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Abstract
Calculation of thermodynamic phase equilib-
rium is error-prone and can fail both near the
critical point and at very low temperatures
due to the limited precision available in dou-
ble precision arithmetic. Most importantly,
these calculations frequently represent a com-
putational bottleneck. In this work we extend
the “super-ancillary” equation approach devel-
oped for reference multiparameter equations
of state to classical cubic equations of state
(van der Waals, Redlich-Kwong-Soave, Peng-
Robinson). Iterative calculations in double pre-
cision are replaced by non-iterative evaluation
of pre-built Chebyshev expansions constructed
with extended precision arithmetic. Exact so-
lutions for the equation of state constants are
given. The Chebyshev expansions are shown to
reproduce the equation of state values to within
nearly double precision (aside from in the very
near vicinity of the critical point) and are more
than 40 times faster to evaluate than the VLE
calculations from the fastest computational li-
brary. In this way we further expand the do-
mains in which iterative calculations for pure

†Commercial equipment, instruments, or materials
are identified only in order to adequately specify cer-
tain procedures. In no case does such identification im-
ply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it im-
ply that the products identified are necessarily the best
available for the purpose.

fluid phase equilibria may be rendered obsolete.
A C++ header implementing these expansions
(and with no external dependencies) is provided
as supplemental information.

1 Introduction
The cubic equations of state (EOS), although
based on an outdated concept, retain an im-
portant place in engineering practice because of
their robustness, generally accurate predictions,
CPU time savings, and the ease with which pa-
rameters can be determined based on generally
well known fluid constants.

A very frequently needed operation is the
calculation of vapor-liquid equilibrium, which
can only be done iteratively, is rather time-
consuming, and is prone to failure. Analytic
limiting cases for zero temperature and at the
critical point have been derived for the van der
Waals EOS.1 For reference EOS (e.g., those im-
plemented in the REFPROP,2 CoolProp3 and
TREND4 libraries) it is common practice to
provide not only the EOS itself (usually the
Helmholtz energy as a function of tempera-
ture and density), but also “ancillary equa-
tions” that yield good initial values for the va-
por pressure and the equilibrium phase densi-
ties. Recently5 it became possible to generate
“super-ancillary equations” that provide these
data with approximately machine precision so
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that vapor-liquid iterations are no longer re-
quired, resulting in significant speedup. Here
we provide super-ancillary equations for some
of the most popular cubic EOS.

1.1 Vapor–liquid phase equilib-
rium

The conditions for equilibrium between two ho-
mogeneous phases (denoted by ′ and ′′) of a pure
substance are

p(V ′
m, T ) = p(V ′′

m, T )

G′
m = G′′

m

(1)

where p is the pressure, Vm is the molar vol-
ume, T is the temperature, and Gm is the molar
Gibbs energy. This system of equations rep-
resents the equality of temperature, pressure,
and molar Gibbs energy between phases. The
last condition can be written as the residuum
rG ≡ G′′

m −G′
m = 0 with

rG = Ar′′
m − Ar′

m −RT ln

(
V ′′
m

V ′
m

)
+ p′′V ′′

m − p′V ′
m,

(2)
where Ar

m = Am(T, ρ) − Aig
m(T, ρ) denotes the

residual molar Helmholtz energy (Aig
m is the mo-

lar Helmholtz energy of the ideal gas),

Ar
m(Vm, T ) = −

∫ Vm

∞

(
p(Vm, T )−

RT

Vm

)
dVm .

(3)

Similarly, the residuum for pressure reads

rp = p(V ′
m, T )− p(V ′′

m, T ) (4)

and phase equilibrium is achieved when rp and
rG are “close enough” to zero. The trivial so-
lution (V ′

m = V ′′
m) represents a mathematically

valid solution to the system of equations, but
this solution is not generally meaningful.

2 Cubic Equations of State
The oldest cubic equations of state, the van
der Waals equation6,7 and the Redlich–Kwong
equation,8 have only two substance-specific pa-

rameters. Therefore they strictly obey the
corresponding-states principle, and it is possi-
ble to write them with reduced temperatures
and densities in a universal form that applies
to all substances.

The second generation of cubic equations
modifies the temperature dependence of the at-
tractive term, using one or more substance-
specific parameters. The most popular equa-
tions of this type are the Redlich–Kwong–
Soave equation9 and the Peng–Robinson equa-
tion,10,11 which use Pitzer’s “acentric factor” as
the third parameter. Particularly for the Peng–
Robinson equation, however, variants with
more precisely tuned temperature dependences
exist. In the context of this work it should be
noted that all these equations of state can also
be transformed into a universal form. In this
case, however, the reducing parameter for the
temperature is temperature-dependent.

