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ABSTRACT 

Previously published data, not ours, on the coarsening of solid b-Sn particles in a liquid 

Pb-Sn matrix of near-eutectic composition are re-analyzed within the framework of the trans-

interface-diffusion-controlled (TIDC) theory of coarsening. The data were obtained under 

conditions of microgravity from specimens heat-treated at 458 K and containing four equilibrium 

volume fractions, fe, equaling 0.10, 0.15, 0.20 and 0.30. We show that the rate constants, k(fe), in 

the traditional coarsening equation, árñ3 ≈ k(fe)t, for the kinetics of growth of the average particle 

radius árñ, are nearly independent of fe, in disagreement with numerous theories wherein 

coarsening is controlled by diffusion in the host matrix phase. Atom transport in TIDC 

coarsening is instead controlled by slow diffusion through the diffuse interface, of width d, 

separating the dispersed particles from the matrix; the kinetics of this process is independent of 

fe. Atomistic simulations were performed to estimate the properties of the solid-liquid (S-L) 

interface at 458 K, 2 K above the Pb-Sn eutectic temperature. The S-L interfaces normal to (001) 

and (010) of tetragonal b-Sn were examined and found to have nearly identical properties, 

including interface widths of ~1.7 nm. In conjunction with the diffusivities in solid b-Sn and 

liquid hypereutectic Pb-Sn at 458 K, we estimate that TIDC coarsening should prevail for solid 

Sn particles smaller than ~1,700 µm in radius, far exceeding the maximum radius of ~100 µm 

measured experimentally. The TIDC theory also predicts that the kinetics of growth obeys the 

equation árñn µ t. The temporal exponent, n, was evaluated to be ~2.5, as ascertained by 

analyzing data on the particle size distributions (histograms) for the alloys with fe = 0.15, 0.20 

and 0.30. The histograms were converted to experimental cumulative distribution functions, 

ECDFs, and analyzed using the Kolmogorov-Smirnov (K-S) test applied to the theoretical CDFs 

predicted by the TIDC theory. We report the first successful application of the K-S test to 

experimental particle size distributions concomitant with particle coarsening.  From every aspect 

of the experimental data amenable to analysis, we conclude that the coarsening behavior of solid 

Sn particles in liquid hypereutectic Pb-Sn aloys is fully consistent with the predictions of the 

TIDC theory of coarsening. 
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I.  INTRODUCTION 

A polydisperse array of particles situated in a host matrix is inherently unstable because 

the system can lower its energy by transporting matter from small to large particles, thereby 

reducing its interfacial area, hence its energy, per unit volume. This is exactly what occurs during 

particle coarsening (Ostwald ripening). When exposed to temperatures high enough to facilitate 

the transport of atoms or molecules from the smaller (shrinking) particles in the array to the 

larger (growing) ones, the kinetics of coarsening becomes measurable, enabling the testing of 

various theories of this process. Coarsening is an important phenomenon because it affects the 

stability of material microstructures (especially but not uniquely metallurgical), hence their 

properties, at high temperatures. It is therefore important in the design and performance of 

materials used in elevated temperature applications, turbine-blade alloys in jet engines being a 

familiar example. 

Theories of coarsening predict the growth of the average particle radius, árñ, as a function 

of time, t, the kinetics of solute depletion in the host matrix, the kinetics of particle evanescence 

(the decrease with t of the number of particles per unit volume, Nv), and the increase with t of the 

volume fraction, f, as the system approaches thermodynamic equilibrium. Because the array of 

particles is polydisperse, predicting the particle size distribution (PSD) is another theoretical 

objective. 

