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ABSTRACT
One of the key factors in enabling trust in artificial intelligence within the materials science community is the interpretability (or explain-
ability) of the underlying models used. By understanding what features were used to generate predictions, scientists are then able to critically
evaluate the credibility of the predictions and gain new insights. Here, we demonstrate that ignoring hyperparameters viewed as less impact-
ful to the overall model performance can deprecate model explainability. Specifically, we demonstrate that random forest models trained
using unconstrained maximum depths, in accordance with accepted best practices, often can report a randomly generated feature as being
one of the most important features in generated predictions for classifying an alloy as being a high entropy alloy. We demonstrate that this
is the case for impurity, permutation, and Shapley importance rankings, and the latter two showed no strong structure in terms of optimal
hyperparameters. Furthermore, we demonstrate that, for the case of impurity importance rankings, only optimizing the validation accuracy,
as is also considered standard in the random forest community, yields models that prefer the random feature in generating their predic-
tions. We show that by adopting a Pareto optimization strategy to model performance that balances validation statistics with the differences
between the training and validation statistics, one obtains models that reject random features and thus balance model predictive power and
explainability.

Published by AIP Publishing. https://doi.org/10.1063/5.0050885

I. INTRODUCTION

The use of artificial intelligence (AI) or machine learning (ML)
in the physical sciences has exploded over the past ten years.1–4 From
those efforts, a number of truly remarkable discoveries in materi-
als science have been made, including new phase change materials,5
amorphous alloys,6 and novel drugs.7 Materials science presents an
interesting use case for AI/ML techniques where datasets are small
and expensive, contain underlying physical explanations, and are
heterogeneously distributed in the search space of interest. As a
result, AI practitioners increasingly look to the materials science
community for high quality, statistically significant data sparsely dis-
tributed in feature space to develop and train new types of AI mod-
els. Meanwhile, the materials science community prioritizes gaining

new insights from the AI models through understanding how the
featurization of their materials is translated into predictions.

In the absence of true scientific-AI models that incorporate
physical models within the AI frameworks, the current state of the
art is to use interpretable8 or explainable9 AI to assess the scien-
tific basis of model predictions. The rationale behind this is clear:
given a dataset, its featurization, and a trained model, trust in the
predictions of the model can be improved if the model reports on
the relationship between the features and the model outcome. Exist-
ing interpretable methods tend to involve sacrificing model flex-
ibility for increased inductive bias, while existing “explainability”
methods require post-hoc interrogation of “black box” models. An
interpretable model might provide the predictions as a function of
feature dependence (e.g., log-linear properties such as activation
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energies). An AI model used for predicting the tendency of a new
multi-component alloy to form a solid solution would be expected
to rely on the difference in atomic radii and the similarity of crys-
tal structures, electronegativity, and valence of the elements as the
most important features.10 Trusting the predictions of interpretable
or explainable models can come at the peril of the reaffirmation of
existing scientific biases or intuitions surrounding expected causal
laws, which may result in ignoring other plausible explanations for
the relationships between features and prediction.

There are a variety of techniques researchers use to explain the
behavior of black box models. In the case of a model such as Random
Forest (RF),11 explainability is often pursued through feature impor-
tance ranking (FIR12,13). This provides a window into which input
features of a dataset were deemed important by the model; a vari-
ety of methods are typically used, including impurity, permutation,
and Shapley importance rankings. In addition, partial dependence
plots14,15 attempt to show univariate predictive trends after account-
ing for the effects of all other input features. Similarly, a variety of
visualization techniques offer subjective insight into the image fea-
tures that deep image recognition neural networks are optimized to
respond to16. These methods tend to provide a subjective explana-
tory value, often requiring interactive exploration for the research to
“connect the dots” of understanding.

Here, we investigate the sensitivity of FIR with respect to hyper-
parameters for a model to predict high entropy alloy (HEA) or
metallic glass (MG) formation. We will demonstrate that although
a broad range of hyperparameters yield RF models with acceptable
validation statistics, many models will prioritize a spurious feature
filled with random numbers over more physically meaningful fea-
tures. We will further demonstrate that this is the case for three of
the most commonly used feature ranking techniques for RF. We
use a hyperparameter study to demonstrate that by simultaneously
seeking to maximize the validation statistics and minimize the dif-
ference between the validation and training statistics, an acceptably
accurate model that deprioritizes the random feature can be gener-
ated only for the impurity importance ranking. Along the way, we
will also show that the standard practice of not restricting the max-
imum tree depth yields models that do not minimize the difference
in validation and training statistics.