A third class of cubic equations of state uses
one or more additional substance-dependent
parameters to modify the density-dependence
of the attractive term. The oldest of these
is perhaps the Fuller equation.12 More recent
equations are the “generalized cubic equations”,
for instance the Trebble–Bishnoi–Salim equa-
tion13 or the GEOS equation by Geană and Fer-
oiu.14 Such equations can yield superior repre-
sentations of the thermodynamic properties of
fluids. With unlucky combinations of parame-
ters, however, they are more prone to produce
unphysical behavior than simpler cubic equa-
tions of state. This is perhaps the reason why
such equations are not as popular for mixture
calculations as the simpler equations. In the
context of this work it is important to observe
that cubic equations of this third class cannot
be transformed into a universal form.

2.1 The van der Waals Equation
The equation for the pressure6,7 is

p =
RT

Vm − b
− a

V 2
m

. (5)
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with the reduced state variables

ρ̃ =
b

Vm

and T̃ =
RTb

a
=

8

27

T

Tcrit

(6)

this equation becomes

p̃ ≡ pb2

a
=

ρ̃T̃

1− ρ̃
− ρ̃2 . (7)

The corresponding expression for the residual
Helmholtz energy is

Ãr
m ≡ Ar

mb

a
= −T̃ ln(1− ρ̃)− ρ̃ . (8)

At the critical point, the simultaneous solu-
tion of the conditions(

∂p̃

∂ρ̃

)
T̃

= 0 (9)(
∂2p̃

∂ρ̃2

)
T̃

= 0 (10)

yields the critical temperature and critical den-
sity of

T̃crit =
8

27
(11)

ρ̃crit =
1

3
(12)

after rejecting non-physical solutions at zero
temperature. Substitution for pressure yields
p̃crit = 1/27. The critical compressibility factor
is therefore

Zcrit =
p̃crit

ρ̃critT̃crit

=
3

8
(13)

For the three EOS considered here (although
this general form does not apply to all cubic
EOS), the constants a = acα and b can be writ-
ten in a generalized form of

ac = Ωa
R2T 2

crit

pcrit
(14)

b = Ωb
RTcrit

pcrit
(15)

with the general solutions

Ωa =
Zcρ̃crit

T̃crit

Ωb = Zcritρ̃crit

(16)

For the vdW EOS, the values are

Ωa =
27

64
(17)

Ωb =
1

8
(18)

α = 1 (19)

The reduced pressure and the reduced resid-
ual Helmholtz energy therefore do not depend
on substance-specific variables, and this is also
true for the conditions of phase equilibrium. Af-
ter multiplication with b/a, the phase equilib-
rium condition from Eq. (2) can therefore be
written with reduced variables only,

Ãr′′
m − Ãr′

m + T̃ ln

(
ρ̃′′

ρ̃′

)
+ p̃′′

(
1

ρ̃′′
− 1

ρ̃′

)
= 0

(20)

Hence it is possible to compute universal func-
tions for the vapor pressure p̃(T̃ ) as well as the
densities ρ̃′(T̃ ) and ρ̃′′(T̃ ).

For given temperature and pressure, densities
are obtained as solutions of the cubic polyno-
mial

ρ̃3 − ρ̃2 + (T̃ + p̃)ρ̃− p̃ = 0 (21)
and the densities along the spinodal (where
(∂p̃/∂ρ̃)T̃ = 0) for a given reduced tempera-
ture are obtained as the solutions of the cubic
polynomial

− 2ρ̃3 + 4ρ̃2 − 2ρ̃+ T̃ = 0 (22)

in ρ̃ for a given reduced temperature T̃ ; these
solutions may be real or complex, and the real
solutions may be outside the range of validity
of (0, 1) for ρ̃.

