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Abstract
Additive Manufacturing (AM) is becoming data-intensive. The ability to identify Data Analytics (DA) opportunities for 
effective use of AM data becomes a critical factor in the success of AM. To successfully identify high-potential DA oppor-
tunities in AM requires a set of distinctive interdisciplinary knowledge. This paper proposes a methodology that enables 
collaborative knowledge management for identifying and prioritizing DA opportunities in AM. The framework of the pro-
posed methodology has three components: a team of experts, a DA Opportunity Knowledge Base (DOKB), and a prioritiza-
tion tool. The team of experts provides diverse knowledge that can be used to identify and prioritize DA opportunities. The 
DOKB, developed by using the Web Ontology Language (OWL), captures diverse knowledge from the experts to identify 
DA opportunities. The prioritization tool ranks the identified DA opportunities by using the Fuzzy integrated Technique of 
Order Preference Similarity to the Ideal Solution (Fuzzy-TOPSIS). A case study, in which National Institute of Standards 
and Technology (NIST) researchers participated, demonstrates our methodology. As a result, 264 DA opportunities for 
AM’s Laser-Powder Bed Fusion (L-PBF) process are identified and prioritized. The prioritized DA opportunities help set a 
DA direction for L-PBF AM. Our methodology keeps knowledge sharable, reusable, revisable, and extendable. Thus, this 
methodology can continue to facilitate collaboration within the AM community to identify high potential and high impact 
DA opportunities in AM.

Keywords Additive manufacturing · Big data · Data analytics · Data-driven decision support · Knowledge-based system · 
Multiple criteria decision-making

Introduction

Additive manufacturing (AM) is an emerging manufacturing 
paradigm in which materials are joined layer-upon-layer to 
produce three-dimensional (3D) parts based on the 3D solid 
models (ASTM International, 2012). The layer-upon-layer 

characteristic of AM provides unique capabilities to achieve 
shape complexity, material complexity, hierarchical com-
plexity, and functional complexity (Gibson et al., 2015). 
The capabilities of AM are expected to provide the manu-
facturing industry with numerous benefits, such as new 
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opportunities for customization, an increased range of part 
geometries, and reduced manufacturing costs (Gibson et al., 
2015).

To be practical and profitable, AM should achieve indus-
trial competitiveness in quality, cost, and delivery (Eyers 
& Potter, 2017). Industrial competitiveness is affected by 
decision-making throughout the AM lifecycle including 
design process planning, building, post-processing, testing, 
and validation. For example, decision-making in process 
planning, such as setting scan speed, laser power, and scan 
strategy, affects not only the mechanical performance of the 
final part (Zhou et al., 2019), but also the cost of powder 
usage and build time (Bosio et al., 2019). However, mak-
ing successful decisions is often limited by a lack of under-
standing of process-structure–property relationships in AM 
(Yuan et al., 2020). Until now, most of the decision-making 
techniques still rely on ad-hoc rules and engineering experi-
ence in AM (Mycroft et al., 2020). Thus, recent AM studies 
have been trying to improve decisions by using a knowl-
edge-based approach (Mbow et al., 2021) or a data-driven 
approach (C. Wang et al., 2020). Especially, Data Analytics 
(DA) for decision-making has been attracting attention as 
a data-driven approach to reveal hidden patterns, correla-
tions, and insights beyond the existing knowledge (C. Wang 
et al., 2020).

DA can be defined as a process of examining data to 
extract and create valuable information for decision-making 
(Koohang & Nord, 2021). Technologies that support DA 
applications in AM are continuously improved and devel-
oped. For example, advanced sensor technologies enable the 
capture of AM big data that can serve as inputs to DA (L. 
Wang & Alexander, 2016). Advanced High-Performance 
Computing (HPC) technologies allow AM big data to be 
processed more efficiently (L. Wang & Alexander, 2016). 
DA techniques including Machine Learning (ML) are avail-
able to analyze AM big data (C. Wang et al., 2020). These 
advanced technologies provide opportunities to exploit DA 
to improve decision-making in AM. However, identifying 
high-potential DA opportunities to exploit these advance-
ments remains a challenge.

The ability to identify and prioritize a set of DA opportu-
nities in AM is a critical factor in optimizing AM processes. 
Identifying DA opportunities allows potential DA opportuni-
ties to be captured before undertaking DA projects. Prioriti-
zation can then determine a top set of important and feasible 
DA opportunities. Our previous study (Park et al., 2019) 
introduced the concept of DA opportunity and provided a 
general framework for identification and prioritization. A 
DA opportunity can be characterized by a set of five tiers: 
“Goal”, “Activity”, “Data Analytics”, “Data”, and “Data 
Source” (Park et al., 2019). However, each tier considers a 
distinct area of knowledge (e.g., business, AM, DA, data), 
so interdisciplinary knowledge is required to identify and 

prioritize DA opportunities. A single expert seldom pos-
sesses such interdisciplinary knowledge. According to a 
Forbes Insight survey (Gagnon et al., 2017), the main dif-
ficulties encountered when designing DA initiatives are 
(1) lack of coordination among experts from diverse back-
grounds and (2) lack of consistent methods and processes. 
We extend our previous study (Park et al., 2019) to solve 
these difficulties and enhance sharing, reuse, revision, and 
extension of the DA-opportunity knowledge. Our methodol-
ogy systematically facilitates collaboration among diverse 
experts, and manages their knowledge with formal methods 
to identify the top DA opportunities in AM.

The developed methodology takes the Collaborative 
Knowledge Management (CKM) approach, which enables 
management of diverse knowledge from different experts. 
The methodology incorporates three major components: 
a team of experts, a DA Opportunity Knowledge Base 
(DOKB), and a prioritization tool. The team of experts is 
established to provide diverse knowledge for identifying 
and evaluating DA opportunities. The DOKB is developed 
by using the Web Ontology Language (OWL) (“OWL Web 
Ontology Language Overview” 2004) to capture the diverse 
knowledge and support identifying DA opportunities. The 
prioritization tool extends Fuzzy integrated Technique of 
Order Preference Similarity to the Ideal Solution (Fuzzy-
TOPSIS) (NǍdǍban et al., 2016) to prioritize the identified 
DA opportunities by considering collaborative evaluation. 
This paper introduces the proposed methodology. It also 
provides a case study that demonstrates the proposed meth-
odology for a laser powder bed fusion (L-PBF) AM process.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the backgrounds of data-driven AM, ontol-
ogy-based CKM, and Fuzzy-TOPSIS. Section 3 presents a 
methodology that uses the CKM approach to identify and 
prioritize DA opportunities in AM. Section 4 provides a case 
study of L-PBF AM. Section 5 concludes the paper.

Background

Data-driven AM, ontology-based CKM, and Fuzzy-TOPSIS 
are the foundation of the proposed methodology. In this sec-
tion, the backgrounds of these three topics are introduced.

