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Abstract—In Industrial Internet of Things (IIoT), the infor-
mation and communication technologies powered by IoT can
greatly improve the efficiency and timeliness of information
exchange between different industrial components. Likewise,
machine learning techniques such as reinforcement learning
can benefit from the massive amounts of data collected via
IoT to successfully automate industrial monitoring and control
processes. Nonetheless, training machine learning models, such as
reinforcement learning models, require a significant investment
of time, and a trained model can only work on a specific system
in a specific environment. When the application scenario of
reinforcement learning changes, or the application environment
changes, the reinforcement learning model needs to be retrained.
Thus, it is critical to design techniques that can reduce the
overhead of retraining reinforcement learning models, enabling
them adapt to constantly changing environments. In this paper,
toward improving the performance of learning models in dynamic
IIoT, we propose an online continuous reinforcement learning
strategy. In our process, when the retraining condition is trig-
gered, our online continuous learning strategy will re-engage the
training process and update the well-trained model. To evaluate
the performance of our proposed approach, we categorize the
entire application space for applying reinforcement learning to
IIoT systems into four scenarios, namely, non-continuous learning
without learning model sharing, non-continuous learning with
learning model sharing, continuous learning without learning
model sharing, and continuous learning without learning model
sharing. For each scenario, we design a Q-learning based re-
inforcement learning algorithm. Via extensive evaluation, our
results show that the online continuous reinforcement learning
approach that we propose can significantly reduce the overhead
of retraining the learning model, enabling the learning algorithm
to quickly adapt to a changing environment.

Keywords-Industrial Internet of Things, Online continuous
learning, Reinforcement learning

I. INTRODUCTION

The Industrial Internet of Things (IIoT), also known as
Industry 4.0, is considered to be one of the most important
technological advancements in the industrial field [1]. The IIoT
integrates [oT technologies into industrial manufacturing and
production processes to improve industrial monitoring, control,
and automation. As a typical cyber-physical system (CPS),
the IIoT system consists of cyber subsystem and physical
subsystem. The cyber subsystem consists of control, network-
ing, and computing components, which cooperate to collect,
transfer, and analyze the data collected from the system to
realize the control loops of manufacturing and production. The

physical subsystem consists of the control objects in physical
factories and plants, such as the continuous stirred tank reactor
for chemical reaction management [2], [3]. To achieve high
connectivity, reliability, efficiency, and intelligence in factories
and manufacturing plants, advanced data analysis techniques
such as machine learning are used to process the massive
amounts of data collected by sensors.

Machine learning techniques have been widely adopted to
assist in data analysis for a variety of applications [4]. These
algorithms can learn and improve from experience without
explicit programming. Generally speaking, machine learning
techniques can be divided into three types: supervised machine
learning, unsupervised machine learning, and reinforcement
learning. Supervised machine learning leverages labeled data
for training, and uses the trained model to label unlabeled data.
Unsupervised machine learning can be used to cluster and
correlate unlabeled data, discovering hidden patterns associ-
ated with the data. Reinforcement machine learning can make
decisions based on interactions with the environment over
time by choosing actions based on the system’s state and the
rewards that are associated with the actions that are available
to the system. In this study, we use reinforcement learning
as an example to demonstrate its ability for controlling a
typical industrial manufacturing process. Our design can be
generally applied to other machine learning techniques and
IIoT scenarios.

Applying machine learning to the IIoT system has enabled
a variety of benefits and improvements in industrial manufac-
turing processes, such as enabling IIoT systems to adapt and
learn from new environments, detecting and correcting system
errors based on historical data, and predicting future events
based on pre-trained models. Nonetheless, applying machine
learning to IIoT environments also raises some challenges. The
IIoT system is dynamic. It is difficult to keep the model up-to-
date based on the huge volume of dynamic data collected from
the system. To achieve frequent model updates, traditional
machine learning needs more computation power and longer
training times. Thus, how to reduce the training overhead
without affecting the accuracy of machine learning remains
an unsolved issue.