2.2 The Redlich–Kwong–Soave
Equation

Soave improved the Redlich–Kwong equation
by introducing a more sophisticated tempera-
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ture dependence of the attraction term,9

p =
RT

Vm − b
− acα(T )

Vm(Vm + b)

with α(T ) =

[
1 + (

2∑
k=0

mkω
k)

(
1−

√
T

Tcrit

)]2
,

(23)

The mk are a set of (universal) numerical
constants, and ω is Pitzer’s acentric factor, a
substance-specific parameter. In analogy to the
previous section, the working equations for the
generation of universal phase equilibrium func-
tions are then

ρ̃ =
b

Vm

and T̃ =
RTb

acα(T )
, (24)

p̃ ≡ pb2

acα(T )
=

ρ̃T̃

1− ρ̃
− ρ̃2

1 + ρ̃
(25)

and

Ãr
m ≡ Ar

mb

acα(T )
= −T̃ ln(1− ρ̃)− ln(1 + ρ̃) ,

(26)

and again Eq. (20) can serve as the equilibrium
condition.

Even though the RKS EOS introduces a third
substance-specific parameter (ω), the equation
of state can be written as a two-parameter equa-
tion. In order to compute the phase equilibrium
for a given temperature T one has to determine
α(T ) first, set up the reduced variables accord-
ing to Eq. (24), solve the universal equilibrium
problem Eq. (20), and convert the solution to
the normal pressure and density units.

In recent years there have been many up-
dates to the α function employed, here we high-
light the works of Neau and co-authors,15,16 the
work of Le Guennec et al.,17,18 and our previous
work.19 The equations developed in this work
do not depend on the α function employed.

Solution of the criticality conditions from
Eq. (9) and Eq. (10) yields the density at the
critical point as

ρ̃crit = −1 +
3
√
2 (27)

= 0.25992104989487316477... (28)

after rejecting complex solutions and non phys-
ical solutions at zero temperature. Python code
for this is in the supporting information. Solv-
ing for the critical temperature in terms of the
critical density via Eq. (9) yields

T̃crit =
ρ̃crit (ρ̃crit − 1)2 (ρ̃crit + 2)

(ρ̃crit + 1)2
(29)

= −6
3
√
2 + 3 + 3 · 2

2
3 (30)

= 0.20267685653535943565 . . . (31)

and the critical pressure is given by

p̃crit =
−8− 5 3

√
2 + 9 · 2 2

3

−2 + 3
√
2

(32)

= 0.017559993780021070047 . . . (33)

Substitution yields Zcrit = 1/3. coefficients can
be given (following Eq. (16), and after cancel-
lation) by the values

Ωb =
3
√
2− 1

3
(34)

= 0.086640349964957721589 . . . (35)

Ωa =
1

9( 3
√
2− 1)

(36)

= 0.42748023354034140439 . . . (37)

Density is obtained from the roots of the cubic
polynomial

ρ̃3 + (T̃ + p̃− 1)ρ̃2 + T̃ ρ̃− p̃ = 0 (38)

and the spinodal densities are obtained from
solutions of the quartic polynomial

ρ̃4 + (−T̃ − 3)ρ̃2 + (2− 2T̃ )ρ̃− T̃ = 0 (39)

2.3 The Peng–Robinson equation
This equation10 has a slightly more complicated
density dependence of the attractive term,

p =
RT

Vm − b
− acα(T )

Vm(Vm + b) + b(Vm − b)
. (40)

The α(T ) function is formally the same as for
the Redlich–Kwong–Soave function, but con-
tains different numerical constants. A later ver-
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sion11 uses an additional mk coefficient. The
definitions of the reduced parameters are the
same as in the previous section (Eq. (24)), and
the same discussion about the range of alpha
functions available also applies.

The working equations for the generation of
universal phase equilibrium functions are

p̃ ≡ pb2

acα(T )
=

ρ̃T̃

1− ρ̃
− ρ̃2

1 + 2ρ̃− ρ̃2
(41)

and

Ãr
m ≡ Ar

mb

acα(T )

= −T̃ ln(1− ρ̃)− 2−3/2 ln

(
1 + (

√
2 + 1)ρ̃

1− (
√
2− 1)ρ̃

)
.

(42)

Solution of the criticality conditions from
Eq. (9) and Eq. (10) yields the density at the
critical point of

ρ̃crit = −1

3
− 2

2
3

3
3
√

4 + 3
√
2
+

3
√
2

3
√

4 + 3
√
2

3

(43)
= 0.25307658654159946227... (44)

after rejecting complex solutions and non phys-
ical solutions at zero temperature. Python code
for this is in the supporting information. Solv-
ing for the critical temperature in terms of the
critical density via Eq. (9) yields

T̃crit =
2ρ̃crit (ρ̃crit − 1)2 (ρ̃crit + 1)

(ρ̃2crit − 2ρ̃crit − 1)
2 (45)