Data‑driven additive manufacturing

Because of constant advances in sensor (Feng et al., 2020) 
and data management technologies (Majeed et al., 2019), 
AM is becoming increasingly data-intensive. AM processes 
can generate up to 600 variables and 75 gigabytes of image 
data per second (Razvi et al., 2019), resulting in a terabyte 
or more of data per build (Razvi et al., 2019). This data is in 
a variety of types including numerical data (e.g., machine 
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logs), 2D images (e.g., thermal, optical), 3D (e.g., CAD 
models, CT scans), audio (e.g., acoustic signals), videos 
(e.g., thermal, optical), etc. (Razvi et al., 2019). The AM 
data can be collected from all AM lifecycle stages such as 
design (e.g., material properties and design parameters), 
process planning (e.g., process parameters), building (e.g., 
process signatures), post-processing (e.g., part structure), 
and testing and validation (e.g., part property and product 
performance) (Park et al., 2019).

Analyzing AM lifecycle data can uncover hidden pat-
terns, correlations, and insights that help guide informed 
decisions and reduce potential risks. Advanced DA, such 
as Artificial Intelligence (AI) and ML, can effectively use 
AM big data to produce actionable intelligence and new 
knowledge for decision-makers. Advanced DA has success-
fully been applied to derive the relationships between (1) 
process parameters and creep rates (Sanchez et al., 2021), 
(2) process parameters and surface roughness (Xia et al., 
2021), and (3) part geometry and printability (Mycroft et al., 
2020). It has also been used to monitor layer defects and 
melt pool conditions in real time by analyzing temperature 
data (Mahato et al., 2020), acoustic signals (Ye et al., 2018), 
optical images (Davtalab et al., 2020; Kwon et al., 2020), 
and video-imaging data (Bugatti & Colosimo, 2021). AM 
activities such as process-parameter setting and in-situ moni-
toring were studied recently through applying advanced DA 
(C. Wang et al., 2020). To get maximum benefits from DA’s 
capabilities, high-potential DA opportunities should be iden-
tified across the AM lifecycle.

Ontology‑based collaborative knowledge 
management

CKM enables users from diverse backgrounds to achieve 
common goals by jointly creating, sharing, accessing, and 
applying knowledge across domain-specific or functional 
boundaries (Swarnkar et al., 2012). For example, Peng et al. 
(2017) designed and developed a CKM system to facilitate 
knowledge capture, retrieval, and reuse for users with dif-
ferent roles working on various tasks within the engineer-
ing design process. Other authors (Li et al., 2012; Wu & 
Gu, 2009) developed CKM systems to enable individuals 
in a series of organizations to collectively create, share, 
access, and apply knowledge across company boundaries to 
achieve the business objectives of the entire supply chain. 
Other examples include (1) the global company Aramex 
used CKM to manage its collective knowledge of disruptive 
technologies (v. Alberti-Alhtaybat et al., 2019); (2) Kamsu-
Foguem and Noyes (2013) adopted CKM to compare and 
integrate different viewpoints of experts for industrial main-
tenance; (3) a CKM solution was implemented across the 
construction industry (Costa et al., 2013), which has a frag-
mented and ad-hoc nature; and, (4) the CKM approach was 

used in some biomedical communities (Dessì et al., 2016) 
where collaborative environments are required to share and 
create new knowledge.

An ontology is a formal, explicit specification of a rep-
resentational vocabulary for a shared domain of discourse 
(Gruber, 1993) that can be used to enhance the usage of 
CKM. Ontologies are often used to share a common 
understanding of the knowledge and to enable the reuse of 
domain knowledge among people or software agents (Noy 
& McGuiness, 2001).In addition, an ontology enables auto-
mated reasoning to infer implicit knowledge and detect 
inconsistencies in a knowledge base (Keet, 2018).In AM 
applications, ontologies have been proposed (1) to promote 
the modeling and reuse of knowledge towards the assistance 
of design (Kim et al., 2019; Ko et al.,2021) and process 
planning (Liang, 2018) and (2) to be reused across computer 
systems to support knowledge and data management in an 
interoperable manner (Sanfilippo et al., 2019). Ontologies 
have been demonstrated as suitable to build a knowledge 
base for CKM (Abecker & van Elst, 2009). Adrian et al. 
(2014) presented a system for CKM, in which an ontology 
was used as a knowledge base to store, extract, and process 
knowledge about threats in an urban environment.

OWL (“OWL Web Ontology Language Overview” 2004) 
is a family of knowledge representation languages for author-
ing ontologies (Maniraj & Sivakumar, 2010). An ontology 
that uses OWL consists of classes, properties, and indi-
viduals. A class defines a group of individuals that belong 
together when they share certain properties (“OWL Web 
Ontology Language Overview” 2004). Properties include 
two types: an object property that represents the relationship 
between two individuals, and a data property that represents 
the relationship from some individual to a certain data value 
(“OWL Web Ontology Language Overview” 2004). Individ-
uals are instances of classes. Property may be used to relate 
one individual to another (“OWL Web Ontology Language 
Overview” 2004). Semantic Web Rule Language (SWRL), 
also a knowledge representation language, extends OWL 
both syntactically and semantically by combining OWL with 
a Rule Markup Language (Horrocks et al., 2005). SWRL 
provides the ability to define complex rules and perform 
advanced reasoning on the concepts in an ontology (Ameri 
et al., 2012). Automated reasoning increases both the effi-
ciency of processing the accumulated knowledge and the 
consistency of the inferred results. SWRL is in the form 
of an implication between an antecedent (body) and conse-
quent (head) (Horrocks et al., 2004). Both antecedent and 
consequent are conjunctions of predicates, and variables are 
presented using the standard convention of prefixing them 
with a question mark.
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Fuzzy‑TOPSIS

TOPSIS (Hwang & Yoon, 1981) is a multiple-criteria, 
decision-making (MCDM) method to prioritize a list of 
alternatives. TOPSIS extends the concept that the chosen 
alternative should have two characteristics. First, it has the 
shortest distance to the Positive Ideal Solution (PIS), which 
minimizes the cost criteria and maximizes the benefit cri-
teria. Second, it has the farthest distance from the Negative 
Ideal Solution (NIS), which maximizes the cost criteria and 
minimizes the benefit criteria. TOPSIS has four advantages 
over other MCDM methods (Lima Junior et al., 2014). It 
is: (1) able to produce a consistent preference order when a 
new alternative or criterion is introduced, (2) able to perform 
decision processes efficiently, (3) capable of prioritizing 
numerous alternatives, and (4) applicable to group decision-
making. TOPSIS has proven its advantages when applied to 
prioritization in different areas such as mutual funds (Chang 
et al., 2010), suppliers (Sharma & Balan, 2013), intellectual 
capital indicators (Sekhar et al., 2015), and manufacturing 
equipment (P. Wang et al., 2017). However, TOPSIS and 
other MCDM methods all have a limited ability to capture 

vague information in an uncertain environment (Sirisawat & 
Kiatcharoenpol, 2018).

Fuzzy set theory (Zadeh, 1965) has been widely used to 
support decision-making when an evaluation or a judgment 
is made under uncertainty or with imprecise information. 
TOPSIS is therefore often integrated with the fuzzy set 
theory; such an integrated method is called Fuzzy-TOPSIS. 
Fuzzy-TOPSIS effectively prioritizes under fuzzy situations 
such as infrastructure projects (Liu & Wei, 2018), reverse-
logistic solutions (Sirisawat & Kiatcharoenpol, 2018), 
sustainable-energy planning strategy (Solangi et al., 2019), 
and business models (Im & Cho, 2013). Because DA oppor-
tunities in AM are intangible, unmeasurable, uncertain, or 
imprecise, and thus difficult to evaluate, Fuzzy-TOPSIS is a 
good candidate to prioritize them.