To address this problem, in this paper we design an online
continuous machine learning technique to make the reinforce-
ment learning algorithm adapt to the dynamically changing
IIoT environment. By sharing some learned models from



similar or identical systems, the convergence time of the new
system can be largely reduced. Online continuous learning is a
specific machine learning strategy that is capable of handling
newly arriving sequential data. It is intended for learning
process based on the latest arrived data and updating the model
rapidly so that the learned model can be adapted to dynamic
IIoT systems. Compared to offline continuous learning, online
continuous learning is efficient in both time and space costs.
Meanwhile, online continuous learning is also suitable for real-
time monitoring and control in IIoT systems.
To summarize, we make the following contributions:

o Framework: We propose a general framework to im-
plement online continuous reinforcement learning in a
typical IIoT environment [2]. In detail, we categorize
the entire problem space into four scenarios, namely:
scenario A (non-continuous learning without learning
model sharing), scenario B (non-continuous learning with
learning model sharing), scenario C (continuous learning
without learning model sharing), and scenario D (contin-
uous learning without learning model sharing).

¢ Online Reinforcement Learning: We use scenario A as
the traditional offline discontinuous benchmark scenario,
and design an online continuous learning approach for
scenarios B, C, and D, respectively. For scenario A, we
design the benchmark Q-learning algorithm to make it
suitable for our IIoT environment. For scenario B, we
leverage the learning model (i.e., Q-table) shared from
another physical system to reduce the convergence time.
For scenario C, we design a re-trigger mechanism to
reengage the learning process so that the system can adapt
to the dynamic IIoT environment. For scenario D, we use
both the re-trigger strategy and learning model sharing
to make the system converge faster in a dynamic IIoT
environment.

« Extensive Validation: We conduct extensive perfor-
mance evaluations to validate the effectiveness of our
online continuous learning approach on a representative
IIoT system. Our experimental results confirm the effec-
tiveness of the online continuous reinforcement learning
algorithms between the same, similar, and different IIoT
systems.

The remainder of this paper is organized as follows: In
Section II, we briefly review the three types of machine
learning techniques, online continuous learning, and an IIoT
simulation environment. In Section III, we provide literature
reviews relevant to our study. In Section IV, we present our
approach in detail. In Section V, we present our experimental
results to validate the efficacy of our approach. Finally, we
conclude the paper in Section VI.

II. PRELIMINARY

In this section, we first provide an overview of the categories
of machine learning. Then, we present online continuous
learning. Finally, we introduce an IIoT environment that we
use to conduct experiments.

A. Machine Learning Techniques

Generally speaking, machine learning techniques can be
categorized into three types: supervised learning, unsupervised
learning, and reinforcement learning. Supervised learning
tends to build a function that maps inputs to outputs based
on labeled input/output training pairs. It can be used for a
variety of purposes, such as classification, regression, and
others. Unsupervised learning is a technique that is used to
group similar components and identifying patterns inside the
data. It is used to extract the structure from the datasets, which
are not classified or not labeled. Unsupervised learning can be
used to address problems such as clustering and association.

Reinforcement learning is a machine learning technique
based on the Markov decision process (MDP). Reinforce-
ment learning can be a model-less machine learning method,
which can be considered as the computation approach of
automation, and it is a goal-directed learning and decision
process. The difference between reinforcement learning and
the other machine learning techniques is that it can interact
with the environment without the need to conduct the labeling
or to build a model like the traditional supervised machine
learning [5]. Reinforcement learning defines a framework,
which can enable interaction between the learning agent and
its environment. The system state, action, and reward are
key components in reinforcement learning. The system state
represents the observation of the environment. Based on the
current state, the agent may take an action based on learned
interactions with the environment. Based on the action, a
reward will be given by the environment to the agent to
determine whether the action it has taken was good or bad.

B. Online Continuous Machine Learning

For model training and updates, a given machine learning
scheme can be operated either offline or online. Taking of-
fline supervised learning as an example, all datasets should
be available to the model during the training process. The
model is not usable unless the training process is completed.
However, in online continuous learning, the full data is not
available to the model initially. The algorithm will process the
data in sequential order. The model will continue updating
while the data is continuously arriving, with snapshots of
trained models being applied for use. One benefit of online
continuous learning is that it can maximize accuracy and
keep the predicted model constantly up to date. As the data
is always updated and the data size can be small, model
retraining can be highly efficient. Thus, online continuous
machine learning is useful for handling the learning process in
large-scale machine learning tasks on dynamic systems such
as IIoT systems.