= 0.17014442007035030247... (46)

Following through the analytic solutions for
critical density ρ̃crit and temperature T̃crit yields
solutions for the critical pressure and critical

compressibility factor of

p̃crit = − ρ̃2crit (ρ̃
2
crit + 2ρ̃crit − 1)

(ρ̃2crit − 2ρ̃crit − 1)
2 (47)

= 0.013236567878127214416... (48)

Zcrit = − ρ̃2crit + 2ρ̃crit − 1

2 (ρ̃crit − 1)2 (ρ̃crit + 1)
(49)

= 0.30740130869870384801... (50)

The leading coefficients are given (following
Eq. (16)) by

Ωb = − ρ̃crit (ρ̃
2
crit + 2ρ̃crit − 1)

2 (ρ̃crit − 1)2 (ρ̃crit + 1)
(51)

= 0.077796073903888455972... (52)

Ωa = −(ρ̃2crit − 2ρ̃crit − 1)
2
(ρ̃2crit + 2ρ̃crit − 1)

4 (ρ̃crit − 1)4 (ρ̃crit + 1)2

(53)
= 0.45723552892138218938... (54)

Density is obtained from the cubic polynomial

(T̃+p̃−1)ρ̃3+(−2T̃−3p̃+1)ρ̃2+(p̃−T̃ )ρ̃+p̃ = 0
(55)

and the spinodal densities are obtained from
solutions of

(T̃−2)ρ̃4+(2−4T̃ )ρ̃3+(2T̃+2)ρ̃2+(4T̃−2)ρ̃+T̃ = 0
(56)

2.4 Volume translation
Péneloux et al.20 observed that adding a con-
stant to the volume, e.g., for the Peng–
Robinson equation

p =
RT

Vm + c− b

− acα(T )

(Vm + c)(Vm + c+ b) + b(Vm + c− b)
,

(57)

does not change the vapor pressure, as the
“translation” c cancels in the equilibrium condi-
tion Eq. (2). Consequently, the universal equi-
librium functions for the Peng–Robinson equa-
tion can also be used for the “volume-translated
Peng–Robinson equation” that underlies the
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so-called VTPR group contribution model;21,22

one merely has to add the volume translation
at the end of the calculation. Volume transla-
tion of this kind is not without its challenges
as some properties are unevenly shifted by the
volume translation.23,24

3 Super-ancillary equa-
tions

3.1 Robust VLE algorithm
As we note below, there are many algorithms in
use to solve the phase equilibrium problem for
cubic equations of state. In this work we need
an algorithm that is as robust as possible, effi-
ciency being a secondary consideration. There-
fore, this section lays out an algorithm that has
been found to converge for every set of valid
inputs, so long as sufficient numerical precision
is available. The problem is constructed as a
one-dimensional bounded root-finding problem,
with a nested polynomial root-finding problem
for the liquid density. Exceptionally reliable al-
gorithms are available for each sub-problem.

The VLE algorithm is based upon first finding
acceptable bounds for the vapor phase density,
and iterating on the vapor phase density to find
the suitable liquid phase density. The bounds
on the solution for the vapor phase density are
obtained from the following steps:

1. Find spinodal densities for the given tem-
perature. These densities are obtained as
the roots of a polynomial, and only real
roots in the domain (0,1) are acceptable
solutions.

2. The largest spinodal density in (0, ρ̃crit)
is the vapor density upper bound

3. Lower bound for vapor density is the
maximum of i) zero and ii) the vapor den-
sity associated with the pressure associ-
ated with the higher density spinodal so-
lution

This approach is shown graphically in Fig. 1,
the upper panel is for a relatively high temper-
ature, while the lower panel is for a relatively

low temperature. For the low reduced temper-
ature, the vapor density paired with the pres-
sure of the liquid spinodal solution is very nega-
tive, resulting in a negative (non-physical) lower
bound for the vapor density, so a value just
above zero (on the order of the denormal limit
in the floating point mathematics) can be used
as the lower bound. As the reduced temper-
ature approaches 1.0, the numerical challenges
in finding these limits increase, but in extended
precision the solution for the limits is still pos-
sible arbitrarily close to the critical point (for
T̃crit − T̃ ≪ 10−16: the limit of double precision
arithmetic)