Methodology

The methodology uses the CKM approach to identify and 
prioritize DA opportunities in AM. Figure 1 presents a 
framework of the proposed methodology. The framework 
consists of three major components: a team of experts, a 

Fig. 1  A framework of the methodology to identify and prioritize DA opportunities in AM
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DOKB, and a prioritization tool. The team of experts, 
preferably including AM project manager(s), AM system 
engineer(s), data scientist(s), AM data engineer(s), and 
knowledge engineer(s), provides diverse knowledge for iden-
tifying and prioritizing DA opportunities. The knowledge 
engineers lead both identification and prioritization tasks 
by communicating with the other experts. The DOKB cap-
tures the diverse knowledge from the team of experts by 
using OWL. This knowledge base supports the identification 
of DA opportunities. The prioritization tool prioritizes the 
identified DA opportunities by using the Fuzzy-TOPSIS. The 
prioritization results are also captured in the DOKB.

Team of experts

The team preferably includes five different groups of experts. 
Qualifications of each group are described as follows.

• AM project managers: knowledgeable about business 
requirements of AM to determine ultimate AM goals.

• AM system engineers: (1) knowledgeable about AM 
lifecycle and AM activities, (2) capable of identifying 
the AM activities for the target goals, and (3) capable of 
defining AM activities with input, control, output, and 
mechanism.

• Data scientists: (1) capable of defining DA tasks, (2) 
knowledgeable about DA techniques, and (3) capable of 
defining required data for each DA task.

• AM data engineers: (1) capable of preparing and manag-
ing AM data for the DA tasks, (2) capable of matching 
the required AM data to the AM data sources, and (3) 
knowledgeable about data acquisition.

• Knowledge engineers: (1) capable of processing experts’ 
knowledge into the DOKB and (2) capable of supporting 
evaluation tasks.

Data analytics opportunity knowledge base

The DOKB is described in this section with a focus on the 
structure of the DOKB and how the DA opportunities are 
identified using the DOKB.

Knowledge base structure

The requirements of a knowledge base are typically defined 
using Competency Questions (CQs) (Grüninger & Fox, 
1995). A DA opportunity is an opportunity for DA to make 
significant or other impacts on decision-making. In this 
sense, some of the CQs for the knowledge base include:

• Which goal should DA achieve?
• Which activity can DA make an impact?
• Which task can DA support for decision-making?

• Which data should DA perform?
• Which data source is required to collect the required data 

for DA?
• Which DA opportunity has the most significant impact 

considering importance and feasibility?

Considering these CQs, the DOKB uses the five-tier 
approach (Sect. 1; Park et al., 2019) to develop its struc-
ture. The five tiers are “Goal Tier”, “Activity Tier”, “Data 
Analytics Tier”, “Data Tier”, and “Data Source Tier”. In 
the “Goal Tier”, the goals in the target domain are defined. 
In the “Activity Tier”, the activities that require decisions to 
meet individual target goals are defined. In the “Data Analyt-
ics Tier”, the potential DA tasks that can help make those 
decisions are defined. In the “Data Tier”, the required data 
for individual DA tasks are defined. In the “Data-Source 
Tier”, the various sources that generate the required data 
are defined. As shown in Fig. 2, the DOKB’s structure con-
tains six major classes: “DataAnalyticsOpportunity”, and 
one for each of the five tiers: “ThingDefinedintheGoalTier”, 
“ThingDefinedintheActivityTier”, “ThingDefinedinthe-
DataAnalyticsTier”, “ThingDefinedintheDataTier”, and 
“ThingDefinedintheDataSourceTier”. The last five major 
classes have sub-classes, as shown in Fig. 2. The subclasses 
denoted as “…” in Fig. 2 are additional classes required to 
enrich each tier’s information after DA implementation but 
not essential in the identification process, so the additional 
classes are beyond the scope of this paper.

The “ThingDefinedintheGoalTier” class has a subclass 
“Goal” to define the goals to be achieved. The “Goal” class 
has three subclasses, “Quality”, “Cost”, and “Delivery”, 
which are traditional strategic goals used by the manufactur-
ing industry (Leong et al., 1990) including the AM industry 
(Eyers & Potter, 2017). The “Quality” class includes the 
target goals for the manufacture of product(s) that have high 
quality standards (Leong et al., 1990). The “Cost” class 
includes the target goals for production and distribution of 
the product(s) at a desired or predefined cost (Leong et al., 
1990). The “Delivery” class includes the target goals to sat-
isfy demand at the expedited time or the accurate process 
(Leong et al., 1990).

The “ThingDefinedintheActivityTier” class has three 
subclasses, “Activity”, “ICOM”, and “PerformanceIndica-
tor”, to define the activities that could achieve target goals. 
The concepts of classes “Activity” and “ICOM” are obtained 
from the IDEF0 method (National Institute of Standards & 
Technology, 1993), which is a standardized activity mod-
eling method. The “Activity” class is used to describe AM 
activities. “Generate AM Design”, “Plan Process”, “Build 
Part”, “Post Process Part”, and “Test Part” are examples of 
AM lifecycle activities. These activities can be decomposed 
into sub-activities. For example, “Build Part” is decomposed 
into “Create Powder Layer”, “Fuse Powders”, and “Monitor 
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Fusion”. In IDEF0, inputs, controls, outputs, and mecha-
nisms are collectively called ICOM. The “ICOM” class is 
used to define the concept of the activity; it consists of four 
subclasses: “Input”, “Control”, “Output”, and “Mechanism”. 
The “Input” class includes a set of objects that are trans-
formed by the activity to produce outputs. The “Control” 
class includes a set of conditions that must be met to ensure 
that the activity produces the correct output. The “Output” 
class includes a set of results that are produced by the activ-
ity. The “Mechanism” class includes the means that support 
the execution of the activity. The “PerformanceIndicator” 
class includes a set of quantitative indicators that are meas-
ured in certain activities to evaluate the target goal.

The “ThingDefinedintheDataAnalyticsTier” class has a 
subclass “DataAnalyticsTask” to define DA tasks that poten-
tially support decisions required in certain activities. The 
“DataAnalyticsTask” class has four subclasses: “Descrip-
tive”, “Diagnostic”, “Predictive”, and “Prescriptive” (Sal-
lam et  al., 2014). The “Descriptive” class includes DA 
tasks that characterize context from data; these tasks help 
decision-makers understand how their business or activity is 

performing. The “Diagnostic” class includes DA tasks that 
determine why their business or activity is performing as it 
is; those tasks use data mining techniques or other statisti-
cal analysis. The “Predictive” class includes DA tasks that 
predict unknown states or futures; those tasks use predic-
tive ML techniques. The “Prescriptive” class includes DA 
tasks that prescribe various courses of actions or controls to 
maximize the goal. Those tasks use reinforcement learning, 
optimization techniques, or simulation.