C. Wireless Cyber-Physical Simulator (WCPS)

We use WCPS as our IIoT simulation environment to
evaluate the efficacy of our online reinforcement learning ap-



proach for IIoT systems!. WCPS is an open-source simulation
environment for wireless control systems [6], which consists
of Simulink and TinyOS Simulator (TOSSIM) wireless sensor
simulator. The WCPS can simulate the dynamic changes of the
physical system and the network, as well as their interactions.

Fig. 1 illustrates the architecture of the WCPS system [6].
From the figure, we can see that the plant model generates
sensor data and uses a Simulink cross-platform function to
call TOSSIM [7]. The sensing data are then passed into the
sensors in TOSSIM through the Simulink function call. After
that, the TOSSIM simulates the network environment based
on the network conditions (packet loss rate, etc.). The results
of the simulation (e.g., whether a packet is lost or not) will
be transmitted back to Simulink through the Python interface.
The packet collector extracts the packet loss information from
the message pool. The packet delivery information, such as
packet loss and latency, and the sensing data will be sent
to the data block first and then ultimately transmitted to the
controller. As we can see in Fig. 1, the reference signal is
regarded as a control signal input by the user to the controller.
The network scheduling table is calculated by the scheduling
module in the network manager and deployed to the time-
division multiple access (TDMA) Medium Access Control
(MAC) layer. The received signal strength indicator (RSSI)
and noise are provided to TOSSIM to assist in the simulation
of realistic networks.

As shown in Fig. 2, the Interfacing Block extracts delay and
loss information from TOSSIM messages, and the Data Block
determines what data will be used for discrete control during
each sampling period. It is worth noting that the architecture
of WCPS provides the flexibility to incorporate different struc-
tural models and implement alternative scheduling-control
approaches.

III. RELATED WORK

In this section, we review some relevant research efforts
related to applying online continuous learning to IIoT systems.
First, we review some existing works on IIoT. Then, we
introduce some existing machine learning efforts applied to
IIoT. Finally, we discuss some works which focused on online
continuous learning techniques and their applications in IIoT
and other CPS.

Generally speaking, IIoT is a way of leveraging IoT tech-
niques in industrial manufacturing operations. Specifically,
applying IoT into industrial systems can improve the pro-
ductivity, efficiency, safety, and intelligence of IIoT system
operations [1], [8], [9]. Most existing research efforts related
to IIoT have focused on the application of IIoT, the design
of IoT architectures, and the optimization of IloT perfor-
mance. For the application of IIoT, a number of research
efforts have leveraged the data generated by sensors to assist
in the operation of the industrial manufacturing processes.

ICertain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.
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For example, Zhang et al. [10] conducted experiments to
validate that the implementation of IIoT could improve the
performance of wind farms. Likewise, Zhou et al. [11] studied
an IIoT system to monitor an underground coal mine. Sklyar
and Kharchenko [12] developed a framework to use assurance
case methodology for IIoT.

Regarding the design of IIoT architectures, there have been
several recent efforts. For example, Xiong et al. [13] defined
a security framework for the IIoT environment with a self-
designed information upload strategy and encryption method.
Likewise, Hatzivasilis et al. [14] designed a novel IIoT pro-
tocol to improve the efficiency and availability of the whole
system. Wang et al. [15] designed an IIoT framework to save
on energy consumption. For the optimization of IIoT system,
Dou et al. [16] leveraged edge computing to optimize video
transmission in IIoT. Liu et al. [17] designed an ITCFN based
on Simulated Annealing Particle Swarm Optimization with
Load Balancing (SAPSO-LB) algorithm to reduce the data
processing latency in the IIoT system. Likewise, Li er al. [18]
leveraged edge computing in an Software Defined Network
(SDN)-Based IIoT system to improve data transmission.

Growing interest has also been demonstrated in applying



machine learning in IIoT systems. Most existing research
efforts have focused on using machine learning as an advanced
data analysis tool to assist in the operation of IIoT systems.
For instance, some efforts have been made to use machine
learning to perform data pre-processing for advanced indus-
trial operations. Specifically, Lele [19] leveraged unsupervised
machine learning for obtaining principle components of data
generated by an oil well. Kanawaday and Sane [20] used
supervised machine learning to predict the necessary mainte-
nance of the slitting machine. Shah and Tiwari [21] leveraged
machine learning to detect anomalous behavior of machines
in IIoT environments. Yang et al. [22] designed a machine
learning framework by using mobile edge computing to dis-
tribute machine learning tasks in IIoT. Arachchige et al. [23]
leveraged a PriModChain framework to enforce privacy and
trustworthiness on IIoT data by combining differential privacy,
federated machine learning, Ethereum blockchain, and smart
contracts.

