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ABSTRACT: In vitro inhalation toxicology methods are increas-
ingly being used for research and regulatory purposes. Although the
opportunity for increased human relevance of in vitro inhalation
methods compared to in vivo tests has been established and
discussed, how to systematically account for variability and
maximize the reliability of these in vitro methods, especially for
assays that use cells cultured at an air−liquid interface (ALI), has
received less attention. One tool that has been used to evaluate the
robustness of in vitro test methods is cause-and-effect (C&E)
analysis, a conceptual approach to analyze key sources of potential
variability in a test method. These sources of variability can then be
evaluated using robustness testing and potentially incorporated
into in-process control measurements in the assay protocol. There
are many differences among in vitro inhalation test methods including the use of different types of biological test systems, exposure
platforms/conditions, substances tested, and end points, which represent a major challenge for use in regulatory testing. In this
manuscript, we describe how C&E analysis can be applied using a modular approach based on the idea that shared components of
different test methods (e.g., the same exposure system is used) have similar sources of variability even though other components may
differ. C&E analyses of different in vitro inhalation methods revealed a common set of recommended exposure systems and
biological in-process control measurements. The approach described here, when applied in conjunction with Good Laboratory
Practices (GLP) criteria, should help improve the inter- and intralaboratory agreement of in vitro inhalation test results, leading to
increased confidence in these methods for regulatory and research purposes.

■ INTRODUCTION

Many agencies are moving toward the use of non-animal
methods to fulfill regulatory testing requirements. The United
States Environmental Protection Agency (EPA) plans to
eliminate the requests and funding for all mammalian studies
by 2035.1 Animal studies are already forbidden for the
development of cosmetic products in Europe in agreement
with guideline 2010/63/EU for the protection of animals used
for scientific purposes and the regulation of cosmetic
products.2 There are currently several examples from European
and U.S. legislation that require, or strongly encourage, the
replacement of animal testing.1−7

Inhalation toxicity testing is one area where in vivo animal
tests8−12 are still routinely used for regulatory decision making.
However, due to monetary, ethical, and scientific concerns
associated with these tests, there has been substantial interest
in optimizing non-animal approaches that can replace the in

vivo tests.13−18 A number of in vitro methods are available to
assess the respiratory toxicity potential of a variety of
substances in human cells.13,19−22 One key factor for potential
regulatory application of these methods is their reliability,
which can be demonstrated by interlaboratory reproducibility,
intralaboratory repeatability, and robustness23 (i.e., resistance
to measured change in the assay resulting from unintended
variations in experimental reagents or protocols).
Understanding the reliability of in vitro methods depends on

identifying the potential sources of variability. Cause-and-effect
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(C&E) analysis has been recently used to categorize sources of
variability in a range of toxicological assays.24−27 This approach
uses a fishbone diagram to visually illustrate all expected major
causes of variability that can impact the overall assay result.
C&E diagrams provide a visual display of these sources of
variability which can then guide assay protocol development,
such as which in-process control measurements to incorporate
into the protocol, and robustness testing. To fully understand
the potential sources of variability in an assay, it is necessary to
evaluate each of the branches shown in the C&E analysis either
in one-time preliminary experiments or each time the assay is
performed.
The use of in vitro methods to assess potential respiratory

effects of substances on the lung requires consideration of
several features including the biological test system (e.g.,
monoculture systems, coculture systems, and three-dimen-
sional [3D] constructs), mode of exposure (submerged or air−
liquid interface [ALI]), characterization of test materials,
appropriate controls, and assays to measure the biological
response. This manuscript provides a conceptual evaluation of
the aforementioned potential sources of variability for in vitro
inhalation toxicity assays that use cells cultured at the ALI. The
approach was designed to be general so that the sources of
variability identified were not specific to an individual assay,
material, or test system. Based on practical experience, these
sources of variability are discussed in detail, and control
measurements are suggested to improve assay reproducibility.
One key value of these control measurements is that they can
reveal information about the analytical assay performance (e.g.,
is the sensitivity of the biological test system similar to previous
assays?). This can be useful to deconvolute the measured assay
variability, because multiple factors can contribute to the
overall variability. This information can also lead to refinement
of the assay by identifying and decreasing the largest sources of
variability. Ultimately, the goal of this manuscript is to describe
how to maximize the reliability of ALI cell culture methods for
use in current experiments as well as any future interlaboratory
comparisons and method standardization.

