: A manufacturing systems perspective. Computers in Industry,
92-93,208-218. https://doi.org/10.1016/j.compind.2017.08.002

Feng, S. C., Lu, Y., & Jones, A. T. (2020). Meta-data for in-situ moni-
toring of laser powder bed fusion processes. In Proceedings of
the ASME 2020 15th International Manufacturing Science and
Engineering Conference (pp. 1-10). https://doi.org/10.1115/
msec2020-8344

Gagnon, R., Kurata, K., & Chin, S. (2017). Data & Advanced Ana-
lytics: High Stakes, High Rewards. Forbes Insight, 1-59. www.
forbes.com/forbesinsights HIGH

Gibson, I., Rosen, D., & Stucker, B. (2015). Design for Additive Manu-
facturing. In Additive Manufacturing Technologies: 3D Printing,
Rapid Prototyping, and Direct Digital Manufacturing. Springer,
New York. pp. 399-435. https://doi.org/10.1007/978-1-4939-
2113-3_17

Gruber, T. R. (1993). A translation approach to portable ontology spec-
ifications. Knowledge Acquisition, 5(2), 199-220. https://doi.org/
10.1006/knac.1993.1008

Griininger, M., & Fox, M. S. (1995). Methodology for the Design and
Evaluation of Ontologies. In International Joint Conference on
Artificial Inteligence (IJCAI95), Workshop on Basic Ontological
Issues in Knowledge Sharing (pp. 1-10). http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.44.8723

Horrocks, 1., Patel-Schneider, P. F., Bechhofer, S., & Tsarkov, D.
(2005). OWL rules: A proposal and prototype implementation.
Web Semantics, 3(1), 23-40. https://doi.org/10.1016/j.websem.
2005.05.003

Horrocks, 1., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B.,
& Dean, M. (2004). SWRL: A Semantic Web RUle Language
Combining OWL and RuleML. W3C. https://www.w3.org/Submi
ssion/SWRL/

Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making:
Methods and Applications, A State-of-the-Art Survey. Springer.
https://doi.org/10.1007/978-3-642-48318-9

Im, K., & Cho, H. (2013). A systematic approach for developing a new
business model using morphological analysis and integrated fuzzy
approach. Expert Systems with Applications, 40(11), 4463-4477.
https://doi.org/10.1016/j.eswa.2013.01.042

Kamsu-Foguem, B., & Noyes, D. (2013). Graph-based reasoning
in collaborative knowledge management for industrial mainte-
nance. Computers in Industry, 64(8), 998—1013. https://doi.org/
10.1016/j.compind.2013.06.013

Keet, C. M. (2018). An Introduction to Ontology Engineering. http://
www.meteck.org/teaching/OEbook/

Kim, D. B., Witherell, P, Lu, Y., & Feng, S. (2017). Toward a digital
thread and data package for metals-additive manufacturing. Smart
and Sustainable Manufacturing Systems, 1(1), 20160003. https://
doi.org/10.1520/3sms20160003

Kim, S., Rosen, D. W., Witherell, P., & Ko, H. (2019). A design for
additive manufacturing ontology to support manufacturability
analysis. Journal of Computing and Information Science in Engi-
neering, 19(4), 041014. https://doi.org/10.1115/1.4043531.

Ko, H., Witherell, P., Lu, Y., Kim, S., & Rosen, D. W. (2021). Machine
learning and knowledge graph based design rule construction for
additive manufacturing. Additive Manufacturing, 37, 101620.
https://doi.org/10.1016/j.addma.2020.101620

Koohang, A., & Nord, J. H. (2021). Critical components of data ana-
lytics in organizations: A research model. Expert Systems with
Applications. https://doi.org/10.1016/j.eswa.2020.114118

Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G. H., Cho, J. H.,
et al. (2020). A deep neural network for classification of melt-
pool images in metal additive manufacturing. Journal of Intel-
ligent Manufacturing, 31(2), 375-386. https://doi.org/10.1007/
$10845-018-1451-6