In addition to the offline learning in IIoT, online continuous
learning techniques have been used to assist IIoT systems and
other CPS. Most of efforts have leveraged distributed machine
learning and online continuous learning techniques to improve
system performance. For example, Liu et al. [24] leveraged
edge computing and deep reinforcement learning to improve
the performance of the investigated system. Chen et al. [25]
investigated online learning assisted edge computing to reduce
training time.

Compared with these prior works, in this paper, we do not
focus on using edge computing to assist online continuous
learning to improve the performance of the system. Instead, we
focus on designing the algorithm to re-engage the learning pro-
cess of reinforcement learning when the environment changes
to handle dynamic events. Further, we investigate how to share
the reinforcement learning models in our online continuous
learning approach so that the learning convergence speed can
be improved.

IV. SYSTEM APPROACH

In this section, we present our approach in detail.

A. Overview

In this paper, we propose our online continuous learning
approach to enable reinforcement learning to adapt to the
dynamic environments of IIoT systems. Generally speak-
ing, IoT systems are highly dynamic, constantly changing
over time. Nonetheless, a well-trained reinforcement learning
model can only be applied to a specific environment. Once
the environment changes, we generally need to retrain the
reinforcement learning model from scratch. The training pro-
cess of reinforcement learning not only consumes a significant
amount of time, but also requires high computing capabilities.
Therefore, in order to enable the reinforcement learning model
to adapt to the constantly changing IIoT environment, we
propose an online continuous learning approach to reduce
the cost of retraining reinforcement learning in IloT. We take
the Q-learning algorithm as an example to illustrate how our

proposed approach continuously updates the learning model
and causes the learning model converge quickly.

To illustrate how to apply online continuous learning in
IIoT, we first design a framework that categorizes the IIoT
problem space into four scenarios. Our framework considers
two orthogonal dimensions. The first is whether the learning
model will be shared or not. The second is whether the
learning model will be updated or not. Based on these two
dimensions, we present the problem space in Fig. 3, which
consists of four scenarios:

o Scenario A: Non-Continuous learning without Learning
Model Sharing. In this scenario, we consider that the
learning model (e.g., Q-table) will not be shared, and no
continuous learning will be implemented.

e Scenario B: Non-Continuous Learning with Learning
Model Sharing. In this scenario, we consider that the
learning model (e.g., Q-table) will be shared between
systems, but no continuous learning will be implemented.

e Scenario C: Continuous Learning without Learning
Model Sharing. In this scenario, we consider that the
learning model (e.g., Q-table) will not be shared between
systems, but continuous learning will be implemented.

e Scenario D: Continuous Learning with Learning Model
Sharing. In this scenario, we consider that the learning
model (e.g., Q-table) will be shared between systems, and
continuous learning will be implemented.

Learning Type

continuous learning Scenario C | ScenarioD |
non-continuous learning | Scenario A | ScenarioB |
i i Q-table Sharing
non-sharing sharing

Fig. 3. Problem Space

In the following, we will describe the four scenarios and
our proposed online continuous learning algorithms for each
scenario in detail.

B. Scenario A: Non-Continuous learning without Learning
Model Sharing

Before introducing the algorithm designed for this scenario,
we briefly introduce the basic concept of Q-learning [26].
In general, Q-learning is an off-policy reinforcement learning
technique that is designed to select the action to take based on
the current system state and the reward function. The reason
why it is called “off-policy” reinforcement learning is that it
can take actions outside the current policy. For example, the
agent can take random actions to receive rewards.

In the Q-learning algorithm, there are two important con-
cepts: exploration rate and exploitation rate. Exploration is a



strategy based on the assumption that the agent has chosen a
non-optimal action under the current state and gained more
knowledge about the environment. This knowledge makes it
possible to ignore the local optimal policy and instead reach
the global optimal policy. Exploitation is a strategy that selects
the best action based only upon the current Q-value of the
state-action pair. During the training phase, the exploration
rate decreases as the number of training steps increases, which
means that the model is more likely to not update the Q-value
in its Q-table after a certain number of Q-table updates.