II. METHODS
The composition and phase of the HEA alloys used as the

training set were obtained from the multi-principal element alloys
(MPEA) dataset available from Citrine.17,18 The dataset has been dis-
cussed in detail elsewhere, but briefly it contains 1545 entries for
different high entropy alloys and includes descriptors such as pro-
cessing, types of phases observed (called microstructure in the orig-
inal dataset), and physical properties such as density and Young’s
modulus, among other properties. Here, the dataset was converted
to a set of descriptors relating the chemical composition to a set of
multilabel encoding of the experimentally observed crystal structure:
BCC, FCC, HCP, and intermetallic. In this context, the multilabel
annotation for each structure consists of a binary indicator for the
presence of each phase so that models can be generated for each
column separately. We also created a label HEA, which is false for
any alloy that contains more than one structure in its multilabel
annotation, even within the same structure family (e.g., BCC + B2,

BCC + intermetallic, or BCC + BCC). The dataset spans a broad
range of alloy chemistries including traditional Cantor alloys and
refractory alloys. In this study, we focused on the largest subset of
the MPEA dataset, entries with a processing flag of “cast,” which
contained 599 entries including both Cantor and refractory high
entropy alloys. Data without microstructure metadata were dropped
from the training set. As a note, of the 599 entries, only three single-
phase alloys were not single-phase FCC or BCC alloys, i.e., they were
fully ordered intermetallics. The MG dataset considered was pulled
from the metallic glass (MG) dataset generated by Ward et al.12

This dataset contains 5792 unique alloys, which have been labeled as
glass, crystalline, or mixed phase. A logical filter was used to define a
binary classifier describing whether a given alloy is single phase glass
forming or not. No additional conditioning was necessary for this
dataset.

The compositions of the HEAs and MGs were featurized using
the standard Magpie feature set,12,19 except that the component-wise
space group number features were excluded. The Magpie features
were each normalized to a standard distribution prior to training
and evaluating models using the StandardScalar package from scikit-
learn.20 The interested reader should look to the recent paper by
Wang et al. for a primer on best practices for materials science
model building.21 Feature standardization is not necessary for gener-
ating good RF models but may help the accuracy of feature ranking.
Train/validation splits were created using chemical similarity of the
alloys to prevent the information leakage resulting in a “leave k alloy
systems out” cross validation (LKSO-CV) scheme. For the purposes
of this study, an additional random feature was added to the feature
set by randomly sampling values for each entry from the standard
normal distribution. A similar random feature injection study was
performed by Zahrt et al. where the focus was on the critical evalua-
tion of combinatorial datasets and ensuring models were trained on
linkages between descriptors and the desired response variable, not
on noise.22 A unique random feature column was sampled for each
cross-validation iteration.

Random Forest (RF) classification from scikit-learn was used
for all models used in this study. The details of our base model can
be found in the accompanying code but are described here briefly.
To critically evaluate the explainability imparted by different feature
ranking tools for RF, we conducted a gridded hyperparameter study
of the HEA and MG models. Of the many hyperparameters in the
RF model and training algorithm, we chose to study the following
three hyperparameters: the minimum number of training samples
allowed per leaf node in each decision tree, the maximum num-
ber of features considered during a split, and the maximum depth
of the trees within the forest. Notably, textbooks and best practices
generally support an unconstrained maximum tree depth.23 Recom-
mended values for the maximum features per split and minimum
number of samples per leaf are generally the square root of the
number of features and 1, respectively. RF models are widely con-
sidered to be relatively insensitive to these hyperparameter values.
We have found previously (and will demonstrate below) that there
exist a broad range of values that produce roughly equivalent mod-
els in terms of their predictive power (as measured by validation set
accuracy). We performed a grid-based hyperparameter study, per-
forming LKCSO-CV for each hyperparameter combination in the
grid. For the HEA dataset, LKCSO-CV was performed 50×, but for
the larger MG dataset, it was only performed 25× for each set of
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hyperparameters. We varied both the maximum number of features
and the minimum number of samples per leaf, which could be 1, 2, 5,
or 10. For this Magpie featurization, the baseline setting for the max-
imum number of features is 10 [using the sqrt(n_features) heuristic].
The maximum depth of the trees was allowed to be 1, 2, 3, 4, 5, 10,
or 15. This analysis was performed for impurity, permutation, and
Shapley importance rankings described below.