In the seminal treatises of Lifshitz and Slyozov  [1] and Wagner  [2] (the LSW theory), 

the dispersion is infinitely dilute and the kinetics is controlled by solute diffusion in the matrix 

(matrix-diffusion control, MDC). The LSW theory predicts the well-known result 

, (1) 

where ár0ñ is the average radius of the assumed spherical particles at the onset of coarsening, 

measured at t = 0, and k is a rate constant that depends on parameters incorporating of the 

thermodynamics and kinetics of the system. Wagner  [2] also considered the special case of 

particle growth controlled not by diffusion, but instead by an unspecified reaction at the particle-

matrix interface (interface reaction control, IRC). In that situation the temporal exponent changes 

from 3 to 2, and the equation governing the growth of the average radius becomes 

, (2) 

〈r〉3 − 〈r0 〉3 = kt

〈r〉2 − 〈r0 〉2 = kI t
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where kI is a rate constant that differs from k and involves parameter(s) associated with the 

interface reaction. 

The kinetics of solute depletion of the matrix phase is governed by the equation 

, (3) 

where X is the concentration of solute in the majority matrix phase, Xe is the value of X at 

thermodynamic equilibrium and k is a rate constant that includes the same thermodynamic and 

kinetic parameters as k in Eq. (1). Equation (3) is expected to be valid at long aging times, when 

árñ >> ár0ñ and árñ ≈ (kt)1/3 from Eq. (1).  

During coarsening the volume fraction, f increases with aging time according to the 

equation 

 (4) 

where ∆Xe represents the difference between the equilibrium concentrations of the matrix and 

precipitate phases, and fe is the volume fraction at thermodynamic equilibrium. Equation (4), like 

(3), is valid in the limit of long aging times, and predicts that f approaches fe from below, i.e. f 

increases with aging time, equalling fe when t = ¥. 

Ideally, coarsening ceases at t = ¥, at which time all the solute is contained within a 

single particle. On its way to that eventuality particles must disappear as the average size 

increases. The kinetics of this particle evanescence is described by the relationship 

, (5) 

where the parameter, y = ár3ñ/árñ3, is determined by the PSD; for the LSW PSD y = 1.13. 

Equation (5) follows from the relationship (for spherical particles)  

, (6) 

where áVñ = 4πár3ñ/3 is the average volume of the particles. The parameter y must be taken into 

account because ár3ñ ¹ árñ3. Substitution of Eq. (4) into (6) leads directly to Eq. (5). Equation (6) 

is unrelated to coarsening and is expected to be valid at all times. It has been common practice in 

X − Xe ≈ κ t( )−1/3

f ≈ fe −
κ t( )−1/3
∆Xe

Nv ≈
3 fe
4πψ kt

1−
κ t( )−1/3
feΔXe

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

〈V 〉Nv =
4πψ 〈r〉3Nv

3
= f
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the literature to ignore the second term in brackets in Eq. (5), but it has been shown repeatedly 

and convincingly that it is correct  [3,4]. Equation (5) is expected to be valid in the very-long-

time limit of an experiment, which often makes it quite difficult to test. 

A singular prediction of the LSW theory is the equation for the scaled, time-invariant, 

PSD, given by 

 (7) 

In Eq. (7) u is the particle size scaled by the average size, i.e. u = r/árñ, and g(u) is a probability 

density function defined such that g(u)du is the probability of finding a particle with scaled 

radius between u and u + du. It clearly follows that  and áuñ = . 

The PSD described by Eq. (7) is skewed to the left, reaches a maximum value at u ≈ 1.13 and has 

a very sharp cut-off at u = 3/2. 

Real systems differ from the ideal LSW system in many important ways: 1. The matrix 

phase is rarely an ideal infinitely dilute solid solution; 2. The dispersed phase is never a pure 

element, but is instead a solid or liquid solution or compound; 3. The particles themselves are not 

always spherical; 4. The volume fraction of the dispersed phase is always finite, which is 

important because the LSW theory is written for the physically unrealistic situation fe = 0. In 

MDC coarsening fe plays an important role because the interparticle distances decrease as fe 

increases, which implies that diffusive fluxes from shrinking to growing particles increase, 

ultimately leading to an increase in the rate constant for coarsening. The rate constant k is 

therefore expected to be a monotonically increasing function of fe, i.e. k = k(fe). The finite 

volume fraction also engenders spatial correlations among the dispersed particles; these simply 

do not exist in the fe = 0 limit of the LSW theory. 