The purpose of the baseline Q-learning algorithm is to
demonstrate that the reinforcement learning algorithm is ef-
fective under IIoT environments. The detailed procedure is
described in Algorithm 1. In this algorithm, we first initialize
the value of all entries in the Q-table to 0. The variable «
represents the learning rate in the Q-learning algorithm. When
performing the initialization, we set its value to 0.5, which
represents a balance between exploration and exploitation
rates. The exploration rate defines the possibility that the
model will update the Q-value, while the exploiting rate
defines the possibility that the model will use the existing
Q-value. After the initialization, we set the variable k, which
will increase during the training period. When k£ increases, the
learning rate « decreases. If o approaches 0, the Q-table will
no longer be updated. Also, system_working_time determines
the total time that the system remains operational. The variable
diff represents the disparity between the current controlled
variable (e.g., temperature) and control objective/target (e.g.,
temperature) in the IloT system. The variable diffmean rep-
resents the mean disparity between the current controlled
variable (e.g., temperature) and control objective/target (e.g.,
temperature) in the IIoT system within one iteration. The vari-
able sum represents the summation of the disparity between
the current controlled variable (e.g., temperature) and control
objective/target (e.g., temperature). The variable windowsize
represents how many controlled variables can be received
during a single iteration of the training process. Based on the
disparity between the current controlled variable and control
objective/target, we manually divide the range of control
objectives into several states. The last variable to initialize
is the control objective/target, which the IIoT system needs to
reach. When the training completes, the algorithm will save
the Q-table, which can be shared with other IIoT systems. The
total time complexity of this algorithm is O(n), where n is
the number of training epochs.

C. Scenario B: Non-Continuous Learning with Learning
Model Sharing

In this case, we use a trained model from the same type
of system as the starting point in order to improve the
convergence speed of learning process. The basic policy for
sharing the learning model (e.g., Q-table) is that only the
learning model shared from the same or similar system can
improve the learning convergence of the new system. It is
worth noting that if the learning model (e.g., Q-table) is from
a different physical system, convergence of the system will
actually be degraded. The detailed results can be found in
Section V.

Algorithm 1: Algorithm for Scenario A

Result: Q(s,a)
1 Initialization: Q(s,a) < 0, a:m, k=0, diff=0, states, target,

sum=0, diffmean=0, windowsize, i=0, system_working_time

2 while iteration < system_working_time do

3 k++

4 iteration++

5 while i < windowsize do

6 diff = abs(controlled_variable; - target)
7 sum += diff

8 i++

9 end

10 diffmean = sum / windowsize

1 sum = 0

12 i=0

13 update: Q(s,a) <— (1-a)*Q(s,a)+a*(1-diffmean)
14 Save updated Q-table

15 end

Algorithm 2: Algorithm for Scenario B
Result: Q(s,a)
1 Initialization: Q(s,a) <— another system, a:m, k=0, diff=0,
states, target, sum=0, diffmean=0, windowsize, i=0,
system_working_time

2 while iteration < system_working_time do

3 k++

4 iteration++

5 while i < windowsize do

6 diff = abs(controlled_variable; - target)
7 sum += diff

8 i++

9 end

10 diffmean = sum / windowsize

11 sum = 0

12 i=0

13 update: Q(s,a) <— (1-a)*Q(s,a)+a*(1-diffmean)
14 Save updated Q-table

15 end

The procedure for scenario B is detailed in Algorithm 2.
In Algorithm 2, as the preliminary version of Q-table is
predetermined from another IIoT system, it will be loaded in
the beginning. Similar to Algorithm 1, the overall complexity
is O(n), where n is the number of training epochs.

D. Scenario C: Continuous Learning without Learning Model
Sharing

In scenario C, we consider that the learning model can
be dynamically updated. Consider that the environment (e.g.,
control objective, network conditions) is changed, and we need
to re-engage the learning progress by resetting the exploration
rate. The online Q-learning is targeted to re-trigger the learn-
ing process after the training environment has significantly
changed [27].

The detailed procedure of the learning process for sce-
nario C is described in Algorithm 3. In this algorithm, we
continuously compute the difference between the controlled
variable and objective/target. The variable flag represents
whether the system has reached the convergence state or not.
The threshold d represents the re-trigger point determined by
the difference between controlled_variable and target. The
threshold « represents the checkpoint for whether the system is
at convergence or not. If the IIoT environment changes, there



will be a significant change between the controlled variable
and objective/target (i.e., temperature). When this occurs and
the system has already reached the convergence state, we will
re-trigger the learning process by setting k to 0. Meanwhile,
the learning rate of o will return to 0.5. The overall complexity
is of this algorithm is O(n), where n is the number of training
epochs.