The “ThingDefinedintheDataTier” class has a subclass 
“Data” to define required data for DA tasks. The required 
data is mapped to a specific DA task with one-to-one map-
ping. Hence, the “Data” class is classified into four sub-
classes that are based on the “DataAnalyticsTask” subclass 
types. The “ForPrescriptiveAnalytics” class includes data 
that have an objective variable, decision variables, and 
blocking variables. An objective variable is to be opti-
mized, whereas decision variables are used to optimize 
the objective variable. The objective variable is affected 
by both decision variables and blocking variables, but 
blocking variables are not of interest to be prescribed. The 

Fig. 2  The structure of the DOKB
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“ForPredictiveAnalytics” class includes data that have pre-
dictor variables and target variables. Predictor variables 
are used to predict, and target variables are variables to be 
predicted. The “ForDiagnosticAnalytics” class includes 
data that have explanatory variables and response vari-
ables. Explanatory variables are used to explain variations 
in responses, and response variables are variables to be 
explained. The “ForDescriptiveAnalytics” class includes 
data that are related to what DA should characterize. The 
classes in the DA and data tier are used to represent DA-
specific knowledge with their properties. Table 11 and 12 
(See Appendix.) show property examples of the classes.

The “ThingDefinedintheDataSourceTier” class has a 
subclass “DataSource” to define the origins of data; it is 
classified into four subclasses: “Equipment”, “Software”, 
“Personnel”, and “Material”, by reference to a classification 
of AM resources (Lu et al., 2015). The “Equipment” class 
includes AM-build equipment, post-processing equipment, 
and test equipment. The “Software” class includes CAD 

software, process optimization software, and build software. 
The “Personnel” class represents humans, such as designers, 
operators, and controllers, who have an active role in the 
AM lifecycle. The “Material” class includes raw material, 
semi-manufactures, and finished products.

The “DataAnalyticsOpportunity” class lists a collection 
of DA opportunities. To explicitly represent a DA opportu-
nity, this class should answer the previously mentioned CQs. 
In this sense, each DA opportunity is defined as a set of a 
goal, a target activity, a DA task, required data, and required 
data sources; the information comes from “ThingDe-
finedintheGoalTier”, “ThingDefinedintheActivityTier”, 
“ThingDefinedintheDataAnalyticsTier”, “ThingDefined-
intheDataTier”, and “ThingDefinedintheDataSourceTier”. 
Figure 3 shows how “DataAnalyticsOpportunity” class is 
associated with the other classes. Also, the “DataAnalytic-
sOpportunity” class has data properties for storing the pri-
oritization results, such as overall score, importance score, 

Fig. 3  The associations with the “DataAnalyticsOpportunity” class
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and feasibility score. The prioritization results are generated 
by the prioritization tool, which is explained in Sect. 3.3.

Data analytics opportunity identification

The team of experts collaboratively identifies DA opportuni-
ties by defining instances of the classes in the DOKB. The 
DA opportunity identification process is shown in Fig. 4.

As described in Sect. 3.1, a team of experts may include 
five expert groups: AM project managers, AM system engi-
neers, data scientists, AM data engineers, and knowledge 
engineers. Each group plays its unique role in supporting the 
identification of DA opportunities. Especially, knowledge 
engineers help each group to perform every knowledge-
engineering task in this process.

The AM project managers define the “Goal” instances 
in “Quality”, “Cost”, or “Delivery” based on their business 
context. The AM system engineers define the activity-related 
instances, such as “Activity”, “ICOM”, and “PerformanceIn-
dicator” instances, and the relationships among them based 
on the “Goal” instances and the scope of the target activity.

The data scientists define goal-oriented and AM activity-
specific DA tasks by formulating and using SWRL rules. 
SWRL, (Sect. 2.2), allows an ontology reasoner, a software 
engine, to automatically identify properties of DA tasks in 

a consistent manner. SWRL rules should be formulated for 
“Prescriptive”, “Predictive”, “Diagnostic”, and “Descrip-
tive” individually by following the SWRL standard conven-
tion such as in the format of parent(?x,?y) ^ brother(?y,?z)  
uncle(?x,?z). For example, a predictive analytics rule can 
be formulated as.

IsEvaluatedBy(?G ,  ?PI) ^ IsMeasuredIn(?PI , 
?A) ^ Predictive(?DA) ^ Aims(?DA, ?G) ^ Deci-
sion_Supports(?DA, ?A) ^ HasInputAs(?A, ?I) ^ 
HasControlAs(?A ,  ?C)—> Predicts(?DA ,  ?PI) ^ 
Considers(?DA, ?I) ^ Considers(?DA, ?C).

This rule indicates when a predictive analytics task is 
determined to support a certain activity and its goal, the 
task predicts a performance indicator that is measured in the 
activity to evaluate the goal by considering the information 
retrieved from the inputs and controls of the activity.

Similarly, the data scientists define required data for indi-
vidual DA tasks using SWRL that include rules for “For-
PrescriptiveAnalytics”, “ForPredictiveAnalytics”, “ForDi-
agnosticAnalytics”, and “ForDescriptiveAnalytics”. For 
example, a predictive analytics data requirement rule can 
be formulated as.

IsRequiredBy(?D ,  ?DA) ^ Predictive(?DA) ^ 
Predicts(?DA, ?Y) ^ Considers(?DA, ?X)—> HasPredictor
VariableAs(?D, ?X) ^ HasTargetVariableAs(?D, ?Y).

Fig. 4  DA opportunity identification process
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This rule indicates when data are required by a certain 
predictive analytics task, the data should include the predic-
tor variables for what information the task should consider 
and the target variables for what the task should predict.

The AM data engineers define the instances of “Data-
Source” from which the required data is collected. “Data-
Source” instances are established based on certain variables 
defined in the “Data” instance. For example, when a “Data” 
instance includes a variable of deviation of melt pool dimen-
sion, its “DataSource” instance may be a coaxial camera.

Finally, “DataAnalyticsOpportunity” instances are gen-
erated by composing the instances defined above. Thus, a 
“DataAnalyticsOpportunity” instance is associated with 
each of its source instances, as shown in Fig. 3. An SWRL 
rule to generate “DataAnalyticsOpportunity” instances is 
formulated as.

HasDataAnalyticsTaskAs(?DO ,  ?DA) ^ Deci-
s ion_Suppor t s ( ?DA ,  ?A )  ^  A ims(?DA ,  ?G ) 
^  Achieves(?A ,  ?G )  ^  Requires(?DA ,  ?D )  ^ 
IsCollectedFrom(?D, ?DS)—> HasGoalAs(?DO, ?G) ^ 
HasTargetActivityAs(?DO, ?A) ^ HasRequiredDataAs(?DO, 
?D) ^ HasDataSourceAs(?DO, ?DS).

where DO, G, A, DA, D, and DS represent a “DataAna-
lyticsOpportunity” instance, “Goal” instance, “Activity” 
instance, “DataAnalyticsTask” instance, “Data” instance, 
and “DataSource” instance, respectively.

For example, a “DataAnalyticsOpportunity” instance 
DO has a DA task instance that predicts Porosity. The DA 
can support the FusePowders activity instance and aim at 
the MechanicalPerformanceImprovement goal instance. In 
the same example, DA requires a D data instance, which 
has predictor variables of PowderLayer, QualityParameter, 
RecoatingParameter, ControlParameter, and PowderFusion-
Parameter; and a target variable of Porosity. D requires data 
sources as ProcessPlanningSoftware, LayerwiseCamera and 
X-rayComputedTomographyScanner (XCT). Thus, the DO 
has MechanicalPerformanceImprovement as its goal, Fuse-
Powders as its target activity, DA as its DA task, D as the 
required data, ProcessPlanningSoftware, LayerwiseCamera, 
and XCT as the required data sources.