0.0 0.2 0.4 0.6
0.00

0.01

0.02

0.03

0.04

p

T/Tcrit : 0.900

0.0 0.2 0.4 0.6 0.8
0.3

0.2

0.1

0.0

p

T/Tcrit : 0.300

Figure 1: Schematic depiction of the bounds
used for the one-dimensional solver for the
vapor-liquid equilibrium at high (upper panel)
and low (lower panel) reduced temperature.
The vdW EOS is used here. The grey region
depicts the range of densities to be searched for
the equilibrium, and the diamonds are the spin-
odal densities in the region (0,1)

Solving the phase equilibrium problem turns
into a bounded rootfinding problem. For a
given value of vapor density, the pressure is cal-
culated, and then the liquid density is obtained
for the given pressure. The residuum for the
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solver is the phase equilibrium residuum defined
by Eq. (2).

Brent’s method25 was used for the outer
solver and the C++ implementation of this
method was taken from the CoolProp library3

and further modified to allow for extended pre-
cision mathematics. Thus the VLE solution
can be made arbitrarily precise depending on
the numerical precision in use: the greater the
numerical precision, the more accurately the
phase equilibrium conditions may be solved,
and the closer to the critical point the solution
is able to converge.

The results of this robust approach for solving
for the VLE conditions of the three cubic EOS
are presented in Fig. 2. All three EOS show
relatively similar qualitative behavior, and each
can be represented in the generalized form de-
scribed above in terms of T̃ , p̃, and ρ̃, invoking
no fluid-specific parameters.

0.0 0.2 0.4 0.6 0.8
′, ′′

0.05

0.10

0.15

0.20

0.25

0.30

T

RKS

vdW

PR

Figure 2: General solutions for phase equilib-
ria for the three cubic EOS (vdW: van der
Waals, RKS: Redlich-Kwong-Soave, PR: Peng-
Robinson) considered in this work

An important detail that has been intention-
ally avoided in the above discussion is numerical
precision. In the above calculations, more than
16 digits of precision have been used for all the
calculations. The calculations in Python have
utilized the sympy library with the mpmath ex-
tended precision library to obtain the values to
any desired level of numerical precision. Con-

stants have been given to more than 16 digits
of precision, which is the practical limit of most
computational routines.

When it comes to iteration and rootfinding,
double precision does not allow for sufficient
precision. Following the same approach as the
previous paper,5 the iterative calculations were
carried out in extended precision. This is espe-
cially important for the polynomial rootfinding
needed to obtain the spinodal solutions. The
boost::multiprecision library was used for
the extended precision calculations, as can be
explored in the code in the supporting informa-
tion. The addition of extended precision anal-
ysis to a templated C++ numerical library in-
volves only a few compile-time type checks.

3.2 Construction of Chebyshev
polynomials

Now that it is possible to obtain VLE solutions
for the standard cubic EOS to any level of pre-
cision, it is necessary to make those results ac-
cessible to end users and software developers in
a convenient and efficient formulation.

The use of orthogonal polynomials to approx-
imate well-behaved and continuous numerical
functions has a long pedigree. Recently, some
mathematical functions have been implemented
in terms of orthogonal polynomials in standard
numerical libraries. The Chebyshev expansions
have found extensive use as basis functions for
approximation26,27 and rootfinding.26,28,29

In essence: given the function values at care-
fully selected values of the independent variable
(the Chebyshev-Lobatto nodes) in a bounded
domain (usually [-1,1]), an excellent represen-
tation of the function of interest can be con-
structed. Evaluation of the approximation can
be nearly as efficient as a monomial of the form
y =

∑
i cix

i, though the numerical conditioning
of Chebyshev expansions allows for high-order
Chebyshev expansions at a level impossible to
achieve with monomial expansions.

A C++ library (with Python wrappers) has
been written by one of the authors30 that allows
for the evaluation and construction of Cheby-
shev expansions with a user-friendly interface.
While construction of the expansions can be
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done either via the Python interface or the low-
level C++ code, in this case we have decided to
use the C++ code for the improved computa-
tional efficiency. Doing so is not without its
challenges, as ensuring that the versions of the
libraries are mutually compatible is non-trivial.
Here we have used version 1.6 of ChebTools30

(which uses Eigen version 3.3.4) and boost ver-
sion 1.71.0 for the boost::multiprecision li-
brary.