■ CAUSE-AND-EFFECT DIAGRAMS FOR IN VITRO
INHALATION TOXICITY ASSAYS

To evaluate the potential sources of variability in an assay, the
main stages of the assay protocol can be diagramed using a
flowchart, shown as steps a−e in Figure 1. The first step in an

ALI cell culture assay relates to the preparation of the
biological test system and varies in complexity based on the
system used. The second step involves preparation of the test
substance for exposure and varies in complexity depending on
the characteristics of the test substance. The preparation of the
exposure system (step c) is the least complicated when the test
substance is pipetted onto the biological test system. For more
complex ALI exposure systems, the functioning of the
nebulization/aerosolization and the in-line characterization
instrument (e.g., quartz crystal microbalance [QCM] or
scanning mobility particle sizer [SMPS]) need to be evaluated
prior to exposing the biological test system to ensure that the
system is performing properly. The fourth step involves the
exposure of the biological test system to the test substance
using the exposure system, and the last step is choosing and
performing the biological assay (e.g., evaluation of changes in
cell viability or the production of cytokines by the biological
test system).
One challenge in making C&E diagrams that span the five

steps discussed above is that ALI-based in vitro inhalation
toxicity assays can vary substantially based on the study
requirements. Nevertheless, there are some steps that will be
shared among assays. Thus, it is possible to design modular
C&E diagrams to identify potential sources of variability for
specific branches based upon which assay is used (i.e., all assays
with monoculture of cells as the biological test system would
share a branch). In addition, certain assays may share some of
the same sources of variability. For example, it has been shown
that no modifications are needed in some branches of the 3-
[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-
sulfophenyl]-2H-tetrazolium (MTS) assay for use in other
assays, such as the Comet assay or a flow cytometry-based
apoptosis/necrosis assay, because those assays share common
sources of variability.27

Figure 2 presents a generalized C&E diagram for ALI cell
culture inhalation assays. The sources of variability for
branches 1−6 are shown in Figures 3−8, respectively.
Combinations of these branches can yield an overall C&E
diagram for a particular assay, as depicted in Figure 9.

■ BRANCH 1: BIOLOGICAL TEST SYSTEM
Different types of biological test systems are used to model the
lung for ALI exposures, including mono- or cocultures or 3D
organotypic tissues. They differ from each other in complexity
and physiological relevance, and the choice of which system to
use will depend on the purpose of the study. Therefore,
evaluation of newer cell lines, which may introduce for instance
a barrier function, including comparison with well-tested cell
lines is crucial.28 Minimization of inter- and intralaboratory
variability related to these systems requires consideration of
parameters that are generally applicable to all cell-based
systems, including identification and characterization of cells,
such as the cell ID (including the supplier [e.g., ATCC],
source type [i.e., cell line or primary culture], origin [e.g.,
species], and history of cells [e.g., cell passage number, freezing
protocol, phenotypic and genotypic verification, and myco-
plasma contamination]), donor variability, general handling
and maintenance, and culture conditions (see Figure 3). The
aforementioned parameters have been described in several
manuscripts and guidance documents, such as the Guidance
Document on Good In Vitro Method Practices (GIVIMP),
which suggest ways to optimize the reliability and robustness
and to reduce the variability of in vitro methods.13,29−34 In

Figure 1. Flowchart detailing the main steps in an in vitro inhalation
toxicity assay.
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addition to the general topics that are discussed in these
documents, other potential sources of variability for the
biological test system have to be taken into account when
working with ALI test systems. Some of these potential sources
of variability are shared among all types of ALI test systems,
while others are specific to certain test systems. Both are
described below.
Sources of Variability Common to All Types of

Biological Test Systems. Substrate. To expose cells at the
ALI, especially for exposure times longer than a few minutes,
the cells or tissues need to be cultured on a substrate that
allows them to receive nutrients from the basolateral side (i.e.,
the side that is in contact with the cell culture medium). The
most commonly used substrates are microporous membrane-
based inserts that can differ in geometry, type of material,
thickness, and pore size and density. Changes in these
properties may affect the attachment of cells, absorption, and
adsorption of substances (e.g., proteins), direct cell-to-cell
contact, migration of cells to the other side of the membrane,
or changes in the cell barrier properties.35,36 Variabilities
between inserts attributed to the manufacturing process cannot
be completely avoided; however, choosing the same type of

cell culture insert from the same manufacturer for the entirety
of an experiment, and including the catalogue number and
manufacturer information in publications, minimizes those
variabilities.

Culture Conditions. Most cell types used for ALI exposure
assays will only adhere to cell culture inserts with special
coatings (e.g., biological [e.g., extracellular matrix proteins] or
synthetic polymers [e.g., polylysine]). Various potential
sources of variability arise from different coatings. While the
use of commercially available precoated inserts offers a solution
to reduce variability related to coating, it can be expensive.
Therefore, many laboratories choose to coat the inserts in-
house. Use of synthetic coatings and controlling the
composition,37 pH,38 temperature, ionic strength,39 and
storage conditions of the coating solution40,41 will help achieve
homogeneous and reproducible coating on the inserts.
Additionally, the use of animal-derived components (such as
serum, growth factors, and hormones) in the cell culture media
is a known source of variability in in vitro experiments. The use
of chemically defined medium, instead of an undefined mixture
(e.g., media with fetal bovine serum), can greatly reduce the
variability related to culture medium.42

Figure 2. C&E diagram of in vitro ALI inhalation toxicity assays. Sources of variability for the branches are shown in subsequent figures (Figures
3−8).