The effect of fe on k(fe) in MDC coarsening has been the focus of numerous theoretical 

treatises. The interested reader is referred to several review articles that deal with this topic  [5–

8], the last of which, by Baldan  [8], covers theories published up to 2001. The subject continues 

to be of interest, as exemplified by several papers published from 2001 to the present day  [9–

11]. All the theories use as a model a spatially random dispersion of spherical particles which 

exchange atoms via diffusive transport in the matrix. It is fair to state that they all predict quite 

g u( ) = 4u
2

9
3
3+ u

⎛
⎝⎜

⎞
⎠⎟

7 /3
3 / 2
3 / 2− u

⎛
⎝⎜

⎞
⎠⎟

11/3

exp
−u

3/ 2− u
⎛
⎝⎜

⎞
⎠⎟
; u ≤ 3/ 2

g u( )0
3 2∫ du = 1 ug u( )0

3 2∫ du = 1
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different dependencies of k(fe) on fe, but retain the temporal exponent n = 3 and agree with k = 

k(0) in the limit of zero volume fraction.  

It is also fair to state that the vast majority of experimental investigations of particle 

coarsening in metallic alloys indicate no effect of fe on coarsening behavior. To be sure, there are 

some exceptions, the coarsening of Co precipitates in aged Cu-Co alloys  [12,13] and metastable 

d¢ (Al3Li) precipitates in Al-Li alloys  [14] are the most obvious examples, but numerous 

experiments on the coarsening of g¢ (Ni3X) precipitates in Ni-X alloys (X = Al  [13,15,16], 

Ga  [17,18], Ge  [19,20], Si  [21–23], Ti  [24,25]) show either no effect of fe at all, or an 

anomalous and still unexplained decrease of k(fe) with fe at small volume fractions, typically fe < 

0.08  [20,21,24,26]. The most convincing evidence for the absence of an effect is embodied in 

the data on coarsening of Ni3Si precipitates in Ni-Si alloys, wherein fe varies by a factor of ten, 

from 0.03 to 0.30. The utter failure of theory to account for this behavior led Ardell and 

Ozolins  [27] to seek a possible mechanism of coarsening consistent with the experimental 

results, culminating in the trans-interface-diffusion-controlled (TIDC) theory of coarsening.  

A foundational premise of the TIDC coarsening theory is the diffuse nature of the 

particle-matrix interface. Atomistic simulations of the g/g¢ interface in Ni-Al alloys  [28] showed 

that the interface between the fcc g matrix and the ordered g¢ precipitate was not sharp, but 

diffuse, transitioning over a distance of ~2 nm. In conjunction with the fact that diffusion in the 

ordered g¢ phase is roughly 2 orders of magnitude slower than in the disordered Ni-Al solid 

solution g phase  [29,30], this led to the expectation that diffusion through the interface should be 

much slower than diffusion to it, hence the taxonomy of TIDC coarsening. In the original 

publication by Ardell and Ozolins  [27] the width of the interface, d, was taken as constant, 

leading ultimately to a temporal exponent n = 2, with a hint of what might obtain for temporal 

exponents satisfying 2 £ n £ 3. This idea was elaborated more thoroughly in a subsequent 

paper  [31] for arbitrary n and used to re-examine data on g¢ coarsening in Ni-Al alloys, with n ≈ 

2.4 providing the best fit to the data on kinetics and the PSDs. This approach is employed in the 

current work to re-examine published data on coarsening of solid b-Sn particles in liquid Pb-Sn 

alloys. For the sake of completeness, when n is unknown the temporal exponent 3 is replaced by 

n in Eqs. (1), (3), (4) and (5), with the factor kt in the denominator of Eq. (5) replaced by (kt)3/n.  
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The interpretation of experiments on particle coarsening is often plagued by extraneous 

factors such as coherency strains, which affect their equilibrium shapes and engender elastic 

interactions among precipitates that affect their spatial correlations. This is exemplified by the g¢-

type precipitates in all the binary Ni-base alloys investigated  [32]. Issues of this type simply 

vanish in solid-liquid systems, since the host matrix is incapable of supporting shear strains and 

the particles will also be close to spherical in shape provided that the solid-liquid (S-L) 

interfacial energy is nearly isotropic. This realization has provided the impetus for experiments 

on particle coarsening in S-L systems. Such experiments are not without their own set of 

drawbacks and complications, however. 