Prioritization tool

For the sake of time, cost, and impact, there is no need 
to realize all identified DA opportunities. The tool helps 
to identify high potential and high impact DA opportuni-
ties. The prioritization tool includes two phases: Evaluation 
and Prioritization. During the Evaluation phase, the team 
of experts evaluates each identified DA opportunity. The 
Prioritization phase focuses on prioritizing the DA oppor-
tunities by assessing the evaluation results from the team of 
experts using the Fuzzy-TOPSIS. After prioritization, each 
DA opportunity has an overall score, an importance score, 
and a feasibility score.

Data analytics opportunity evaluation

The team of experts evaluates the identified DA opportuni-
ties using the six criteria in Table 1. Each DA opportunity 
consists of the five-tier information, so each criterion is to 
evaluate one of the five tiers of each DA opportunity. Benefit 
criteria C1, C2, and C3 are related to goal, activity, and DA, 
respectively. Cost criteria C4, C5, and C6 are related to DA, 
data, and data source, respectively.

Each DA opportunity is evaluated based on the six crite-
ria using seven linguistic variables: Very High (VH), High 
(H), Slightly High (SH), Medium (M), Low (L), Slightly 
Low (SL), and Very Low (VL). For example, an expert 
evaluates DA opportunity DO1 and DO2 . DO1 has a goal 
MechanicalPerformanceImprovement, and DO2 has a goal 
MaterialSaving. If the expert thinks the benefit of achiev-
ing MechanicalPerformanceImprovement is very high and 
achieving MaterialSaving is high; the expert can rate DO1 
and DO2 as VH and H on C1.

Each expert also self-evaluates his/her level of expertise 
on each criterion by using the same variables. For example, 
project managers may rate their expertise as VH on C1 but 
not on the other criteria.

Data analytics opportunity prioritization

The evaluated DA opportunities are prioritized using Fuzzy-
TOPSIS. Fuzzy sets allow for a concept called ‘partial truth’, 

Table 1  Criteria for evaluating 
DA opportunities

Criterion Description

C
1

Benefit for achieving the goal
C
2

Benefit for improving the activity to achieve the corresponding goal
C
3

Benefit for performing the DA task to support making decisions to the cor-
responding activity

C
4

Difficulty of performing the DA task assuming the required data is available
C
5

Difficulty of managing the required data to be prepared for the DA task
C
6

Difficulty of collecting the required data from the data sources
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where the truth-value ranges between 0 and 1. The fuzzy sets 
model uncertainty in judgment; this contrasts with binary 
sets, which have two, deterministic elements (true and false). 
Quantifying the concept of partial truth involves creating a 
fuzzy set x̃ in which elements are defined by a membership 
function 𝜇x̃(t) , which assigns each element t a membership 
degree in the interval [0, 1]. A Triangular Fuzzy Number 
(TFN) is a fuzzy set denoted as x̃ =

(
x1, x2, x3

)
, where x1 , x2 , 

and x3 are the lower limit, the value with the largest member-
ship function value, and the upper limit, respectively. The 
membership function associated with a TFN is defined in 
Eq. (1).

A linguistic variable can be expressed as a TFN to 
describe the subjective judgment quantitatively, as shown 
in Table 2.

Algebraic operations with TFNs are described as 
Eq. (2)–(6).

Let ã =
(
a1, a2, a3

)
 and b̃ =

(
b1, b2, b3

)
 be two TFNs.

where r is a constant number

where d(ã, b̃ ) is the distance between ã and b̃.
Collaborative evaluation based on the Fuzzy-TOPSIS 

method encounters a drawback: the knowledge levels of all 

(1)𝜇x̃(t) =

⎧
⎪⎨⎪⎩

�
t − x1

�
∕
�
x2 − x1

�
, x1 ≤ t ≤ x2�

x3 − t
�
∕
�
x3 − x2

�
, x2 ≤ t ≤ x3

0, otherwise

(2)ã ± b̃ =
(
a1 ± b1, a2 ± b2, a3 ± b3

)

(3)ã × b̃ =
(
a1 × b1, a2 × b2, a3 × b3

)

(4)ã ÷ b̃ =
(
a1 ÷ b1, a2 ÷ b2, a3 ÷ b3

)

(5)r × ã =
(
r × a1, r × a2, r × a3

)

(6)

d
(
ã, b̃

)
=

√{(
a1 − b1

)2
+
(
a2 − b2

)2
+
(
a3 − b3

)2}
∕3

evaluators are treated the same. We modified the existing 
Fuzzy-TOPSIS to consider the expertise level of each expert 
on each criterion. The process procedure of the modified 
Fuzzy-TOPSIS is described as follows:

Step 1 Assign a TFN to each linguistic variable.
The linguistic variables are quantified as the correspond-

ing TFNs in Table 2. The fuzzy rating of the kth expert about 
the ith DA opportunity DOi with respect to the jth criterion 
Cj is denoted x̃k

ij
=
(
xk
ij1
, xk

ij2
, xk

ij3

)
 . The expertise level of the 

kth expert on criterion Cj is denoted w̃k
j
=
(
wk
j1
, wk

j2
, wk

j3

)
.

Step 2 Compute weighted aggregated fuzzy ratings for 
the DA opportunities.

The aggregated fuzzy rating of DOi with respect to Cj is 
computed using Eq. (7):

x̃ij =
(
xij1, xij2, xij3

)
,where

After this above operation, the aggregated fuzzy rating 
reflects the expertise level of each individual expert.

Step 3 Compute the normalized fuzzy decision matrix.
Let the criteria ( C1,…,Cm ) be the benefit criteria and the 

criteria ( Cm+1,…,Cn ) be the cost criteria. The normalized 
fuzzy decision matrix is represented by Eq. (8).

∼

R = [ 
∼
rij],where.

Step 4: Compute the Fuzzy Positive Ideal Solution (FPIS) 
and Fuzzy Negative Ideal Solution (FNIS).

The FPIS and FNIS are calculated as Eq. (9) and (10):

Step 5: Compute the distances from each DA opportunity 
to the FPIS and to the FNIS.