Figure 3. Branches for the “biological test system” branch in Figure 2. The branch for “monoculture system” is modified and reprinted with
permission from ref 27. Copyright 2020 American Chemical Society. Note that some branches may have slightly different sub-branches, for
example, handling of a monoculture system includes time before assay, passaging, and seeding density, while the user handling a purchased
commercially available 3D construct does not need to consider passage and seeding density.
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Handling. The way the cells/tissues are prepared before
exposures can change the study outcome and is important to
monitor. For example, the timing of transitioning the cells from
submerged to ALI conditions has to be carefully considered.
Certain cells need more time to adapt to the new environment
than others. Besides, cells and tissues grown at ALI often
produce an epithelial lining fluid, such as mucus or
surfactant.13,43 The timing of the transitioning to ALI, of
apical washes, or trans-epithelial electrical resistance (TEER)
measurements influences whether this epithelial lining fluid is
(partially) present during the ALI exposure. In addition, the
culture media may or may not be added back to the cells after
exposure to the test substance. Therefore, all of these details
should be thoroughly documented in laboratory notebooks
and publications.
TEER measurements evaluate the integrity and permeability

of biological barriers. TEER measurements can serve as a
quality control for cell/tissue well-being before the start of an
experiment, and only samples that reach a previously defined
threshold should be used.44 While useful, TEER measurements
should be conducted carefully and sporadically, because
frequent measurements can potentially stress the cells and
will remove the epithelial lining fluid because liquid is added
to, and removed from, the apical side of the cells.
Sources of Variability Related to Adherent Mono-

cultures. When choosing a cell type, it is important to know
whether it can be cultured at the ALI for prolonged periods
and whether the cells are contact inhibited or will grow in
multiple layers. While working with cells that are not contact-
inhibited (e.g., A549 cells), it is important to make sure that
the cell culture insert is covered with a single layer of cells. A
multilayer of cells is not desirable for multiple reasons: it may
not represent in vivo conditions, it hinders estimating the
number of cells, and only the top layer is directly exposed to
the test substance. These sources of variability, which are also
relevant for coculture systems, can be reduced by optimizing
the timing and seeding density of cells that are not contact
inhibited, or by using cells that are contact inhibited and will
stop proliferating once confluent.
Sources of Variability Related to Coculture Systems.

When two or more cell types are cultured together, one cell
type may outgrow the other(s), and the secreted molecules
(e.g., growth hormones, or pro- and anti-inflammatory
mediators) from one cell type can influence another cell type

(paracrine signaling). For example, a pulmonary epithelial-
endothelial coculture increased the barrier tightness of
epithelial cells,45 and culturing epithelial cells with fibroblasts
increased the wound-healing abilities of the epithelial cells.46

Therefore, the timing and density of seeding different cell types
are critical and should be carefully documented in laboratory
notebooks and publications.
Another potential source of variability is the cell culture

medium used. Most cells require culture medium that is
tailored to their needs and changes in the constituents of the
medium can influence their phenotype or genotype. For
cocultures, two or more types of media are often mixed to
support the different types of cells. Therefore, each cell type
should be investigated with the new cell culture medium and
given enough time to adapt to it before any further steps are
performed.

Sources of Variability Related to 3D Constructs.When
cultured at the ALI under specific conditions, some types of
epithelial cells can differentiate into a 3D tissue that closely
represents human physiology. Due to its complexity, the
differentiation process is prone to variability; use of
commercially available fully differentiated 3D tissues can
reduce this variability. If the cells are differentiated in-house,
then standardized protocols should be used (if available) and
the method should be carefully documented. Timing of tissue
orders from suppliers requires attention to avoid hold-ups due
to weekends or public holidays. Upon receipt, and if not
already performed by the supplier prior to shipping, a few
random tissues should be histologically analyzed (e.g., for
tissue thickness, composition of cell types, and abnormalities)
as a quality control measure. After shipping, 3D tissues need
time to recover and adapt to the new environment. A
predefined TEER threshold value is a useful quality control for
the barrier property. This measurement should be performed a
few days ahead of the ALI exposure, if the presence of the
epithelial lining fluid is desired.
It is recommended to follow manufacturer-provided

protocols while handling and using 3D tissues, when possible.
For example, during the development and optimization of the
EpiAlveolar tissue model (MatTek Life Sciences), protocols
and training videos were shared with the testing laboratories to
demonstrate proper tissue handling.47 Any details specific to a
chosen end point or deviations from the standard protocols
(e.g., adjustments to suit a specific study design), if needed,