Rather than construct an extremely high-
order Chebyshev expansion (degrees of 100 or
1000 pose no numerical challenge for a Cheby-
shev expansion), multiple Chebyshev expan-
sions of lower order can be generated over do-
mains that span the full domain of interest. The
advantage of this approach is that the refine-
ment can occur where it is needed, rather than
uniformly over the entire domain. Evaluation of
a single value from a set of low-order expansions
can be much faster than a single large expan-
sion; binary search to find the right low-order
expansion plus its evaluation is significantly
faster than evaluation of a high-order expansion
with the same accuracy. To start, the entire do-
main is spanned by a single expansion, and the
domain is then recursively subdivided as needed
into smaller sub-domains. This process is fully
automated in the dyadic_splitting function
of ChebTools version 1.6.

The C++ code used to do the fitting is in-
cluded in the supplemental information of this
paper. A further Python script was used to
parse the results and generate a C++ header
file with no dependencies aside from the stan-
dard library of C++. Calling this file outside
C++ can be achieved with a C++ to C in-
terface, compiling the files into a shared library
for convenient end use in higher-level languages.
The scripts needed for that are in the makeso
folder in the supporting information. The C++
interface exposes the function

double supercubic(int EOS, int prop,
double Ttilde);

where EOS is an integer flag to select the equa-
tion of state, and prop a flag to select the prop-
erty. A negative number is returned from these
functions if the input is out of range. The re-
turned value will always be in tilde-scaled form.

The user is required to scale the inputs into
tilde-scaled form prior to calling the functions
and then unscale the outputs afterwards. Much
of the scaling and unscaling work can be pre-
calculated. T̃ is proportional to T , so scaling
represents a single multiplication. The same is
true for unscaling p̃ to p. Evaluation of α is
still required for both the scaling and unscaling
steps, which involves a few more floating point
operations.

4 Results
4.1 Accuracy
The previous paper5 provides a detailed dis-
cussion of the challenges in resolving the near-
critical behavior of the EOS with Chebyshev
expansions and discusses topics like rate of con-
vergence of the expansions. Here we will simply
focus on the results of the process, demonstrat-
ing that the set of Chebyshev expansions pro-
vides an excellent representation of the VLE
obtained from the EOS.

The expansions were generated accord-
ing to the following parameters in the
superancillary.cpp file

• Degree of expansion is 18

• Temperature range of [0.1T̃crit, T̃crit]

• Tolerance for splitting is 10−13 based
upon a 3-element norm

This resulted in roughly 24 expansions for
density (and 6 for pressure) and per EOS, thus
approximately 50 expansions per EOS. If each
coefficient (19 per expansion) is an 8 byte dou-
ble then the expansions represents on the order
of 20,000 bytes of binary data for the set of
three EOS.

In order to justify the claim that these formu-
lations have made iterative evaluation of phase
equilibria of pure fluids with the classic cubic
EOS obsolete, calculations of the phase equilib-
ria with 100 digits of precision (the extremely
precise reference data) are compared with the
results of the Chebyshev expansions. The er-
rors were calculated at the midpoints between
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Figure 3: Absolute value of relative fractional
errors between iterative calculations in 100 dig-
its of precision y100 and the Chebyshev expan-
sion at the midpoints between the nodes of
the Chebyshev expansions yCheb for the Peng-
Robinson EOS. For the CoolProp results (in a
light color), the value of yCheb in the deviation
is replaced with the result of the iterative cal-
culation.

the Chebyshev-Lobatto nodes. These locations
represent a good proxy for the worst-case errors
of the approximation. The results of these com-
parisons are in Fig. 3. For all three properties,
and all three cubic equations, the relative error
from the Chebyshev expansion is on the order
of numerical precision for T̃ < T̃crit−10−6. The
deviations do not quite reach the epsilon of ap-
proximately 2.2×10−16 in double precision, but
this representation is nearly as good as could
be expected in double precision. In any case,
these deviations are much tighter than could
be achieved for iterative calculations in double
precision.

Also shown in the figure are the results from
iterative calculations for the EOS from the
CoolProp library, in this case a modified ver-
sion with the sole change that the values of Ωa

and Ωb are given to numerical precision rather
than the truncated values.31 The convergence
criterion used in double precision results in den-
sities that are in error by more than 0.1 % as
compared with the extended precision calcula-
tions with 100 digits of precision as the critical
point is approached. While these deviations are
adequate for engineering purposes, they are ap-
proximately 10 orders of magnitude worse than
what can be achieved with the Chebyshev ex-
pansions fit to the extended precision results.
An equivalent result is obtained for the RKS
and van der Waals EOS, as shown in the ap-
pendix.