In this step, the distances from each DA opportunity to 
the FPIS ( d∗

ij
 ) and to the FNIS ( d−

ij
 ) on each criterion are 

computed as Eq. (11) and (12):

(7)

xij1 =

K∑
k=1

xk
ij1
× wk

j1
, xij2 =

K∑
k=1

xk
ij2
× wk

j2
, xij3 =

K∑
k=1

xk
ij3
× wk

j3

(8)

r̃ij =
(
xij1∕x

∗
j
, xij2∕x

∗
j
, xij3∕x

∗
j

)
and x∗

j
= max

i
{xij3}, j = 1,… ,m

or

r̃ij =
(
x−
j
∕xij3, x−

j
∕xij2, x−

j
∕xij1

)
and x−

j
= min

i
{xij1}, j = m + 1,… , n

(9)FPIS =
(
r̃∗
1
, r̃∗

2
,… , r̃∗

n

)
, where r̃∗

j
= max

i
{rij3}

(10)FNIS =
(
r−
1
, r̃−

2
,… , r̃−

n

)
, where r̃−

j
= min

i
{rij1}

(11)d∗
ij
= d

(
r̃ij, r̃

∗
j

)

(12)d−
ij
= d

(
r̃ij, r̃

−
j

)

Table 2  Linguistic variables 
and corresponding TFNs

Linguistic variable TFN

Very High (VH) (6,7,7)
High (H) (5,6,7)
Slightly High (SH) (4,5,6)
Medium (M) (3,4,5)
Slightly Low (SL) (2,3,4)
Low (L) (1,2,3)
Very Low (VL) (1,1,2)
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Step 6: Compute the closeness coefficients for each DA 
opportunity.

For each DOi , the closeness coefficients can be calcu-
lated for two different dimensions— importance ICCi and 
feasibility FCCi—to represent importance score and feasibil-
ity score, respectively. OCCi is also calculated as an overall 
score that considers both importance and feasibility. This 
score is meant to provide a single metric to determine overall 
high-impact DA opportunities.

ICCi is calculated using the benefit criteria:

FCCi is calculated using the cost criteria:

OCCi is calculated using all criteria:

Case Study

To demonstrate the feasibility of the proposed methodology, 
we provide a case study that shows how high potential and 
high impact DA opportunities are identified to support AM 
research at NIST. NIST’s AM research goal is to help inno-
vate and improve AM industrial competitiveness. To achieve 
this goal, NIST has developed the Additive Manufacturing 
Metrology Testbed (AMMT) to conduct advanced research 
on the L-PBF process (Lane et al., 2016). This study identi-
fies and prioritizes DA opportunities in AMMT, specifically 
for the L-PBF process.

Team of Experts

NIST is a research institute where experts from various 
backgrounds gather. Currently, NIST runs two AM projects 
related to DA: Data-Driven Decision Support for Additive 
Manufacturing (3DSAM) (Witherell & Lee, 2020) and Data 
Integration and Management for Additive Manufacturing 
(DIMAM) (Lu & Jones, 2020). The objective of the 3DSAM 
project is to develop and deploy metrics, models, and best 
practices for using product definition, advanced analyt-
ics, and DA methods in AM design and process planning 
to achieve target AM goals (Witherell & Lee, 2020). The 
objective of the DIMAM project is to develop models, meth-
ods, and best practices for data lifecycle management, data 

(13)ICCi =

m∑
j=1

d−
ij
∕

m∑
j=1

(d∗
ij
+ d−

ij
)

(14)FCCi =

n∑
j=m+1

d−
ij
∕

n∑
j=m+1

(d∗
ij
+ d−

ij
)

(15)OCCi =

n∑
j=1

d−
ij
∕

n∑
j=1

(d∗
ij
+ d−

ij
)

integration, and data fusion in AM to facilitate the effective 
and efficient curation, sharing, processing, and use of AM 
data (Lu & Jones, 2020).

For this use case study, a six-expert team was formed 
from the two projects. This team satisfies the qualification 
requirements described in Sect. 3.1.

Identification of data analytics opportunities

A DOKB was developed using the Protégé tool, which is an 
open-source software program for ontology development. 
The structure of the DOKB in Protégé is presented in Fig. 5.

The expert team defined seven instances of the “Goal” 
class: for the L-PBF process, Conformance, AestheticIm-
provement, and MechanicalPerformanceImprovement are 
defined in “Quality”; MaterialSaving and EnergySaving 
are defined in “Cost”; and TimeEfficiency and ProcessSta-
bility are defined in “Delivery”. To define activity-related 
instances, the experts adopted the existing IDEF0 model 
for the L-PBF process, which was previously developed by 
NIST researchers (Kim et al., 2017). A set of activities that 
can achieve the seven “Goal” instances was chosen from 
the IDEF0 model. As a result, 23 “PerformanceIndicator” 
instances, 19 “Activity” instances, and all activity-instance 
related “ICOM” instances were identified and associated. 
For example, the “PerformanceIndicator” instance Porosity 
and the “Activity” instance FusePowders were identified for 
the “Goal” instance MechanicalPerformanceImprovement. 
Figure 6 provides a visual representation of the example, 
including the relationships among the instances.

The team of experts defined goal-oriented and AM activ-
ity-specific DA tasks by formulating five SWRL rules, as 
shown in Table 13 (a) (See Appendix). Using the rules, 264 
“DataAnalyticsTask” instances were automatically defined; 
they include 66 instances for each subclass—i.e., “Prescrip-
tive”, “Predictive”, “Diagnostic”, and “Descriptive”. One 
instance example of DA106 is shown in Fig. 7 (a). The “Pre-
dictive” instance DA106 is for supporting the activity Fuse-
Powders and the goal MechanicalPerformanceImprovement. 
Six new properties (yellow box) of DA106 were inferred 
using the Predictive Analytics Rule. DA106 is for predicting 
Porosity using the information of QualityParameter, Recoat-
ingParameter, ControlParameter, PowderFusionParameter, 
and PowderLayer. The expert team also defined required 
data for individual DA tasks by formulating four SWRL 
rules, as shown in Table 13 (b) (See Appendix). In total, 264 
“Data” instances were defined for the “DataAnalyticsTask” 
instances, including 66 instances for each subclass—i.e., 
“ForPrescriptiveAnalytics”, “ForPredictiveAnalytics”, “For-
DiagnosticAnalytics”, and “ForDescriptiveAnalytics”. One 
instance example of D106 is shown in Fig. 7(b). The “For-
PredictiveAnalytics” instance, D106 is required by DA106 . Six 
new properties (yellow box) of D106  were inferred using the 
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Predictive Analytics Data Requirement Rule. D106 includes 
the predictor variables of QualityParameter, RecoatingPa-
rameter, ControlParameter, PowderFusionParameter, and 
PowderLayer and a target variable of Porosity.

The experts defined the instances of “DataSource” by 
referring to the variables of the required “Data” instances. In 
total, 26 “DataSource” instances were identified: 16 “Equip-
ment” instances, three “Material” instances, one “Person-
nel” instance, and six “Software” instances. For example, 
D106 can be collected from ProcessPlanningSoftware in the 
“Software” class and from LayerwiseCamera and XCT in 
the “Equipment” class (Fig. 8).

Finally, 264 DA opportunities were identified for the 
L-PBF process (Fig. 9), with DO106 as one of the identified 
DA opportunities. DO106 was developed based on the goal 

MechanicalPerformanceImprovement; the target activity 
FusePowders; the DA task DA106 ; required data D106 ; and 
data sources XCT, LayerwiseCamera, and ProcessingPlan-
ningSoftware. Additional information about each instance 
can be retrieved from the DOKB, as shown in Fig. 9. In 
addition, DO106 provides the prioritization results, which are 
described in the next sub-section.

Evaluation and prioritization of data analytics 
opportunities

The team of six experts ( E1 − E6 ) evaluated the identified 
DA opportunities. Each expert has a unique knowledge 
background. Table 3 shows how much each expert knows 
about each criterion (described in Table 1) using the seven 
linguistic variables described in Table 2. Table 4 presents 
the results of the evaluation for each DA opportunity using 
these same linguistic variables.