Figure 4. Branches for the “exposure of biological test system” branch in Figure 2. The “ pipetting” branch is modified and reprinted with
permission from ref 27. Copyright 2020 American Chemical Society.
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should be documented in laboratory notebooks and
publications. For instance, when treated with substances that
elicit pro-fibrotic responses, the EpiAlveolar tissues can
sometimes detach from the membrane insert, resulting in
false negative readings; therefore, care should be taken when
washing these tissues after exposure to such substances.47

■ BRANCH 2: EXPOSURE SYSTEMS
Cells cultured at an ALI can be exposed either to a liquid by
pipetting or to an aerosol/gas/vapor using an ALI exposure
system (Figure 4). The selection of the exposure approach
should be carefully considered depending upon the purpose of
the measurements. Particle deposition from aerosols is
predominately performed in closed-box or flow-through
systems.
Sources of Variability Related to Exposure by

Pipetting. Pipetting is the simplest way to test an adverse
effect of a test substance using an in vitro system. Physical
properties of the matrix containing the test substance, such as
its viscosity and surface tension, can contribute to the
variability of the exposure concentration. These sources of
variability would also apply to other steps in the protocol
involving pipetting of liquids and may also apply to protocols
using aerosol exposure. Under ALI conditions, it is possible to
add a small amount of test substance directly onto the apical
side of the biological test system, in which case the entire
pipetted volume should come into contact with the cells. It is
also possible to pipet into the basal medium, but only a
fraction of the amount added will reach the cells. This fraction
depends upon diffusion of the substance to the cells. For
particles, sedimentation may also decrease the concentration
that reaches the cells. This contrasts with exposure of
submerged cells located at the bottom of a well, where
sedimentation of particles from the overlying medium would
increase the cellular exposure. Whether exposing to the apical
or basal side of the ALI culture, the ALI on top of the
biological test system should be preserved.48−50 Addition or
removal of any liquid to or from the apical side of the
biological test system may disturb the epithelial lining fluid
and, therefore, affect the biological response. Interactions of
the test substance with the media or the epithelial lining fluid
may induce changes to the test substance’s surface, such as
formation of a corona around an engineered nanomaterial
(ENM), which might affect the test result.51

Sources of Variability Related to Aerosol, Vapor, or
Gas Exposure. For ALI exposure to aerosols, vapors, or gases,
additional parameters (such as the inlet air flow rate and the
distance between inlet and biological test system) need to be
considered and can be system specific. In general, by
minimizing the contact between test substance and cell
media, ALI exposure systems help to avoid chemical reactions
between media and test substance or formation of a corona for
particulate test substances. When using an ALI exposure
system, it is crucial to characterize and quantify the test
atmosphere to ensure consistency among experiments and to
calculate the deposited dose fraction.52 Thorough cleaning of
the systems when using different test substances is essential to
avoid contamination.
Sources of Variability Related to Closed-Box Systems.

Exposure in closed-box systems is based on sedimentation of
the aerosolized test substance onto the biological test system,
often in a defined chamber. Sources of variability in the
exposure dosage for this exposure system include the test

substance’s properties within the test media (e.g., viscosity),
which can impact the aerosol generation and its potential to
contaminate the nebulizer. Furthermore, changes in humidity
causing condensation on the chamber walls needs to be
prevented, because sample in the condensate will decrease the
intended exposure concentration. How much deposition
occurs is impacted by the test substance’s liquid matrix. For
particulate test substances, a high deposition rate within in a
short period can be achieved.53−56 This could lead to complete
coverage of the biological test system’s apical side, which could
potentially alter the epithelial lining fluid. Therefore, a more
detailed assessment of deposited dose and inclusion of quality-
control measurements based on specific parameters (e.g.,
required nebulization time, fluid volume used to generate the
aerosol, and method used to measure the deposited dose [e.g.,
QCM]) is advised.53 A QCM is often integrated in newer
closed-box systems and, therefore, should be incorporated into
studies to monitor reproducible nebulization and deposition.57

When using the QCM to determine deposited mass, time to
dry off the microbalance after exposure should be documented.
In addition, different nebulization efficiency, due to phys-
icochemical matrix effects of different samples, can be taken
into account to ensure similar dosage. Similarly, coupling to a
condensation particle counter (CPC) and/or a SMPS to assess
the generated aerosols, especially for particle aerosols, and to
characterize their particle concentration and size distribution
helps ensure repeatability and comparability of experiments.
Depending on the system’s setup, potential interference with
the exposure experiments due to the aerosol sampling has to be
considered. It may also be possible to use a sample port to
collect deposited samples on an electron microscopy grid for
further analysis.