A major obstacle to the successful implementation of terrestrial experiments on S-L 

coarsening is gravity, which induces either sedimentation or buoyancy, depending on the mass 

density difference between the solid and liquid phases. A dispersion of solid (or liquid) particles 

coarsening in a liquid matrix under conditions of microgravity can overcome this obstacle, 

provided that the solid-liquid interfacial energy is isotropic. This realization stimulated a number 

of experiments on the coarsening of solid particles in liquid matrices. The earliest of this kind 

was done on solid Co particles in a liquid Cu matrix by Kang and Yoon  [33] at temperatures 

from 1150 to 1300 °C. The Cu-Co system was chosen by Kang and Yoon because the two metals 

are nearly isopycnic, the mass density of Cu being slightly smaller than that of Co, 7900 cf. 8380 

kg/m3, at 1200 °C  [34]. Kang and Yoon found that k(fe) was strongly dependent on fe for volume 

fractions in the range 0.34 £ fe £ 0.55 at 1200 °C, increasing by a factor of 1.83. Bender and 

Ratke  [34] investigated the coarsening behavior of solid Co particles in this system at 1200 °C 

over the range of volume fraction 0.25 £ fe £ 0.70 and found that k(fe) was nearly constant up to 

fe = 0.6. The reasons for the discrepancy between their results and those of Kang and Yoon were 

not discussed by Bender and Ratke, who reported that sedimentation created a contiguous 

skeleton of Co particles very quickly for their range of volume fractions. 

Seyhan et al.  [35] performed experiments on the coarsening of Pb-rich particles in 

hypoeutectic Pb-Sn alloys. The idea behind these experiments was to suppress sedimentation by 

imposing Lorentz forces, engendered by electric and magnetic fields, on the liquid alloy system 

in a specially designed container that allowed for heating, isothermal aging and relatively rapid 

cooling. The aged specimens were sectioned and polished for metallographic examination by 

scanning electron microscopy. Average particle sizes and distributions were then measured from 
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the plane sections. The rate constants for coarsening were essentially constant for alloys 

containing 30, 40 and 50% Pb particles, but increased with fe in alloys with volume fractions 

ranging from 0.57 to 0.71. Despite the incontrovertible constancy of k(fe) with increasing fe from 

0.3 to 0.5, the authors suggested that their data more-or less confirmed an overall tendency of 

k(fe) to increase with fe. We will comment on this issue later. 

II.  CRITICAL EVALUATION OF DATA ON COARSENING OF SOLID SN 

PARTICLES IN LIQUID PB-SN ALLOYS 

The most comprehensive investigations of L-S coarsening are those which constitute the 

focal point of the work described in this paper. They are the results of an extensive series of 

experiments performed under microgravity conditions which are described in several 

publications  [36–39]. An avowed purpose of these experiments was to provide, once and for all, 

a true test of theory concerning the volume fraction dependency of k(fe) on fe. Microgravity was 

deemed the antidote to sedimentation, buoyancy and convection. Also, the low eutectic 

temperature in the Pb-Sn phase diagram, ~183 °C  [40], is advantageous because it is well-

established and low enough to mitigate the danger of experimental mishaps in a Space Shuttle or 

the International Space Station environment. Experiments were conducted at 185 °C for aging 

times ranging from 550 s to 48 h over a wide range of volume fractions in hypereutectic alloys, 

including 0.10, 0.15, 0.20, 0.30, 0.50 and a few larger values of fe where solid Sn is the majority 

phase (the compositions of the alloys were not specified). The initial experiments were 

performed on two Space Shuttle missions. Subsequent experiments were performed on the 