The linguistic variables in Tables 3 and 4 were quanti-
fied to the corresponding TFNs (described in Table 2). For 
example, the expertise of E1 on the criterion C1  is SH, so 
the fuzzy rating of the expertise is denoted as (4,5,6). The 
linguistic rating of E1 on DO1 with respect to criterion C1 
is SH, so E1 ’s fuzzy rating is also denoted as (4,5,6). Then, 
the weighted, aggregated fuzzy rating was calculated using 
Eq. (7). Table 5 presents the weighted aggregated fuzzy 
matrix.

The normalized fuzzy decision matrix, R̃ = [r̃ij ], was com-
puted using Eq. (8). Table 6 presents the normalized fuzzy 
decision matrix.

The FPIS and FNIS were calculated using Eq. (9) and 
(10). Table 7 presents the results of FPIS and FNIS for all 
criteria.

The distances from each DA opportunity to FPIS and to 
the FNIS were computed using Eq. (11) and (12) after FPIS 
and FNIS were determined. Finally, the closeness coeffi-
cients of DOi were calculated for importance ( ICCi ), feasi-
bility ( FCCi ), and overall ( OCCi ) using Eq. (13–15). Table 8 
presents examples of the distances and the closeness coef-
ficients with priority rankings.

Analysis of prioritization results

The prioritization results of the identified DA opportunities 
can be further analyzed using a prioritization matrix. The 
feasibility dimension (x axis) and importance dimension 
(y axis) in the matrix represent the closeness coefficients 
FCCi and ICCi of DOi , respectively. The value of OCCi is 
used to determine the circle size of DOi in the prioritiza-
tion matrix. The prioritization results (see Table 8 for exam-
ples) were sorted into four groups, as shown in Table 9 and 
Fig. 10. By mapping DA opportunities to a prioritization 
matrix, we are able to present the user with graphical means 

Fig. 5  Structure of DOKB in Protégé
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for interpreting the overall results. Location of the oppor-
tunities in the four quadrants correlates with the potential 
impact of DA opportunities. The first group G1 has critical 
DA opportunities. The second group G2 has DA opportuni-
ties that are potentially critical. A DA opportunity in G2 can 
be re-prioritized in G1 by making a special effort to improve 
the feasibility. The third group G3 has DA opportunities with 
the lowest priority. The fourth group G4 has DA opportuni-
ties that may be easy to develop, but most likely, the effort 
is not beneficial; however, sometimes, such opportunities 
might be helpful for proof of DA concept in emerging areas.

As shown in Table 10, the prioritization results of three 
DA-opportunity examples were tabulated to summarize the 
ICC, FCC, and OCC scores and ranks, as well as the five-
tier information of each example opportunity. Consider-
ing OCC, DO136 ranked first among the 264 identified DA 

opportunities. It is therefore worth examining the opportu-
nity DO136 . The task for DO136 is to characterize support 
structures to determine their number and size for the part 
overhangs. The goal of this opportunity is to reduce the 
amount of material used to build support structures, while 
the target activity is meant to design a support for overhangs. 
Many historical data of support structures on similar designs 
from process planning software are now available to real-
ize this DA opportunity. Realizing this DA opportunity will 
improve understanding of how much waste material can be 
reduced.

DO106 and DO119 are two special opportunities because 
they have very high ICC scores and are ranked at the top; 
however, they are considered potentially critical opportuni-
ties (G2). The goal of these two opportunities is to improve 
mechanical performance, which is directly related to part 

Fig. 6  An illustrative example of the established relationship for L-PBF in the DOKB
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Fig. 7  Examples of newly inferred properties using SWRLs (a) for a “Predictive” instance, and (b) for a “ForPredictiveAnalytics” instance
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quality. Poor AM part quality is a major obstacle that hinders 
the widespread adoption of AM technology.  DO106 predicts 
porosity by considering a powder layer and parameters for 
quality, control, powder fusion, and recoating. The predic-
tion could improve real-time control when fusing powders 
and lead to AM products having higher mechanical perfor-
mance. DO119 diagnoses residual stress by identifying a cor-
relation between 1) residual stress and 2) AM part and heat 
treatment parameters. Newly identified data-driven knowl-
edge, if provided, could help set heat treatment parameters to 
improve properties of AM parts. Despite their very high ICC 
scores, DO106 and DO119 receive very low FCC scores (0.057 
and 0.084, respectively). We suggest three reasons for these 

low scores. First, these analytics require an advanced set of 
DA skills, such as image processing, dimensionality reduc-
tion, and deep learning. Second, feature selection is difficult; 
currently, selecting significant features from unstructured 
data such as XCT data of porosity and layer-wise image 
data of powder layer is still a problem. Third, the required 
data are collected from multiple data sources. For example, 
DO106 requires data from XCT, layer-wise camera, and pro-
cess planning software. Data fusion for heterogeneous data 
is challenging for reasons such as the difficulty in aligning 
contexts among the data (Shen et al., 2021).

The prioritization matrix of the case study prior-
itizes DA opportunities; it also indicates the status of DA 

Fig. 8  An example of data sources for D
106
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technology in the L-PBF process. The ICC and FCC scores 
showed a strong negative Pearson’s Correlation Coeffi-
cient (r =  − 0.695), which implies that the important DA 

opportunities have low feasibility. Similarly, the prioritiza-
tion matrix shows that many DA opportunities belong to the 
second group (G2), in which the opportunities have high 

Fig. 9  An example of DA opportunity DO
106

Table 3  Linguistic ratings of 
expertise level of experts with 
respect to the six criteria

Expert Benefit criteria Cost Criteria

C1 C2 C3 C4 C5 C6

E
1

SH SH H VH H SH
E
2

SH H SH SH M M
E
3

VH H H M SH H
E
4

H VH H SH M H
E
5

VH VH H H H VH
E
6

VH H H M M H
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Table 4  Linguistic ratings of 
the DA opportunities by the 
experts

Expert DA Opportunity Benefit criteria Cost criteria

C1 C2 C3 C4 C5 C6

E
1

DO
1

SH H H VH H SL
DO

2
SH H H H SH SL

… … … … … … …
DO

264
SH SH M M L L

E
2

DO
1

VH VH SL H M M
DO

2
VH VH VH M M M

… … … … … … …
DO

264
VH L L M H M

E
3

DO
1

H H H H SH SH
DO

2
SH SH SH SH SH SH

… … … … … … …
DO

264
H H H H VH VH

E
4

DO
1

SH M SL SL SL L
DO

2
SH SH SH M M H

… … … … … … …
DO

264
SH H H H H VH

E
5

DO
1

SH H H VH VH H
DO

2
SH H H H H H

… … … … … … …
DO

264
VH VH VH M H H

E
6

DO
1

H H SH M M M
DO

2
H H H SH M M

… … … … … … …
DO

264
VH VH H H H SH

Table 5  The weighted 
aggregated fuzzy matrix

DA Benefit criteria Cost criteria

Opportunity C1 C2 C3 C4 C5 C6

DO
1

(144,209,260) (148,214,273) (113,171,241) (118,176,224) (95,147,204) (87,139,196)
DO

2
(138,202,253) (149,215,273) (139,203,273) (103,158,218) (88,139,202) (107,163,224)