Sources of Variability Related to Flow-through
Systems. In flow-through ALI exposure systems, a very low
sample flow rate is directed to the apical side of the biological
test system. Due to the stagnation flow slowing the aerosol
plume and the resulting slow aerosol movement, deposition
occurs mainly via diffusion.13,58,59 ALI flow-through systems
are available that utilize other deposition methods (e.g.,
thermophoresis, electrostatic deposition), different setups (e.g.,
sample flow parallel to the apical side), and parameters (e.g.,
flow rates, constant or pulsed electrophoresis).60,61 Never-
theless, differences in exposure procedure and exposure setup
characterization (e.g., humidity, flow rate, distances, and
exposure duration) for all flow-through ALI systems
(stagnation flow-based and other models) can result in
variabilities for the deposited dose and the response to the
exposure system negative control.62 Quality control measure-
ments of the system and determination of the deposited dose,
for example, via QCM or an alternate appropriate method, are
advised. In flow-through ALI systems, the QCM is only
installed in a separate ALI chamber. Although online
assessment of the deposition on the cells directly is not
feasible, the QCM can be used to monitor the aerosol and its
deposition by stagnation flow in the sytem in general.
Additional coupling with online aerosol measurements (e.g.,
CPC, SMPS) helps to assess the particulate character of the
aerosol. As sampling flow rates of the measurement instru-
ments are significantly higher than typical ALI sample flow
rates, the isokinetic aerosol behavior may be affected.
Nevertheless, aerosol characterization offers possibilities to
support the comparability of different experiments. Again, it
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may be possible to use a sample port to collect deposited
particles on an electron microscopy grid for additional analysis.

■ BRANCH 3: INSTRUMENT TO MEASURE
BIOLOGICAL RESPONSE

Several instruments are used to measure the biological
responses of different types of in vitro systems. Figure 5
shows three examples of instruments, plate reader, flow
cytometer, and voltohmmeter, along with the parameters that
need to be considered to reduce variability. A voltohmmeter is
used to determine TEER, which is used to assess barrier
integrity of cells that form tight junctions and generally applies
to all three types of biological systems described in Branch 1.
The control measurements are often specific to the instrument
and should be considered for reliability.

■ BRANCH 4: POSITIVE CONTROL
There are two main types of positive test substance controls to
consider when using an ALI exposure system for in vitro
inhalation toxicity testing: incubator positive controls and
exposure system positive controls. Incubator positive controls
are conducted in the incubator and not the exposure system. A
substance that is known to yield the biological effect under
investigation (i.e., from previously obtained in vivo or
epidemiological data) is delivered to the cells by pipetting
directly onto the cell insert or by addition to the basal media.
This can reveal information about numerous key dimensions
for the assay performance. For example, this control can
potentially provide information about the cell pipetting and
rinsing procedures based on the magnitude of the response
observed; lower numbers of cells are often more strongly
impacted during cytotoxicity assays with lower effective
concentrations causing a 50% effect (i.e., EC50 values).

24 The
exposure system positive control measurement yields im-
portant information by also testing the performance of Branch
2 (the exposure system), in addition to the components of the
assay tested by the incubator positive control. This provides
information about the consistency of biological responses from
the exposure system. By performing the incubator and
exposure system positive control measurements concurrently,
it is possible to isolate if a problem is occurring with, for
example, the number of cells in the biological test system, in
which case both positive controls are impacted. Alternately, if

there is a problem with the exposure system, only the exposure
system positive control is impacted. The exposure system
positive control may, for some exposure systems, need to be
performed before or after the exposure of the test substance
given the limited number of samples that can be exposed
concurrently.
Numerous characteritics should be considered when

selecting the positive control, including its stability in relevant
media (i.e., cell media or in air), interference with assay
reagents, purity, commercial availability, ease of preparation in
the desired matrix, and capacity to elicit the intended biological
effect (Figure 6).63 Some compounds that may work well as

the incubator positive control (e.g., surfactants) may be
problematic for use as the exposure system positive control.
Thus, it may be necessary to have different positive control
substances for the incubator and exposure system. In addition
to positive controls, adequate negative controls need to be
considered in the study design, such as an incubator control

Figure 5. Branches for the “instrument to measure biological response” branch in Figure 2. The “plate reader” branch is modified and reprinted
with permission from ref 27. Copyright 2020 American Chemical Society.

Figure 6. Branch for the “positive control’ in Figure 2. These
characteristics are relevant for both the incubator positive control and
the exposure system positive control.
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and exposure controls (e.g., clean air or sodium chloride/
phosphate buffered saline solutions).
Another key topic to consider for the positive control is the

number of concentrations tested. It is preferable, when
possible, to test a sufficient number of concentrations to
determine the assay’s maximal response, and thus, its dynamic
range, and also the dose−response function. Evaluating the
dose−response function can provide information about the
magnitude of effects observed for specific concentrations of the
positive control chemical and enable comparability of the
results obtained on different days within a single laboratory or
among laboratories. Unlike the exposure system positive
control, where there may be limits to the number of samples
that can be concurrently exposed, testing a larger number of
concentrations is more straightforward for the incubator
positive control. Thus, it may be necessary for some exposure
systems to test the exposure system positive control periodi-
cally rather than concurrently with every experiment.