International Space Station. The shortest aging time, 550 s, was limited by the time taken to 

reach the aging temperature and the longest aging time was limited to 48 h due to temperature 

gradients in the furnace, but the duration varied from mission to mission. Many of the 

experimental details are presented in a report by Duval et al. [38]. Cooling from the annealing 

temperature was accomplished using a jet water spray, and the cooling curves indicated that the 

time to reach ambient temperature from 185 °C was ~35 s  [38]. Nearly all the measurements of 

the particle sizes and PSDs were made on polished plane sections, but a few were done using a 

serial sectioning technique  [39,41,42]. 
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A. The Kinetics of Particle Growth 

The data on kinetics consisted primarily of measurements of average plane-section radii, 

árpsñ, vs. annealing time, t, and were presented in published figures. To extract the data as 

accurately as possible, the application WebPlotDigitizer was used to capture the data in a picture 

file, downloaded in .csv format. The data were then imported into Microsoft Excel and charted 

exactly as they were in the original picture file, which was also imported into the Excel 

Worksheet. By superimposing a partially transparent picture file and the Excel chart it is possible 

to fine-tune the data in order to superimpose the 2 figures. We believe this procedure provides 

the most accurate possible representation of the published data, which were not available in 

tabulated form from the authors or from NASA, which sponsored the research project. 

Examination of the kinetics of particle growth was done by converting the 2-D data on 

árpsñ to their 3-D counterparts. For spherical particles it is necessary only to use the well-known 

result árñ = 4árpsñ/π. However, Thompson et al.  [39] found that the b-Sn particles in their alloys 

were not perfectly spherical, and used a volume-fraction-dependent correction factor, Cf, to 

convert árpsñ to árñ, i.e. árñ = Cfárpsñ. The reported values of Cf are 1.248 and 1.241 for fe = 0.15 

and 0.20, respectively. When fe = 0 the reasoning of Thompson et al. suggests that Cf = 4/π ≈ 

1.273, and indeed a plot of Cf vs. fe is linear, resulting in the equation 

. (8) 

In keeping with the spirit of the work of Thompson et al. their data on árpsñ in the alloys with fe = 

0.10 and 0.30 were also converted to árñ after substituting the appropriate value of fe into Eq. (8). 

Consideration of all the results at face value yields the behavior on the kinetics of growth 

of the average particle shown in Fig. 1 for all volume fractions up to fe = 0.30. The data are 

plotted assuming LSW kinetics, i.e. a linear dependence of árñ3 on t. The data are color-coded to 

distinguish the individual missions in the experiments, using the designations of the authors. The 

scales of the ordinates and abscissae were chosen to enable easy visual comparison of the slopes 

of the curves. The linear fits to the data exclude the measurements made at the smallest aging 

times, 550 and 880, since steady-state coarsening regime had not yet obtained; their inclusion in 

the fitting has a negligible effect on the slopes of the curves. Even though the data on the longest 

aging time used in the experiments, 48 h, might have been compromised by temperature 

C f = −0.3628 fe +1.2731
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gradients in the furnace  [36], they are included to eliminate any possible notion of bias in our 

analyses. 

The rate constants k(fe) were obtained from the slopes of the curves in Fig. 1. They are 

tabulated in Table I and displayed as a function of fe in Fig. 2. There is a very small increase in 

k(fe) with fe, but we attribute this to the increasing role of coalescence as fe increases. Lifshitz and 

Slyozov  [1] recognized the potential role of coalescence and Davies et al.  [43] later constructed 

a theory of the effect of fe on the kinetics of coarsening, assuming that when 2 particles come 

into contact they are instantly replaced by a single particle of the same volume as the original 

two. This is an impossible event for two solid particles. Indeed, there are numerous examples of 

particles in contact in the published micrographs of the solidified Pb-Sn microstructures 

[36,39,44–46]. It is nevertheless evident that coalescence will contribute to the augmentation of 

the kinetics of growth, and almost certainly influence the particle size distributions. Having said 

this, it seems that only k(fe) for the alloy with fe = 0.30 is somewhat larger than the values for the 

other 3 alloys. We note that the inclusion of the datum on the alloy aged for 48 h increases the 

calculated value of k(fe) by ~10%; the difference between the slopes when the datum on 48 is 

excluded is clearly evident in Figs. 1(d), 2 and Table I. 