Lane, B. M., Mekhontsev, S., Grantham, S. E., Vlasea, M., Whit-
ing, J. G., Yeung, H., et al. (2016). Design, Developments, and
Results From the Nist Additive Manufacturing Metrology Testbed
(AMMT). In Proceedings of the Solid Freeform Fabrication Sym-
posium (p. 1021407). http://ws680.nist.gov/publication/get_pdf.
cfm?pub_id=921551%0Ahttp://ws680.nist.gov/publication/get_
pdf.cfm?pub_id=921551%0Ahttps://sffsymposium.engr.utexas.
edu/sites/default/files/2016/093-Lane.pdf

Leong, G. K., Snyder, D. L., & Ward, P. T. (1990). Research in the
process and content of manufacturing strategy. Omega, 18(2),
109-122. https://doi.org/10.1016/0305-0483(90)90058-H

Li, Y., Tarafdar, M., & Rao, S. S. (2012). Collaborative knowledge
management practices: Theoretical development and empirical
analysis. International Journal of Operations and Production
Management, 32(4), 398—422. https://doi.org/10.1108/01443
571211223077

Liang, J. S. (2018). An ontology-oriented knowledge methodology for
process planning in additive layer manufacturing. Robotics and
Computer-Integrated Manufacturing. https://doi.org/10.1016/j.
rcim.2018.03.003

Lima Junior, F. R., Osiro, L., & Carpinetti, L. C. R. (2014). A compari-
son between Fuzzy AHP and Fuzzy TOPSIS methods to supplier
selection. Applied Soft Computing, 21, 194-2009. https://doi.org/
10.1016/j.as0c.2014.03.014

Liu, J., & Wei, Q. (2018). Risk evaluation of electric vehicle charging
infrastructure public-private partnership projects in China using
fuzzy TOPSIS. Journal of Cleaner Production, 189, 211-222.
https://doi.org/10.1016/j.jclepro.2018.04.103

Lu, Y., Choi, S., & Witherell, P. (2015). Towards an integrated data
schema design for additive manufacturing: Conceptual mod-
eling. In Proceedings of the ASME Design Engineering Techni-
cal Conference (Vol. 1A-2015). https://doi.org/10.1115/DETC2
015-47802

Lu, Y., & Jones, A. T. (2020). Data Integration and Management for
Additive Manufacturing. National Institute of Standards and
Technology. https://www.nist.gov/programs-projects/data-integ
ration-and-management-additive-manufacturing

Mabhato, V., Obeidi, M. A., Brabazon, D., & Cunningham, P. (2020).
Detecting voids in 3D printing using melt pool time series data.
Journal of Intelligent Manufacturing. https://doi.org/10.1007/
$10845-020-01694-8

Majeed, A., Lv, J., & Peng, T. (2019). A framework for big data driven
process analysis and optimization for additive manufacturing.