■ BRANCH 5: ASSAY PROTOCOL TO MEASURE
BIOLOGICAL RESPONSE

Biological response is measured using assays that generally
include processing of the cell system, for instance, to collect
cellular lysate or supernatant or incubation with assay
chemicals. Figure 7 shows three examples of assays, MTS
assay, enzyme-linked immunosorbent assay, and Annexin V/
propidium iodide assay, which are commonly used in
toxicological studies. Each of these assays and their sources
of potential variability have been recently described in detail.27

In general, parameters such as interference of test substance
and cell culture reagents (especially serum), timing, and
washing steps are common among these assays, but there are
other parameters that are specific to individual assays and
should be considered for reliability.

■ BRANCH 6: TEST SUBSTANCE
For every study, sufficient characterization of the test substance
is required. Only with sufficient knowledge about the
substances’ properties (e.g., form or presence of impurities)

Figure 7. Branches for the “assay protocol to measure biological response” branch in Figure 2. All branches are reprinted with permission from ref
27. Copyright 2020 American Chemical Society. Abbreviations: ELISA, enzyme-linked immunosorbent assay; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); Prep, preparation; PI, propidium iodine.

Figure 8. Branches for the “test substance” branch in Figure 2. The “Engineered nanomaterial” branch is reprinted with permission from ref 27.
Copyright 2020 American Chemical Society. Abbreviations: ENM, engineered nanomaterial.
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can correlations be made to the observed effects. Uncertainties
regarding the test substance can stem from variability among
batches or the preparation of dispersions for particles. Sample
preparation or aging while in storage can also cause changes
affecting the test substance’s properties and toxicity.
While sources of variability for chemicals are well-known

and ENMs have been studied in recent years, there are two
new types of particulate material that are the focus of
increasing research efforts: advanced materials and micro-
plastics. Because both are novel and complex materials to test,
they have not been included in the C&E diagram for this
branch (Figure 8), but the following discussion focuses on
expected key sources of variability for testing of these materials
that can help guide future testing.
Sources of Variability Related to Chemicals. For

chemical test substances, and any formulation derived from
them, sampling, transport, and storage have the greatest
influence on statistical and systematic errors.64,65 The
substance’s physical state can affect the variability during its
sampling (e.g., weighing for solid materials, pipetting for
liquids, or aspiration for gaseous samples). For example, solid
substances that are challenging to weigh (e.g., oily solids) or
liquids that are viscous will have higher variability than other
substances. The physicochemical properties (e.g., dissolution,
homogeneity) of the chemical have to be considered for
sample preparation (e.g., by digestion, separation, purification,
or enrichment/dilution), because they can also impact the
exposure variability.
Furthermore, key physicochemical parameters that could

influence the variability when testing chemical test formula-
tions are stability/reactivity, volatility, and pH. The solution
stability of the chemical test formulation should be ensured for
at least 24 h to avoid interferences from degradation products
and changes to the actual applied dose. Likewise, loss of the
test substance due to its volatility, or from its enrichment in the
administered forumulation due to other volatile components
(e.g., solvents), should be considered and avoided to ensure a
stable concentration. In this context, the initial pH value
should be monitored and kept constant during the application
phase.
Sources of Variability Related to Engineered Nano-

materials. “Nanomaterials” are defined by the International
Organization for Standardization (ISO) as “materials with any
external dimension in the nanoscale [i.e., 1−100 nm] or having
internal structure or surface structure in the nanoscale”.66

Because ENMs are frequently not tested in their as-received
form, the process used to modify them prior to testing can add
variability. If they are tested after suspension in a liquid, the
dispersion process can introduce variability, such as what
fraction is suspended and if the particles are changed during
the process.26 Furthermore, the quantity of energy applied
during sonication can potentially change the agglomeration
state of the ENM and modify the surface coatings and
chemistry.67,68 As the ENM remains in suspension, changes
can occur to the ENM physical properties, such as the size
distribution due to agglomeration and/or particle dissolution,
surface chemistry, and form (e.g., Ag particles turning to
AgCl).69−71 These changes can, in turn, impact the ENMs’
chemical reactivity and likely also the toxicity.70 Changes in the
suspension caused by agglomeration and sedimentation can
affect the performance of analytical methods (e.g., dynamic
light scattering),72 and the exposure process (e.g., nebulization
or aerosolization). Therefore, the use and characterization of

an appropriate dose metric, considering all the aforementioned
possible changes, are required.72,73 It is important to note that
relevant characterization methods of the ENMs, such as mass
and size, typically are highly dependent upon the type of ENM
evaluated.72,74−76 In addition to sources of variability for the
ENM itself, the preparation, handling, batch-to-batch varia-
bility,77 and storage of the formulations used for ENM
dispersion can introduce additional variabilities similar to those
for chemical formulation. Morever, some ENMs can cause
interferences in some biological assays.27 When available,
standardized methods should be used.