For each version of the model, we used the 25 or 50 LKCSO-
CV iterations to quantify the 95% confidence intervals (CFIs) for
model accuracy and feature importance ranking with respect to the
stochasticity of RF training. We use an 80/20 ratio for these random
train/validation splits so that each LKCSO-CV iteration is trained
on 80% and validated on 20% of the unique chemical systems in the
full dataset. Here, we explicitly do not fix the random state seed so
that each of the 50 models has a different initialization, and thus,
we avoid only exploring models that have fortuitous test/train splits
and initializations. Feature importance rankings, Area Under the
Receiver Operating Curve (AUC) values, and precision and recall
were obtained for all models across the 50 training cycles and used
to calculate the CV-averaged importance of each feature. We report
95% confidence intervals (CFIs) for these metrics, computed across
50 LKCSO-CV iterations.

There are three commonly used ways to quantify feature
importance for random forest. The first is the Gini or impurity
importance, which is the default implementation in scikit-learn. The
default implementation of impurity importance is calculated on the
training dataset and calculates importance based on an average of
how high up in the decision tree each feature was. Such impor-
tance values are generated on the training set and may not neces-
sarily represent the importance values for the validation set. They
are also sensitive to the cardinality of features, e.g., features with
more unique entries are more likely to be deemed important. The
latter issue is likely to not be a great issue with the current dataset
described using the Magpie feature set as roughly a third of the fea-
tures are compositional averages of elemental properties and will
therefore provide many unique entries. The second method of quan-
tifying feature importance is the permutation importance, which was
developed by the bioinformatics community24 and was run using the
inspection module in scikit-learn.11 Permutation importance rank-
ings are calculated by randomly permuting individual features and
evaluating the performance of the model on the validation data, with
features more negatively impacting model performance upon per-
mutation being ranked as more important. Permutation importance
rankings are more computationally intensive than impurity impor-
tance rankings; therefore, the number of training cycles for the for-
mer was reduced to 25 to reduce the total computation time to ∼3
days. The final feature ranking technique used was to calculate the
Shapley values that compare models trained on all possible subsets
of input features to obtain feature importance rankings.25 The gen-
eralization SHAP (SHapley Additive explanation)26 values extend
these rankings to provide relative contributions to the model pre-
dictions for each input feature. In addition to providing insight into
the relevance of input features, Shapley methods can also be used to
assess the quality and influence of training examples and to poten-
tially identify outliers.27,28 To obtain per-feature Shapley importance
rankings, we compute the instance-wise mean absolute value of
the Shapley values for each instance in the validation set. Because
we use feature standardization, these aggregate Shapley importance

values are directly comparable and can be used to generate feature
importance rankings in the same way as with impurity importance
ranking.

III. RESULTS
Figures 1(a)–1(c) present the results of all of the impurity, per-

mutation, and Shapley importance vs hyperparameter studies for
the HEA model; each marker corresponds to a single CV iteration.
Figures 1(d)–1(f) present the results of the same hyperparameter
study for the MG dataset. The plots show the interplay between
AUC train, AUC validation, and the importance ranking of the
random feature for the three models considered. For the smaller
HEA [Figs. 1(b) and 1(c)] dataset, both the Shapley and permutation
importance rankings show no clear structure in terms of the random
feature importance ranking. This means that neither an overfitting
model (e.g., high AUCtrain and low AUCval) nor a severely under-
fitting model (e.g., low AUCtrain) is statistically more likely to rank
the random feature as being important than a well-trained model.
A figure of the statistical distribution of the random feature impor-
tance ranking can be found in the supplementary material, Fig. 1.
Any combination of AUCtrain and AUCval scores is likely to rank the
random feature as being either very important or unimportant to
the model’s predictions. Results from the Shapley and permutation
importance rankings from the MG model [Figs. 1(e) and 1(f)], where
an order of magnitude increase in the number of data points reduces
the influence of bad CV splits, reflect the same overall trend.