@ Springer


https://doi.org/10.1007/s10845-021-01787-y
https://doi.org/10.1016/j.eswa.2009.12.044
https://doi.org/10.1016/j.eswa.2009.12.044
https://doi.org/10.1007/s10845-013-0856-5
https://doi.org/10.1007/s10845-013-0856-5
https://doi.org/10.1007/s10845-020-01684-w
https://doi.org/10.1016/j.future.2015.04.012
https://doi.org/10.1016/j.future.2015.04.012
https://doi.org/10.1016/j.compind.2017.08.002
https://doi.org/10.1115/msec2020-8344
https://doi.org/10.1115/msec2020-8344
http://www.forbes.com/forbesinsights
http://www.forbes.com/forbesinsights
https://doi.org/10.1007/978-1-4939-2113-3_17
https://doi.org/10.1007/978-1-4939-2113-3_17
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.8723
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.8723
https://doi.org/10.1016/j.websem.2005.05.003
https://doi.org/10.1016/j.websem.2005.05.003
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1016/j.eswa.2013.01.042
https://doi.org/10.1016/j.compind.2013.06.013
https://doi.org/10.1016/j.compind.2013.06.013
http://www.meteck.org/teaching/OEbook/
http://www.meteck.org/teaching/OEbook/
https://doi.org/10.1520/ssms20160003
https://doi.org/10.1520/ssms20160003
https://doi.org/10.1115/1.4043531
https://doi.org/10.1016/j.addma.2020.101620
https://doi.org/10.1016/j.eswa.2020.114118
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1007/s10845-018-1451-6
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttp://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttps://sffsymposium.engr.utexas.edu/sites/default/files/2016/093-Lane.pdf
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttp://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttps://sffsymposium.engr.utexas.edu/sites/default/files/2016/093-Lane.pdf
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttp://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttps://sffsymposium.engr.utexas.edu/sites/default/files/2016/093-Lane.pdf
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttp://ws680.nist.gov/publication/get_pdf.cfm?pub_id=921551%0Ahttps://sffsymposium.engr.utexas.edu/sites/default/files/2016/093-Lane.pdf
https://doi.org/10.1016/0305-0483(90)90058-H
https://doi.org/10.1108/01443571211223077
https://doi.org/10.1108/01443571211223077
https://doi.org/10.1016/j.rcim.2018.03.003
https://doi.org/10.1016/j.rcim.2018.03.003
https://doi.org/10.1016/j.asoc.2014.03.014
https://doi.org/10.1016/j.asoc.2014.03.014
https://doi.org/10.1016/j.jclepro.2018.04.103
https://doi.org/10.1115/DETC2015-47802
https://doi.org/10.1115/DETC2015-47802
https://www.nist.gov/programs-projects/data-integration-and-management-additive-manufacturing
https://www.nist.gov/programs-projects/data-integration-and-management-additive-manufacturing
https://doi.org/10.1007/s10845-020-01694-8
https://doi.org/10.1007/s10845-020-01694-8

Journal of Intelligent Manufacturing

Rapid Prototyping Journal, 25(2), 308-321. https://doi.org/10.
1108/RPJ-04-2017-0075

Maniraj, V., & Sivakumar, R. (2010). Ontology languages - A review.
International Journal of Computer Theory and Engineering, 2(6),
1793-8201.

Mbow, M. M., Grandvallet, C., Vignat, F., Marin, P. R., Perry, N.,
& Pourroy, F. (2021). Mathematization of experts knowl-
edge: example of part orientation in additive manufacturing.
Journal of Intelligent Manufacturing. https://doi.org/10.1007/
$10845-020-01719-2

Mycroft, W., Katzman, M., Tammas-Williams, S., Hernandez-Nava,
E., Panoutsos, G., Todd, I., & Kadirkamanathan, V. (2020). A
data-driven approach for predicting printability in metal additive
manufacturing processes. Journal of Intelligent Manufacturing,
31(7), 1769-1781. https://doi.org/10.1007/s10845-020-01541-w

NAdAban, S., Dzitac, S., & Dzitac, L. (2016). Fuzzy TOPSIS: A Gen-
eral View. In Procedia Computer Science (Vol. 91, pp. 823-831).
https://doi.org/10.1016/j.procs.2016.07.088

National Institute of Standards and Technology. (1993). Integration
Definition for Function Modeling (IDEFO). Draft Federal Infor-
mation Processing Standards Publication 183.

Noy, N. F., & McGuiness, D. L. (2001). Ontology development 101: A
guide to creating your first ontology. Stanford University, 102(2),
393-411. https://doi.org/10.1007/s00607-018-0687-5

OWL Web Ontology Language Overview. (2004). W3C recommenda-
tion. http://www.w3.org/TR/owl-features/

Park, H., Ko, H., Lee, Y. T. T., Cho, H., & Witherell, P. (2019). A
Framework for Identifying and Prioritizing Data Analytics
opportunities in Additive Manufacturing. In Proceedings - 2019
IEEE International Conference on Big Data, Big Data 2019 (pp.
3458-3467). IEEE. https://doi.org/10.1109/BigData47090.2019.
9006489

Peng, G., Wang, H., Zhang, H., Zhao, Y., & Johnson, A. L. (2017). A
collaborative system for capturing and reusing in-context design
knowledge with an integrated representation model. Advanced
Engineering Informatics, 33, 314-329. https://doi.org/10.1016/].
aei.2016.12.007

Razvi, S. S., Feng, S., Narayanan, A., Lee, Y.-T. T., & Witherell, P.
(2019). A review of machine learning applications in additive
manufacturing. In Proceeding of the ASME 2019 International
Design Engineering Technical Conferences and Computers and
Information in Engineering Conference.