Algorithm 3: Algorithm for Scenario C
Result: Q(s,a)
1 Initialization: Q(s,a) < 0, a=ﬁ, k=0, diff=0, states, target,
sum=0, diffmean=0, windowsize, i=0, flag=0, system_working_time
2 while iteration < system_working_time do

3 k++

4 iteration++

5 while i < windowsize do

6 diff = abs(controlled_variable; - target)

7 sum += diff

8 i++

9 end

10 diffmean = sum / windowsize

11 sum = 0

12 i=0

13 if diffmean <= thresholdy; && o <= threshold, then
14 | flag=1

15 end

16 if diffmean > thresholdy; && flag == 1 then
17 k=0

18 flag=0

19 end

20 update: Q(s,a) <— (1-a)*Q(s,a)+a*(1-diffmean)
21 Save updated Q-table

22 end

E. Scenario D: Continuous Learning with Learning Model
Sharing

In scenario D, we consider the learning model will be shared
between systems and also be updated when the system state
changes. To this end, we design Algorithm 4. Compared to
Algorithm 3, we consider the additional factor of learning
models being shared from another existing system, which will
be loaded directly in the beginning. By doing this, the learning
time can be largely reduced. Similar to other algorithms, the
overall complexity of Algorithm 4 is O(n), where n is the
number of training epochs.

V. PERFORMANCE EVALUATION

In this section, we provide the performance evaluation
results, which demonstrate the efficacy of four algorithms
designed for the four scenarios defined in Section IV. In the
following, we first present the methodology and then introduce
and discuss the evaluation results.

A. Methodology

In all four scenarios, we use a representative process control
system called the Continuous Stirred Tank Reactor (CSTR)
system [28], which is a fluid temperature control system. In
the CSTR system, the objective is to control the temperature
of the liquid in the tank by modifying the steam flow rate.
As it is a representative system used in the industrial field,

Algorithm 4: Algorithm for Scenario D
Result: Q(s,a)

1 Initialization: Q(s,a) <— another system, a:m, k=0, diff=0,
states, target, sum=0, diffmean=0, windowsize, i=0, flag=0,
system_working_time

2 while iteration < system_working_time do

3 k++

4 iteration++

5 while i < windowsize do

6 diff = abs(controlled_variable; - target)

7 sum += diff

8 i++

9 end

10 diffmean = sum / windowsize

11 sum = 0

12 i=0

13 if diffmean <= threshold; & & o <= threshold, then
14 | flag=1

15 end

16 if diffimean > threshold, && flag == 1 then
17 | k=0

18 end

19 update: Q(s,a) <+ (1-a)*Q(s,a)+a*(1-diffmean)
20 Save updated Q-table

21 end
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we leverage this system as our implementation in WCPS to
validate our approach.

To illustrate how the system works, Fig. 4 shows the
architecture of the system. The sensors in the plant (CSTR)
first send data through the WCPS module and transmit them to
the Kalman filter [29]. With the Kalman filter, we can observe
the condition of the network and estimate the state based on
the system input, which is the sensing data. The state observer
of the Kalman filter predicts the next system state based on
the previous one. It performs the update by comparing its
predicted state value with the actual state value. If the network
has any problem, such as packet loss, the observer only
outputs the predicted value. The model prediction controller
(MPC) manages the commands and modifies them based on
the system estimation, and transmits them to the plant. The
reinforcement learning model takes the estimated system input
state and adjusts the control system and networking system
constantly.

In our simulation, the controllable objectives of the CSTR
system are the target temperature, steam flow rate, and sam-
pling rate. The target temperature refers to the temperature of
the liquid in the water tank that should be reached. Steam flow
represents the speed of hot steam flowing in the heating tube.



Since our CSTR system increases the temperature of the liquid
in the reaction container via the heat exchange between the
heating tube and the liquid in the reaction container, the steam
flow will affect the heat exchange rate and will determine
the change in the temperature of the reaction container. The
sampling rate is the sampling frequency of the sensor. A
higher sampling rate can provide more accurate temperature
information but more data needs to be transmitted. With the
increase of training time, the temperature of the liquid in
the water tank gradually approaches the target temperature. If
the difference between the target temperature and the current
temperature is within 0.5 °C, we consider the control system
has achieved the objective and remains stable.