Conversely, the impurity importance rankings for the HEA
model [Fig. 1(a)] and the MG model [Fig. 1(d)] have clear struc-
tures. In each dataset, both the underfitting and overfitting models
show a statistical preference for a higher ranking of the random
feature. The smaller HEA dataset feature rankings do exhibit some
instability, likely due to bad CV splits; however, in the case of the
larger MG dataset, the trend is clearer. For both datasets, there is a
sweet spot at intermediate AUCtrain for which the random feature is
shown to be less important on average (rank >80 out of 106 total fea-
tures). For the current study, neither permutation importance nor
Shapley importance rankings showed a sufficient structure during
hyperparameter tuning to be used in model tuning. In the ensu-
ing discussion, we focus on only the impurity feature importance
ranking.

Figures 2(a) and 2(c) show the variation of the AUCval and
AUCtrain for the MG and HEA averaged models as a function of the
hyperparameters. The dashed line in the figures represent models for
which the AUCval = AUCtrain, and for all models below this line, the
training statistics are better than the validation statistics, as expected.
The color map indicates the average impurity ranking of the ran-
dom feature for each hyperparameter tuning iteration. A clear trend
across both models is that as the training AUC approaches unity
(e.g., a perfect fit of the training data), the rank of the random feature
increases until it becomes the most important feature. To be clear,
for both models, we observe a global maximum of AUC_val in the
hyperparameter region near the default hyperparameter values, but
this is where the highest feature importance ranking of the random
sentinel feature is located. This suggests that the CV procedure may
be somewhat overestimating the true generalization performance of
these models, leading to some degree of overfitting (consistent with
informing predictive decisions based on a spurious feature).
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FIG. 1. Summary plots of hyperparam-
eter studies across all replicates. The
correlation of random feature rank using
impurity importance is shown in (a) for
HEA and in (d) for MG. The lack of clear
correlation of the random feature rank
using permutation and Shapley impor-
tance is shown in (b) and (c) for HEA and
(e) and (f) for MG.

Figures 2(b) and 2(d) show that there is a broad range of models
with comparable AUCval with varying levels of discrepancy between
the training and validation AUC (AUCtrain–AUCval). Among models
with high AUCval, there is a clear trend of increasing random feature
importance as the train/val AUC gap increases. Figures 2(c) and 2(e)
present the same information as Figs. 2(b) and 2(d) but plot the ran-
dom feature importance on the x-axis and indicate AUCtrain–AUCval
with a color map. These figures show more clearly that models with
high AUCval can give vastly different importance rankings for the
random feature.

The regions that show the highest AUCtrain and AUCval, the
largest difference in training and validation AUCs, and the highest
random feature importance contain hyperparameters that are closest
to the defaults for RF. While a common strategy for hyperparameter
selection is to simply maximize validation set performance, a large
discrepancy between training and validation performance is con-
sidered a sign of overfitting. This heuristic is most commonly
discussed in the context of early stopping regularization while train-
ing deep neural networks. Early stopping regularization is imple-
mented by monitoring both training and validation performance in

order to terminate the iterative, gradient base training optimization
when the validation plateaus or begins to degrade.29 In contrast, a
common sentiment within the materials community is that the
training AUC for a RF model will almost always be close to unity and
that the best hyperparameters are those that correspond to the global
maximum of the validation accuracy or F1 score. It is not clear from
this work that basing model selection solely on the validation AUC
accuracy or F1 score leads to a less generalizable model. However,
from Fig. 2, simply maximizing the validation AUC leads to model
explanations that one should not trust, since the random feature
becomes prominent in the importance ranking. Interestingly, for
both models, increasing the depth of the trees increases the impurity
random feature importance.

Figure 3 plots a histogram of the random feature rank for
the seven highest val_AUC models using the impurity and Shap-
ley importance rankings. The Shapley importance of the random
feature is roughly uniformly distributed across all possible impor-
tance values, with a minimum importance rank of third. Conversely,
the distribution of the random feature impurity importance rank-
ing is roughly normal with a mean value of 39.5. The tails of the
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FIG. 2. Plots of the role of hyperparameter values on training statistics for the HEA model (a)–(c) and the MG model (d)–(f). Note that the y-axis for each set of plots is
identical (AUCval), but that the x-axis is different in each plot. The comparison of AUCtrain, AUCval, and random feature rank (color bar) is shown in (a)–(d). The comparison of
AUCval, (AUCtrain–AUCval), and the random feature rank (color bar) is shown in (b) and (e). Another comparison of AUCval, the random feature rank, and (AUCtrain–AUCval)
(color bar) is shown in (c) and (f).

distribution however are long, and the random feature can be found
among the top eight most important features in a number of fivefold
CV tests.