Hardy et al.  [47] conducted grain-boundary grooving experiments on a eutectic Pb-Sn 

alloy for the expressed purpose of obtaining an independently measured value of k(0) at 458 K, 

the reported value of which is 1.14 µm3/s. It is evident in Fig. 2 that the experimentally measured 

values of k(fe) are significantly larger, by a factor of 4 to 5, than expected from the grain-

boundary grooving experiments. This should not be surprising, since we assert that the k(fe) in 

Fig. 2 and Table I are simply the slopes of plots of árñ3 vs. t and therefore have nothing to do 

with either LSW coarsening kinetics or grain-boundary grooving. We argue that the coarsening 

behavior of Sn particles is controlled by trans-interface diffusion, so in this sense the data on k(fe) 

are just numbers. 

For the record, we note that the values of k(fe) reported in Table I are slightly larger than 

those reported by the authors of the numerous papers published under NASA support. The 

reason is that we take k(fe) from the slopes of plots of árñ3 vs. t, which are completely unaffected 

by the magnitude of the constant of integration, ár0ñ3 in Eq. (1). This is not the case when k(fe) is 

determined by fitting data on the kinetics of growth to the equation árñ = [k(fe)t – ár0ñ3]1/3. Here 
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the output of whatever fitting routine is used inevitably includes (adversely we believe) the 

influence of the parameter ár0ñ, which has essentially no physical significance. 

 
FIG. 1.  The data of Thompson et al.  [39] on the variation of the cube of the average particle 

radius, árñ, with aging time, t. The missions, equilibrium volume fractions, fe, and correlation 
coefficients, R2, are shown in each figure. 

 

TABLE I.  The rate constants k(fe) obtained from best fits to the data on each alloy in Fig. 1. The 
last row shows the value of k(fe) when the datum on 48 h in Fig. 1(d) is omitted.  
 

fe k(fe) (µm3/s) 

0.10 4.938 ± 0.064 
0.15 4.195 ± 0.225 

0.20 5.211 ± 0.134 
0.30 6.268 ± 0.198 

0.30 5.643 ± 0.078 
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FIG. 2. The rate constants for coarsening, k(fe), vs. equilibrium volume fraction, fe, for the 

four alloys. The dashed horizontal line represents the value of k(0) measured independently from 
the grain-boundary grooving experiments of Hardy et al.  [47]. The point represented by the 
filled red circle shows the value of k(fe) when the datum on 48 h, Fig. 1(d), is excluded. The 
shaded area in light green illustrates the small range of k(fe). 

B.  The Kinetics of Particle Evanescence. 

There are two serious issues with the data on Nv vs. t reported by Thompson et al.  [39] 

that render re-analysis futile. The purpose of this small section is simply to make the reader 

aware that we are not side-stepping the re-analysis of their data. The majority of the 

measurements were made on plane sections of the 15 and 20% alloys. These data are reported in 

plots of  vs. t. Thompson et al. also reported separate values of Nv and árñ for specimens of 

both alloys aged for 48 h, obtained from 3-D serial sectioning. Those results are reported in the 

text along with detailed descriptions of the procedures used. A comparison of the values of Nv 

obtained using these 2 methods is presented in Table II. It is obvious that there are significant 

discrepancies between the 2-D and 3-D measurements. The reported value of Nv = 1.96  ´ 10–9 

µm–3 is almost certainly an order of magnitude too small, since it is inconsistent with the 

reported details used in the 3-D measurements. Even allowing for what is probably a misprint, 

the discrepancies are unacceptably large. 

We cannot ascertain the cause of the large discrepancies presented in Table II, but it is 

also possible to check whether the data contained therein is consistent with the demands of Eq. 