Recall that in scenario B, we consider the policy to deter-
mine what kind of Q-table can be shared. We will evaluate
the effectiveness of such a policy. To this end, we consider
another IIoT system, called the DC Motor system [30], as the
source from which to share the Q-table with the CSTR system.
Note that the control objective of the DC motor system is the
voltage and the target speed measured by rotations per minute
(rpm). The system needs to control the voltage to keep the
speed of the motor close to the target speed.

The software that we used in the experiment is MATLAB
r2020a and Docker. The software ran on a PC with Windows
10 version 2004. The hardware in this PC is an Intel i7-8700
CPU and 16 GB DDR4 RAM.

B. Results

In the following, we show the performance evaluation
results of four scenarios, which correspond to the four algo-
rithms detailed above.

1) Scenario A: Non-Continuous learning without Learning
Model Sharing: To evaluate the efficacy of Algorithm 1, we
set the sampling rate to ten samples per second, meaning that
the sampling rate is relatively high and the network conditions
in this scenario are good. The state that we define in this
scenario is based on the the range from 0°C to 0.1°C as
state 1, 0.1°C to 0.3°C as state 2, 0.3°C to 0.5°C as state
3, 0.5°C to 2°C as state 4, 2°C to 4°C as state 5, 4°C to
6°C as state 6, 6°C to 8°C as state 7, and greater than
8°C as state 8. Based on the different states, the CSTR
system needs to adjust its steam flow rate to achieve the target
temperature. As shown in Fig. 5, the model updates every
4s. We use different colors in the same curve to represent
each update time period. The green dash in this figure is
the target temperature, representing the target that the CSTR
system needs to achieve. The multi-colored curve shown in the
figure represents the current temperature in the CSTR system.
Also, there is some fluctuation in the curve, meaning that the
system is still learning from the environment. We can see
that the curve achieves convergence in 68s, confirming that
Algorithm 1 is effective for scenario A. Note that in all cases,
the convergence means that the difference between the target
temperature and the current temperature reaches 0.1 °C.

2) Scenario B: Non-Continuous Learning with Learning
Model Sharing: In scenario B, we investigate how well
offline non-continuous learning performs with different types
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Fig. 5. Non-continuous Learning without Learning Model Sharing

of model sharing: same system, similar system, and different
physical systems. This scenario evaluates Algorithm 2.

o Learning model shared between same physical sys-
tems: In this case, we evaluate the efficacy of Algorithm 2
to deal with non-continuous learning with learning model
sharing. To do so, we use two 8-state CSTR systems
to conduct learning model (i.e., Q-table) sharing. The
sampling rate is set to 10 samples per second, meaning
that the network condition is good. As shown in Fig. 6,
the model is updated every 4 s, each of which corresponds
to a different color in the curve. The green dash represents
the target temperature, while the curve represents the
current temperature in the CSTR system. From the figure,
we can see that the curve achieves convergence in 16s,
confirming that sharing the learning model (i.e., Q-table)
can improve performance significantly by reducing the
time to reach convergence.

o Learning model shared between similar physical sys-
tems: In this case, to build a similar physical system, we
modify the state definition in the 8-state CSTR system
and change it to a 16 state CSTR system. For example,
in the 8-state CSTR system, we define the temperature
range from 0°C to 0.1°C as state 1. In the 16-state
CSTR system, we define the temperature range from
0°C to 0.05°C as state 1. In this scenario, we first
ensure that Algorithm 2 in the 16 state CSTR system
can work effectively, achieving baseline performance to
measure improvement. From Fig. 7, the system is under a
good network condition, where the green dash represents
the target temperature. The model update period is set
to 4s, each of which corresponds to a different color
in the curve. The curve represents the real temperature
in the CSTR system. We can see from the figure that
the curve archives convergence in 140s, confirming that
Algorithm 2 is effective in the 16 state CSTR system.
Next, we load the Q-table from the 8-state CSTR system
to the 16-state CSTR system with some modifications.
For example, state 1 and state 2 of the Q-table in the
16-state CSTR system remains the same as state 1 of
the Q-table in the 8-state CSTR system. The result is
shown in Fig. 8. We can observe that the curve achieves
convergence in 16s, confirming that Algorithm 2 can



improve performance by reducing the time to reach
convergence, even when the shared model is of a different
scale.