The red dashed lines in Figs. 2(a) and 2(b) highlight the Pareto
optimal hyperparameters that simultaneously maximize the valida-
tion AUC and minimize the difference between the validation and
training AUC. This Pareto optimal surface represents the trade-
off in validation set performance and the baseline trustability of a
FIR: selecting a hyperparameter sitting near the edge of the appar-
ent high validation AUC plateau tends to deprioritize the random
feature without substantially reducing generalization performance.

FIG. 3. Histogram of the random feature importance ranking over the seven mod-
els (350 fivefold CV iterations) with the highest Val_AUC. The random feature
importance ranking forms a roughly uniform distribution for all ranks 4–90. The
importance ranking using the impurity method has a near normal distribution with
the random feature sometimes being ranked in the top eight features.

The model in Fig. 2(c) shows a bend in the validation AUC vs ran-
dom feature importance near the Pareto optimal hyperparameters.
Models near this bend contain the subset of hyperparameters that
generate models with maximal predictive power and on average
preserve their explainability.

We would like to point out that there are other methods for
assessing the contributions of individual input features and train-
ing samples on the overall quality of a model. It is also known
that feature importance ranking can be susceptible to distortions
due to interactions between highly correlated input features—a
common situation in many materials descriptor sets, e.g., Ref. 30.
Common feature selection algorithms such as LASSO and least
angle regression can mitigate this by retaining only informative
features.31,32 The FeaLect method attempts to select more relevant
features than these methods by performing least angle regression
on bootstrap samples of the training data, aggregating relevance
scores for each feature across bootstrap samples, and performing
automatic threshold selection on the feature relevance distribution
to identify relevant features.32,33 Unfortunately, there is not cur-
rently a stable release of FeaLect in the current sklearn or Waikato
Environment for Knowledge Analysis (WEKA) toolboxes and nor
is it a part of the standard Anaconda18 download package. Mean-
while, LARS and LASSO are excellent for feature selection in lin-
ear regression but are not always suitable for solving materials
science problems, where there may be a preference for nonlinear
models.

Here, we have provided a rational path toward preserving
model explainability while maximizing the predictive performance
of RF models. A matminer feature set was used to describe an
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open HEA dataset, RF models for the ability of alloys to form HEA
or MG samples were generated, and their explainability through
various feature importance rankings was explored. We show that
focusing only on maximizing the validation AUC has the negative
consequence of degrading trust in the ranking of feature impor-
tance. Specifically, we showed that using the default RF param-
eters resulted in a random feature being identified as the up to
the fifth most important feature for the HEA model, depending
upon the random seed used. By shifting the emphasis of hyper-
parameter optimization from a single parameter optimization to
one that balances validation AUC and the differences in the train-
ing and validation AUC, we are able to suppress the importance
of spurious random features, thus retaining an explainable model.
Practically speaking, we suggest sorting the results of the hyper-
parameter study by (AUCtrain–AUCval), AUCVal, and the rank-
ing of the random feature, in that order. The user should then
down select to select the highest capacity model in that subset of
models.

Although the models explicitly investigated here were con-
strained to RF, there are a few important takeaways from this study
that may generalize to the AI for materials community. First, while
it is helpful to use the literature and online AI community forums
to get tips on which hyperparameters are normally less important
for a given AI model, proper model optimization requires rigorous
variation of parameters that may be considered unimportant.
Second, rather than using a single objective (i.e., validation AUC
or F1 score) for model-hyper parameter tuning, best practices to
preserve explainability would be to look for the subset of hyperpa-
rameters that balance training and validation accuracy and minimize
the importance of spurious features. Finally, the ultimate selection of
the set of hyperparameters to choose can be constrained via human
intervention, e.g., selecting models that prioritize features known to
mediate a property; however, doing so does carry with it the risk of
biasing future models.

SUPPLEMENTARY MATERIAL

The code and data used to generate these data are provided in
the supplementary material.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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