… … … … … … …
DO

264
(162,230,267) (142,206,253) (124,184,249) (95,150,212) (99,155,217) (123,182,232)

Table 6  The normalized fuzzy decision matrix

DA Benefit criteria Cost criteria

Opportunity C1 C2 C3 C4 C5 C6

DO
1

(0.53,0.76,0.95) (0.52,0.75,0.95) (0.39,0.60,0.84) (0.25,0.32,0.47) (0.24,0.33,0.52) (0.14,0.20,0.32)
DO

2
(0.50,0.74,0.92) (0.52,0.75,0.95) (0.48,0.71,0.95) (0.26,0.35,0.54) (0.24,0.35,0.56) (0.13,0.17,0.26)

… … … … … … …
DO

264
(0.59,0.84,0.97) (0.49,0.72,0.88) (0.43,0.64,0.87) (0.26,0.37,0.59) (0.23,0.32,0.49) (0.12,0.15,0.23)
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ICC scores but low FCC scores. The reason for the low FCC 
scores is that there exist technical difficulties that impede the 
realization of the opportunity. This observation addresses 
another research topic about how to improve the feasibility 
of the DA opportunities to promote the opportunities from 
the second group (G2) to the first group (G1).

Conclusion and Future Work

This paper proposes a methodology that uses the CKM 
approach to identify high potential and high impact DA 
opportunities in AM. The methodology has three compo-
nents: a team of experts, a DOKB, and a prioritization tool. 
The team of experts provides diverse knowledge that is 
vital for identifying and prioritizing DA opportunities. The 

DOKB captures the diverse knowledge to support identi-
fication of DA opportunities. The prioritization tool helps 
prioritize the identified DA opportunities. A case study 
demonstrated the feasibility of the proposed methodology. 
It successfully identified and prioritized 264 DA opportu-
nities in the L-PBF process using six experts from NIST. 
The results revealed the important DA opportunities in the 
L-PBF process.

The DOKB developed for the case study will continue 
to be shared, reused, revised, and extended. The shareable 
and reusable characteristics enable an increasing number of 
AM users to participate in the CKM to identify or prioritize 
DA opportunities, thus facilitating the spread of knowledge 
across the AM industry. New discoveries related to AM 
business, AM activity, DA, and AM data can be effectively 
and efficiently used to revise the existing DOKB. For the 

Table 7  FPIS and FNIS

Solution Benefit criteria Cost criteria

C1 C2 C3 C4 C5 C6

FPIS (0.63, 0.89, 1) (0.61,0.86,1) (0.59,0.83,1) (0.38,0.59,1) (0.33,0.53,1) (0.24,0.41,1)
FNIS (0.33,0.53,0.70) (0.18,0.34,0.52) (0.24,0.41,0.62)) (0.22,0.30,0.45) (0.2,0.27,0.41) (0.10,0.13,0.19)

Table 8  The modified Fuzzy TOPSIS results

Benefit criteria Cost criteria ICC (#rank) FCC (#rank) OCC (#rank)

DA opportunity C1 C2 C3 C4 C5 C6

d
* d

−
d
* d

−
d
* d

−
d
* d

−
d
* d

−
d
* d

−

DO
1

0.17 0.39 0.16 0.68 0.35 0.33 0.61 0.04 0.53 0.13 0.72 0.15 0.675 (#56) 0.146 (#229) 0.405 (#135)
DO

2
0.21 0.35 0.15 0.68 0.17 0.51 0.53 0.11 0.49 0.17 0.78 0.08 0.743 (#41) 0.169 (#222) 0.450 (#77)

… … … … … … … … … … … … … … … …
DO

264
0.07 0.49 0.22 0.61 0.28 0.39 0.48 0.16 0.56 0.1 0.82 0.04 0.724 (#49) 0.140 (#231) 0.425 (#111)

Table 9  The case study results for the four prioritization groups

Group ID Group Name Conditions Case Study Result -No. of 
DA Opportunities

Remark about DA Opportunity

G1 High Importance ICC > 0.5 & FCC > 0.5 3 Critical
High Feasibility

G2 High Importance ICC > 0.5 & FCC ≤ 0.5 120 Potential critical; moving some opportunities 
from G2 to G1 is possible if feasibility is 
improved

Low Feasibility

G3 Low Importance ICC ≤ 0.5 & FCC ≤ 0.5 117 Negligible
Low Feasibility

G4 Low Importance ICC ≤ 0.5 & FCC > 0.5 24 Nonessential
High Feasibility
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same reason, the prioritization results can be changed if new 
knowledge addresses DA-related technology, such as sensor 
technologies, data management technologies, and DA tech-
niques. Furthermore, the DOKB can be extended to include 
new purposes or approaches.

Our future work will focus on extending the scope of 
the DOKB to include the realization results of the DA 
opportunities and recommending DA techniques for real-
izing the DA opportunities. Once certain DA opportunities 
are realized, their results—e.g., issues, solutions, perfor-
mance, and maturity—can be reviewed and stored into the 
extended DOKB. We plan to automate the process of our 
CKM approach for improving efficiency. The DOKB can 

be improved by using ontology-learning techniques to auto-
matically capture required knowledge from experts.

Finally, the proposed methodology can also be applied to 
other data-intensive manufacturing industries, where iden-
tifying important and feasible DA opportunities will con-
tribute to innovations in product quality, productivity, and 
competitiveness.

Fig. 10  Prioritization matrix 
for DA opportunities from the 
case study
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Appendix

See Table 11, Table 12, Table 13

Table 11  The properties of the 
classes in Things Defined in the 
Data Analytics Tier

Property Subproperty of Domain Range

Decision_Supports DataAnalyticsTask Activity
Aims DataAnalyticsTask Goal
Considers DataAnalyticsTask ICOM
Optimizes Prescriptive PerformanceIndicator
Maximizes Optimizes Prescriptive PerformanceIndicator
Minimizes Optimizes Prescriptive PerformanceIndicator
Prescribes Prescriptive Control
Predicts Predictive PerformanceIndicator
Diagnoses Diagnostic PerformanceIndicator
Characterizes Descriptive PerformanceIndicator

Table 12  The properties of the 
classes in the Things Defined in 
the Data Tier

Property Subproperty of Domain Range

IsRequiredBy Data DataAnaltyicsTask
HasVariableAs Data ThingsDefinedintheActivityLayer
HasDecisionVariableAs HasVariableAs ForPrescriptiveAnalytics Control
HasObjectiveVariableAs HasVariableAs ForPrescriptiveAnalytics PerformanceIndicator
HasBlockingVariableAs HasVariableAs ForPrescriptiveAnalytics ICOM
HasPredictorVariableAs HasVariableAs ForPredictiveAnalytics ICOM
HasTargetVariableAs HasVariableAs ForPredictiveAnalytics PerformanceIndicator
HasExplanatoryVariableAs HasVariableAs ForDiagnosticAnalytics ICOM
HasResponseVariableAs HasVariableAs ForDiagnosticAnalytics PerformanceIndicator
IsRelatedTo HasVariableAs ForDescriptiveAnalytics ICOM
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