Advanced Materials. There is no current consensus
definition of “advanced materials”, but this topic is under
discussion by groups, such as the Organization for Economic
Co-operation and Development (OECD) and ISO and may
include ENMs in addition to other types of materials and
technologies. One definition, which is used in legal contexts,
describes these substances, which often consist of multiple
materials, as follows: “Advanced materials are materials with
technical properties created by the development of specialized
processing and synthesis technologies, including ceramics,
metals with high added value, electronic materials, composites,
polymers, and biomaterials”.78 In addition, Kennedy et al.79

defined “advanced materials” as “novel materials with unique
or enhanced properties relative to conventional materials”.
Nevertheless, the described C&E analysis should generally

be applicable to these newly emerging materials yet may need
adaptation as more is learned. One specific foreseeable
challenge in testing advanced materials is that they often
release complex mixtures of different types of substances. For
example, 3D printers or printing pens may release volatiles,
plastic particles, and potentially ENMs, if present in the
printing filament. Thus, it may be challenging to have
consistent doses of the components among experiments and
possibly even replicates within a single experiment. A second
potential challenge arises if different components of mixtures
have unique properties (e.g., electromagnetic field)80 when
they are present together in a certain configuration, because
preparing the samples for exposure could potentially alter this
configuration.

Microplastics. “Microplastics” are generally defined as
particles of any plastic material with one dimension <5
mm.81−83 They are released either already at this size
parameter or are formed as a result of the degradation of
larger plastic materials (secondary microplastics).81 A potential
source of secondary microplastics with relevance for daily
human exposure is represented by 3D printer and pen
emissions.84 Despite their almost ubiquitous occurrence in
the environment, especially in water and soil but also in the
atmosphere,85 analysis is difficult and often requires a
combination of techniques to assess the variability in sizes
and materials in complex matrices.81,83 Depending on their
size, microplastics, especially any nanoparticulate fraction, can
be inhaled and may reach deep in the lungs. Different toxicity
modes of action have been proposed and may even overlap:
(1) effects based on the particulate property itself, (2) effects
due to any adsorbed substance on the microplastic particle
(carrier effect), and (3) effects based on leaching of potential
toxic substances from the microplastic particle’s matrix.82,86

Many of the aforementioned sources of variability for ENMs
may also be applicable to microplastics, such as the handling of
the test substance, colloidal stability, and purity. For instance,
any leaching or carrier effect is likely to be affected by the
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surface of the microplastic particle. When assessing the
mechanism(s) for toxicity, control experiments may be needed

to determine which component of the microplastic is the cause
of toxic effects observed.87 Another challenge, which may also

Table 1. Exposure System Control Measurements

Table 2. Biological Control Measurements
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pose a problem for larger ENM agglomerates, is that there may
be an upper size limit for analytical instruments to quantify the
aerosol size distribution as well as for transport through the
exposure system itself. The size distribution of the microplastic
fraction that reaches the biological test system may vary among
exposure systems and may differ from that of the initial
material.

■ POTENTIAL IN-PROCESS CONTROL
MEASUREMENTS

In addition to the exposure system and incubator positive
control experiment described in Branch 4, the C&E analyses
revealed additional potential in-process control measurements
(Tables 1 and 2). These measurements help to ensure that the
assay system is working as expected by providing quantitative
information about the assay performance and are used to
develop specifications for the allowable ranges for key assay
parameters. For some of the in-process control measurements,
an unexpected result (e.g., the TEER measurements falling
outside of the specification range) can cause the experiment to
be stopped, while for others, such as the gas flow rates, it may
be possible to make changes prior to the biological test system
exposure to allow for the experiment to continue. The in-
process control measurements listed in Tables 1 and 2 cover all
five steps of the generic assay protocol (Figure 1) and also all
branches of the generic C&E diagram (Figure 2). Which in-
process controls are needed to ensure assay reliability will
depend upon the specific protocol. While some of these in-
process control measurements are described in the literature,
such as the incubator negative control, other in-process control
measurements are less consistently used (or reported), such as
the exposure system and incubator positive controls. Thus, one
recommendation for scientists developing methods in this area
is to carefully consider the best way to incorporate the positive

control measurements, because they are critical for ensuring
inter- and intralaboratory comparability.