Sallam, R., Steenstrup, K., Eriksen, L., & Jacobson, S. (2014). Indus-
trial Analytics Revolutionizes Big Data in the Digital Business.
Gartner Research.

Sanchez, S., Rengasamy, D., Hyde, C. J., Figueredo, G. P., & Rothwell,
B. (2021). Machine learning to determine the main factors affect-
ing creep rates in laser powder bed fusion. Journal of Intelligent
Manufacturing. https://doi.org/10.1007/s10845-021-01785-0

Sanfilippo, E. M., Belkadi, F., & Bernard, A. (2019). Ontology-based
knowledge representation for additive manufacturing. Comput-
ers in Industry, 109, 182—-194. https://doi.org/10.1016/j.compind.
2019.03.006

Sekhar, C., Patwardhan, M., & Vyas, V. (2015). A Delphi-AHP-TOP-
SIS based framework for the prioritization of intellectual capital
indicators: A SMEs perspective. Procedia - Social and Behavioral
Sciences, 189, 275-284. https://doi.org/10.1016/j.sbspro.2015.03.
223

Sharma, S., & Balan, S. (2013). An integrative supplier selection
model using Taguchi loss function, TOPSIS and multi criteria
goal programming. Journal of Intelligent Manufacturing, 24(6),
1123-1130. https://doi.org/10.1007/s10845-012-0640-y

@ Springer

Shen, H. T., Zhu, X., Zhang, Z., Wang, S. H., Chen, Y., Xu, X., & Shao,
J. (2021). Heterogeneous data fusion for predicting mild cogni-
tive impairment conversion. Information Fusion. https://doi.org/
10.1016/j.inffus.2020.08.023

Sirisawat, P., & Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS
approaches to prioritizing solutions for reverse logistics barriers.
Computers and Industrial Engineering, 117(January), 303-318.
https://doi.org/10.1016/j.cie.2018.01.015

Solangi, Y. A., Tan, Q., Mirjat, N. H., & Ali, S. (2019). Evaluating
the strategies for sustainable energy planning in Pakistan: An
integrated SWOT-AHP and Fuzzy-TOPSIS approach. Journal of
Cleaner Production, 236, 117655. https://doi.org/10.1016/j.jclep
10.2019.117655

Swarnkar, R., Choudhary, A. K., Harding, J. A., Das, B. P., & Young,
R. 1. (2012). A framework for collaboration moderator services
to support knowledge based collaboration. Journal of Intelli-
gent Manufacturing, 23(5), 2003-2023. https://doi.org/10.1007/
$10845-011-0528-2

Wang, C., Tan, X. P, Tor, S. B., & Lim, C. S. (2020). Machine learn-
ing in additive manufacturing: State-of-the-art and perspectives.
Additive Manufacturing, 36(August), 101538. https://doi.org/10.
1016/j.addma.2020.101538

Wang, L., & Alexander, C. A. (2016). Additive manufacturing and big
data. International Journal of Mathematical, Engineering and
Management Sciences, 1(3), 107-121. https://doi.org/10.33889/
ijmems.2016.1.3-012

Wang, P., Zhu, Z., & Huang, S. (2017). The use of improved TOPSIS
method based on experimental design and Chebyshev regression
in solving MCDM problems. Journal of Intelligent Manufactur-
ing, 28(1), 229-243. https://doi.org/10.1007/s10845-014-0973-9

Witherell, P., & Lee, Y.-T. T. (2020). Data Driven Decision Support
for Additive Manufacturing. National Institute of Standards and
Technology. https://www.nist.gov/programs-projects/data-driven-
decision-support-additive-manufacturing

Wu, X., & Gu, Y. (2009). Collaborative Knowledge Management Sys-
tem (CKMS) and Strategic Management. In 2009 International
Joint Conference on Artificial Intelligence (pp. 190-193). https://
doi.org/10.1109/JCAI.2009.178

Xia, C., Pan, Z., Polden, J., Li, H., Xu, Y., & Chen, S. (2021). Mod-
elling and prediction of surface roughness in wire arc additive
manufacturing using machine learning. Journal of Intelligent
Manufacturing. https://doi.org/10.1007/s10845-020-01725-4