4.2 Alternative critical scaling
As described in our previous article,32 the or-
thobaric (saturated liquid and vapor) densities
can be approximated by a power law in the
vicinity of the critical point,

ρ̃α − ρ̃crit = ±Bρ

(
T̃crit − T̃

T̃crit

)β

, (58)

where Bρ is a so-called critical amplitude and
α =′,′′. The critical exponent β is 0.5 for all
analytical equations of state. Consequently, the
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scaled density

ρ̂α ≡ (ρ̃α − ρ̃crit)

√
1− T̃

T̃crit

≈ ±Bρ

(
1− T̃

T̃crit

)
(59)

is linear w.r.t. temperature for T̃ → T̃crit (see
Fig. 4).
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Figure 4: Orthobaric densities of the RKS EOS
in the near critical region with the critical scal-
ing from Eq. (59) applied, vs. the distance from
the reduced critical temperature. The star in-
dicates the location of the critical point in these
reduced coordinates.

Hence ρ̂α(T̃ ) no longer exhibits an infinite
slope at the critical temperature and can be
approximated with a smaller set of Cheby-
shev polynomials. This saves CPU time when
searching for the desired expansion; on the
other hand, the reverse transformation from ρ̂
to ρ̃,

ρ̃α = ρ̃crit + ρ̂α

(
1− T̃

T̃crit

)−1/2

(60)

is computationally more costly due to the need
for the square-root function. Another disad-
vantage of Eq. (60) is that, at low tempera-
tures, it yields the vapor density as the differ-
ence of two almost equal terms, and this leads
to significant round-off errors that prevent the
use of this scaling approach. A computation-
ally safe way to represent vapor densities can
be obtained with the transformation

ρ̂α ≡
(
ρ̃αp̃crit

p̃
− ρ̃crit

)(
1− T̃

T̃crit

)1/2

(61)

The reverse transformation is

ρ̃α =

 ρ̂α(
1− T̃

T̃crit

)1/2 + ρ̃crit

 p̃

p̃crit
(62)

A downside of this improved approach is that
the vapor pressure p̃ is needed for the evalu-
ation of the scaled orthobaric densities, which
doubles the evaluation time for the saturation
density, although if the pressure is also needed
(as is usually the case), the vapor pressure cal-
culation is not duplicative.

The conclusion therefore is the same as for the
multiparameter EOS:5 creativity with alterna-
tive scalings that result in more linear functions
is not obviously superior to the naïve approach
of directly developing Chebyshev expansions of
the unscaled property of interest.

4.3 CPU Time and Reliability
The computational speed of several implemen-
tations were tested against the Chebyshev ex-
pansions. The candidates were the iterative
routines in REFPROP, the iterative routines
in CoolProp, the iterative routines in Ther-
moC, and the robust iterative routines from the
above, in double precision. In each case, argon
was selected as the chemical species. Each im-
plementation has a different convergence crite-
rion on the phase equilibrium calculation, which
makes direct comparison impossible. Nonethe-
less, the comparison gives an approximate pic-
ture of the relative computational advantage of
this approach. All the calculations were car-
ried out on a windows 10 machine, and the
ThermoC calculations were carried out inside a
docker container with Ubuntu 20.04 as its base
image. The machine uses an Intel Core i7-8700
CPU @ 3.20GHz and can step up to 4.3 GHz
under load.

The relative timing of the different ap-
proaches is laid out in Table 1. Random shuf-
fling of the inputs is used to ensure that the pro-
cessor branch prediction will be defeated as of-
ten as possible to obtain a fair comparison. The
routines in CoolProp are the fastest of the cal-
culations that use double precision arithmetic.
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CoolProp carries out the vapor-liquid equilib-
rium by estimating the vapor pressure based
upon the acentric factor of the fluid (see the SI
of Ref. 19) and then iterating to find the equi-
librium pressure; the approach here in extended
precision is significantly more reliable (though
much slower). For the Chebyshev expansions
the input temperature (in Kelvin) is scaled, the
calculation is carried out, and then the result is
unscaled. The time breakdown for the Cheby-
shev expansions is very roughly: 25 nanosec-
onds to evaluate the expansion, 10 nanoseconds
to find the right expansion, and the remainder
is time to scale and unscale the input and out-
put quantities and additional overhead. Timing
code is included in the supporting information.