■ EXAMPLES OF USING C&E DIAGRAMS

C&E analysis can be added to any study and can provide a
quick visual approach for identifying parameters that may be
sources of variability. As a hypothetical example, Figure 9
provides a C&E diagram for a study that includes exposing a
chemical to a 3D tissue model using a flow-through system and
assessing biomarkers, such as barrier integrity, cytotoxicity, and
inflammatory response. While the specific results will vary
depending upon the protocol, it is critical to evaluate the
impact of different parameters on the results for the in-process
control measurements and carefully report these results and
the parameters used when exposing cells to test substances.
Moreover, it is also helpful to include troubleshooting
guidance learned during assay development, when possible.
As an example of how a C&E diagram can help guide

robustness testing, a recent study applied this approach in the
design and evaluation of a cytotoxicity (tetrazolium salt-based
WST-1) assay using a monoculture system (A549 cells) and a
flow-through ALI exposure system (VITROCELL 6/4).88

After conducting a C&E analysis, the impact of five parameters
(exposure duration, humidity, flow rate, the addition of CO2,
and temperature) from branch 2 on the exposure system
negative control cells was evaluated. All of these parameters
were found to potentially impact the cell viability results, and,
for this particular example, several key problematic issues and
potential solutions are provided in Table 3. While the initial
conditions in this exposure system yielded cell viability of
approximately 40%, results for the optimized system were
increased to nearly 90% using a flow rate of 5 mL/min and
were not statistically different from the incubator negative
control.

Figure 9. Example of a complete C&E diagram for a hypothetical study that includes exposing a chemical to a 3D tissue model at ALI using a flow-
through system and assessing biomarkers such as barrier integrity (using a voltohmmeter), cytotoxicity (MTS assay), and inflammatory response
(using ELISA and a plate reader) relative to a positive control.
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■ STATISTICAL CONSIDERATIONS FOR
EXPERIMENTAL PLANNING AND
INTERPRETATION

Given the broad range of in vitro inhalation toxicity assays and
purposes for which these assays are performed, it is not
possible to provide definitive guidance on the number of
technical replicates (measurements made within a single
experiment) and repetitions (performing the same experiment
multiple times such as on different days) for the experiments;
additionally, it may be important to perform robustness testing
to evaluate a similar test sample with cells from different
donors for primary cells or with different cell passage numbers.
In general, repeated testing is critical to understand day-to-day
variability among experiments. The number of repetitions
needed depends upon the precision of the assay results, how
close the results are to relevant thresholds (e.g., the results
from a statistical test to the selected α value), and the overall
goal of the experiment. For terms such as the percentage
depletion that are calculated using several variables, it is

important that the uncertainties in each variable (e.g.,
incubator negative control, blank control [no cells or chemicals
added] and cells exposed to the test chemicals) are
incorporated to understand the cumulative uncertainty using
a propagation of error frequentist approach or Bayesian
analysis.24,88

■ PUTTING IT INTO PRACTICE: IMPLEMENTATION
OF IN VITRO INHALATION METHODS

In order for regulatory agencies to adopt methods as part of
their hazard and risk assessment process, they need to be
applied in a way that will allow for both scientific reliability and
quality to be assured. This can be achieved through the use of
C&E analysis in conjunction with Good Laboratory Practices
(GLP). Furthermore, the application of the findability,
accessibility, interoperability, and reusability (FAIR) princi-
ples89 can help enable wider use of generated data.
After identification of potential sources of variability through

C&E analysis, key in-process control measurements and their

Table 3. Examples of Troubleshooting Topics for the Cytotoxicity Method Described in Leibrock et al.88 and Potential
Solutions
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specifications should be incorporated into a test method to
ensure consistent assay performance. Through GLP, these in-
process control measurements and specifications are moni-
tored and recorded to support the reliable performance of the
assay. GLP help with planning, performing, monitoring,
recording, archiving, and reporting of data in studies intended
for regulatory purposes and can also assist in tracking problems
with the methods that may arise. For instance, if a test method
suddenly stops working properly with some in-process control
measurements falling outside of the specifications, proper
documentation could allow for identifying the problem source.
Incorporation of C&E analysis, GLP, and FAIR principles will
ensure that protocols are well documented, robust methods are
used, and the generated data are accessible for use by machines
to support broader usage of the data.

■ CONCLUSION
This manuscript describes how C&E analysis can help
minimize the variability of ALI assays to assess the toxicity
of inhaled materials in vitro. Although ALI-based assays can
vary substantially depending on the study requirements, there
are some components that are shared among assays. In this
manuscript, parameters are identified that are generally
applicable to in vitro inhalation assays and can lead to
variability in the overall outcome of the study. C&E analysis
provides a means to thoroughly document potential sources of
experimental variability in a visual way that can be easily shared
and understood. Together with the usage of GLP and future
standardization, C&E analysis of ALI-based assays could
facilitate regulatory testing. In-process control measurements
have been described that cover each branch of the C&E
diagram and that can help identify sources of assay variability
and maximize overall robustness of in vitro inhalation toxicity
studies.
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