Ye, D., Hsi Fuh, J. Y., Zhang, Y., Hong, G. S., & Zhu, K. (2018).
In situ monitoring of selective laser melting using plume and spat-
ter signatures by deep belief networks. ISA Transactions, 81(July),
96-104. https://doi.org/10.1016/j.isatra.2018.07.021

Yuan, S., Li, J., Yao, X., Zhu, J., Gu, X., Gao, T., et al. (2020). Intel-
ligent optimization system for powder bed fusion of processable
thermoplastics. Additive Manufacturing, 34(January), 101182.
https://doi.org/10.1016/j.addma.2020.101182

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(1),
338-353.

Zhou, L., Hyer, H., Park, S., Pan, H., Bai, Y., Rice, K. P., & Sohn, Y.
(2019). Microstructure and mechanical properties of Zr-modified
aluminum alloy 5083 manufactured by laser powder bed fusion.
Additive Manufacturing, 28(May), 485-496. https://doi.org/10.
1016/j.addma.2019.05.027

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1108/RPJ-04-2017-0075
https://doi.org/10.1108/RPJ-04-2017-0075
https://doi.org/10.1007/s10845-020-01719-2
https://doi.org/10.1007/s10845-020-01719-2
https://doi.org/10.1007/s10845-020-01541-w
https://doi.org/10.1016/j.procs.2016.07.088
https://doi.org/10.1007/s00607-018-0687-5
http://www.w3.org/TR/owl-features/
https://doi.org/10.1109/BigData47090.2019.9006489
https://doi.org/10.1109/BigData47090.2019.9006489
https://doi.org/10.1016/j.aei.2016.12.007
https://doi.org/10.1016/j.aei.2016.12.007
https://doi.org/10.1007/s10845-021-01785-0
https://doi.org/10.1016/j.compind.2019.03.006
https://doi.org/10.1016/j.compind.2019.03.006
https://doi.org/10.1016/j.sbspro.2015.03.223
https://doi.org/10.1016/j.sbspro.2015.03.223
https://doi.org/10.1007/s10845-012-0640-y
https://doi.org/10.1016/j.inffus.2020.08.023
https://doi.org/10.1016/j.inffus.2020.08.023
https://doi.org/10.1016/j.cie.2018.01.015
https://doi.org/10.1016/j.jclepro.2019.117655
https://doi.org/10.1016/j.jclepro.2019.117655
https://doi.org/10.1007/s10845-011-0528-2
https://doi.org/10.1007/s10845-011-0528-2
https://doi.org/10.1016/j.addma.2020.101538
https://doi.org/10.1016/j.addma.2020.101538
https://doi.org/10.33889/ijmems.2016.1.3-012
https://doi.org/10.33889/ijmems.2016.1.3-012
https://doi.org/10.1007/s10845-014-0973-9
https://www.nist.gov/programs-projects/data-driven-decision-support-additive-manufacturing
https://www.nist.gov/programs-projects/data-driven-decision-support-additive-manufacturing
https://doi.org/10.1109/JCAI.2009.178
https://doi.org/10.1109/JCAI.2009.178
https://doi.org/10.1007/s10845-020-01725-4
https://doi.org/10.1016/j.isatra.2018.07.021
https://doi.org/10.1016/j.addma.2020.101182
https://doi.org/10.1016/j.addma.2019.05.027
https://doi.org/10.1016/j.addma.2019.05.027

	Collaborative knowledge management to identify data analytics opportunities in additive manufacturing
	Abstract
	Introduction
	Background
	Data-driven additive manufacturing
	Ontology-based collaborative knowledge management
	Fuzzy-TOPSIS

	Methodology
	Team of experts
	Data analytics opportunity knowledge base
	Knowledge base structure
	Data analytics opportunity identification

	Prioritization tool
	Data analytics opportunity evaluation
	Data analytics opportunity prioritization


	Case Study
	Team of Experts
	Identification of data analytics opportunities
	Evaluation and prioritization of data analytics opportunities
	Analysis of prioritization results

	Conclusion and Future Work
	Acknowledgements 
	References