Table 1: Timing of calculations of saturated liq-
uid density for 107 linearly spaced then shuffled
temperatures in [0.6Tcrit, 0.9Tcrit]. The relative
speedup of the Chebyshev expansions uses the
Chebyshev expansions as baseline.

method avg. µs/call speedup
this work (Cheb) 0.053

CoolProp 2.17 48.4×
REFPROP 5.01 112×
ThermoC 9.89 220×

this work (double) 215 4800×

Another relevant question is how close to the
critical point the iterative calculations are able
to succeed. The Chebyshev expansion approach
cannot fail, only its accuracy decreases on ap-
proaching the critical point. On the other hand,
the iterative calculations may fail below the
critical point because the density solutions for
the spinodal disappear for some temperature
less than the critical temperature as a conse-
quence of the limited numerical precision. The
closest that the VLE calculations are able to
succeed in double precision for each of the three
EOS is approximately 10−3 below the critical
temperature in tilde-scaled units.

A final question pertains to the very low tem-
perature behavior of the Chebyshev expansions.
As a consequence of the use of interval subdivi-
sion, the lowest temperature behavior can still
be properly captured, even though the pressures

and vapor densities are more than 10 orders of
magnitude smaller than their respective values
at the critical point. Figure 5 shows the values
obtained for the Peng-Robinson EOS on a very
fine grid over the range of the lowest tempera-
ture expansion, demonstrating that none of the
predicted values go negative, and that the curve
is smooth.

0.10 0.11 0.12
T/Tcrit

10 16

10 15

10 14

10 13

10 12

10 11

′′ , 
p

p

′′

Figure 5: Values of saturated vapor density and
pressure of the Peng-Robinson EOS calculated
from the Chebyshev expansions at very low re-
duced temperatures.

5 Conclusions
The saturation phase boundary from cubic EOS
for pure fluids can be very accurately repre-
sented by Chebyshev expansions. These ex-
pansions a) are at least an order of magnitude
faster to evaluate than the iterative calculation
of phase equilibrium, even in double precision
arithmetic b) provide a representation of the
phase equilibrium that is several orders of mag-
nitude more precise than the iterative calcula-
tion c) are able to provide quite accurate values
even very close to the critical point. There-
fore, for these standard cubic EOS, there is
no longer a need to carry out iterative calcu-
lations of phase equilibria for pure fluids. In
order to also improve the accuracy of the cubic
EOS themselves, we have calculated exact solu-
tions for the coefficients of the cubic equations
of state as opposed to the truncated values used
so often in the literature.

The approach presented here is particularly
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well suited to the “simple” cubic equations of
state because they can be written in a common
reduced form for all fluids. In principle any
equation of state can be handled in the same
way, with the commensurate simultaneous in-
crease in computational efficiency and preci-
sion.

Supporting Information Avail-
able
In order to ensure reproducibility of the re-
sults, the supporting information available at
https://doi.org/10.18434/mds2-2394 includes
in a single zip file

• The C++ code used to build the expan-
sions in the file superancillary.cpp

• The C++ header with the coefficients in-
jected (no dependencies other than on
the vector header of C++) in the file
makeso/cubicsuperancillary.cpp

• The scripts used to inject the expansions
into the header and test the header

• The jupyter notebook used to generate
the constants

Readers are invited to contact the correspond-
ing author for clarification of any aspect of the
paper, or if any errors are identified.

A Deviations for other
EOS

Figures 6 and 7 present the deviations for the
van der Waals and RKS EOS, respectively.

B Validation
In order to ensure the correct implementation,
the check values in Table 2 were obtained from
the test code in the supporting information.

Figure 6: Absolute value of relative fractional
errors between iterative calculations in 100 dig-
its of precision y100 and the Chebyshev expan-
sion at the midpoints between the nodes of
the Chebyshev expansions yCheb for the van der
Waals EOS.
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Table 2: Validation values for each of the implementations at T̃ = 0.125

EOS p̃ ρ̃′ ρ̃′′

vdW 0.0002958543239347111 0.8536251284168529 0.002407389267319304
PR 0.003034198868923775 0.6394564580846998 0.03023195086998487

RKS 0.001736846506201768 0.6976615743280177 0.01555500889873714

Figure 7: Absolute value of relative fractional
errors between iterative calculations in 100 dig-
its of precision y100 and the Chebyshev expan-
sion at the midpoints between the nodes of the
Chebyshev expansions yCheb for the Redlich-
Kwong-Soave EOS. For the CoolProp results
(in a light color), the value of yCheb in the devi-
ation is replaced with the result of the iterative
calculation.
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