o Learning model shared between different physical
systems: In this case, we use a DC Motor system to
generate an 8-state Q-table and share it with an 8-state
CSTR system to validate its performance. By comparing
Fig. 5 to Fig. 9, we can see that under the same network
conditions, the Q-table sharing between different physical
systems has a negative impact on the system performance.
We can see in Fig. 5 that the system achieves convergence
in 68s. In Fig. 9, the system takes 158s to achieve
convergence. The results from both figures confirm that
the learning model shared between different physical
systems can deteriorate the learning effectiveness.
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3) Scenario C: Continuous Learning without Learning
Model Sharing: Scenarios A and B do not consider updates to
the learning model (i.e., Q-table) over time, otherwise denoted
as continuous learning. When the environment (e.g., control
objectives, network conditions) changes, we need to re-engage
the learning process by resetting the learning rate to rapidly
return the system performance to a desirable level. To simulate
environment dynamics, we change the network conditions
from good to bad.
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As shown in Fig. 10, the model updates every 4s and
represents in the curve in different colors. The sampling rate
is reduced from 10 samples per second to 1 sample per second
at time 80 s, which means the network condition changes from
good to bad at time 80s. In addition, the target temperature
will change from 27°C to 35°C at the same time (80s).
Based on Algorithm 3, when the difference between the target
temperature and the current temperature exceeds the threshold
of 0.5 °C, the learning process is re-triggered. From the figure,
we can observe that Algorithm 3 can successfully re-trigger
the learning process when the environment changes. When the
network is under good condition, the convergence time is at
48 s. When the network condition is bad, the convergence time
is at 76s.

4) Scenario D: Continuous Learning with Learning Model
Sharing: In scenario D, we investigate the performance of
online continuous learning in combination with model (i.e.,
Q-table) sharing, otherwise denoted as Algorithm 4, when
sharing occurs between the same IloT systems. We use two
8-state CSTR system to conduct the Q-table sharing. The
sampling rate is set from 10 samples per second to 1 sample
per second, meaning that the network condition is getting
worse. The target temperature is also changing, starting at
27°C and changing to 35 °C, then 17°C, and finally 23 °C.
The environment changes at 40s, 80s, and 120s. As shown
in Fig. 11, the model is updated every 4s, each of which
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corresponds to a different color in the curve. The green dash
represents the target temperature. The curve represents the
current temperature in the CSTR system. We can see that,
from time period Os to 80s, the network condition is good,
and the learning model (i.e., Q-table) sharing is effective
during this time period. From period (0 to 40s) and (40 to
80s) the system achieves convergence in 12s. From time
period (80 to 120s), the network condition is getting worse,
the convergence is 28s. During the interval (120 to 160s),
the network condition is bad and the convergence time is at
36s. Even under this situation, the convergence time is still
better than Algorithm 1 in Fig. 5, which needs 68 s to achieve
convergence. Also, at times 40s, 80s, and 120s, the learning
process is successfully re-triggered. Therefore, we confirm that
Algorithm 4 is effective.

VI. FINAL REMARKS

In this paper, we proposed a general framework to apply
online continuous learning in IIoT. We categorized the problem
of applying reinforcement learning in IIoT systems into four
scenarios: scenario A (non-continuous learning without learn-
ing model sharing), scenario B (non-continuous learning with
learning model sharing), scenario C (continuous learning with-
out learning model sharing), and scenario D (continuous learn-
ing with learning model sharing). We used scenario A as the
traditional discontinuous benchmark scenario, and designed an
online continuous learning approach for scenarios B, and D.
To validate the effectiveness of our approach, we applied our

online continuous learning approach on a representative IloT
system. Our experimental results demonstrated that, compared
to the existing discontinuous approaches, our proposed online
continuous learning approach can improve the convergence of
reinforcement learning in dynamic IloT environments, and can
achieve better industrial control performance. Future work is
necessary to improve this research. First, we shall explore the
effectiveness of our proposed approach in other CPS and IIoT
scenarios, and extend our framework to other machine learning
algorithms such as convolutional neural networks (CNNs),
long short-term memory (LSTM), and others. Second, we
shall design a theoretical model to quantify the similarity of
different CPS and IIoT systems so that learning models of
appropriately similar systems can be leveraged to improve the
learning convergence of others.
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