(6). As stated earlier. Eq. (6) is quite general and must be obeyed, within experimental error, no 

Nv
−1
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matter what the mechanism of particle growth happens to be. To this end the values of f were 

calculated using the reported values of Nv and árñ, assuming spherical shapes and y = 1.2, the 

expectation being that the results should more-or-less accurately reflect the reported volume 

fractions fe = 0.15 and 0.20. The results are presented in Fig. 3, where it is evident that some of 

the data cluster loosely around the expected values, but others deviate considerably. Much to our 

chagrin we conclude, from the results reported in Table II and Fig. 3, that the discrepancies and 

uncertainties in the reported measurements of Nv are so large that no useful conclusions can be 

obtained from them. 

 
FIG. 3. Plots of the instantaneous volume fraction, f, vs. aging time t raised to the -1/3 power 

for consistency with Eq. (4). The dashed lines in (a) and (b) are schematic, with intercepts 
representing fe, but with arbitrary slopes. The data indicated by the filled green circles are the 
values of Nv reported in the text of Thompson et al.  [39]. The color-coded data refer to the 
mission in which the experiments were done. 
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TABLE II. Number densities, Nv, and average radii, árñ, of Sn particles in the fe = 0.15 and 0.20  
alloys obtained from 2-D (plane) and 3-D sections. Aging time = 48 h. 

Mission fe Nv (µm–3) 
(2-D) 

Nv (µm–3) 
(3-D) 

1/Nv (107 µm3) 
(2-D) 

1/Nv (107 µm-3) 
(3-D) 

CSLM-2R 0.15 3.75 ´ 10–8 1.96 ´ 10–9 2.67 51.02 

CSLM-2R 0.20  3.41´ 10–8 4.65 ´ 10–8 2.93 2.15 
 

C.  Interpretation of the Collective Results of the Coarsening Experiments on Sn Particles 
in Liquid Pb-Sn Alloys 

One of the things that stand out most declaratively about the project on solid-liquid 

coarsening in Pb-Sn alloy is the exquisite preparation of the experiments and the expertise with 

which they were conducted  [36–38]. The methods used to characterize the microstructures and 

gather data were creative and innovative  [41,42,46,48]. The examination of potentially spurious 

effects such as convection and g-jitter (residual accelerations under microgravity conditions) 

were deemed unimportant  [49]. Moreover, the reproducibility of results from one mission to the 

next is remarkable, as attested to by the results in Fig. 4, reproduced directly from the report by 

Duval et al.  [38], changing only the notation for consistency with this paper. These results were 

obtained from experiments on the f = 0.30 alloy over 2 different missions in which g-jitter was 

evaluated to have no influence on the data. The overlap between the average sizes from the 2 

missions shows remarkable agreement. Only the datum on longest aging time, 48 h, shows any 

appreciable deviation from linear behavior in the plot of árpsñ vs t1/3. Indeed, even an 

inexperienced observer would conclude that these data are entirely consistent with steady-state 

LSW coarsening kinetics. To claim otherwise begs the question “how much additional aging 

time is needed to observe steady-state behavior?” Yet, in the final analysis, these data are not 

considered by Thompson et al.  [39], dismissed  [50] primarily due to the possible effects of 

particle contacts, which are to be expected in the alloy with fe = 0.30 [43]. But contacts among 

the Sn particles are present in the microstructures of all the Pb-Sn alloys investigated, as are 

deviations of the Sn particles from spherical shape and the influence of microgravity 

accelerations on sedimentation  [49]. In fact, particle contacts and possible ensuing coalescence 

are most likely responsible for the increasing departure from sphericity with increasing fe 

captured by Eq. (8). We see no compelling reason for dismissal of the data on the fe = 0.30 alloy 

and include them in all the subsequent analyses. 



 13 

 
FIG. 4. Plot of the average planar particle radius, árpsñ, vs. aging time, t, raised to the 1/3 

power in the fe = 0.30 alloy, reproduced from Duval et al. [35] but formatted for consistency with 
the other figures in this paper. 

Despite the excellent linearity of the data displayed in Fig. 1(a), the data on the fe = 0.10 

alloy were also dismissed from consideration by Thompson et al.  [39]. The main reason given 

for rejecting those data was that coarsening occurred under conditions of transient coarsening 

kinetics  [44,45,51]; it was also suggested that temperature gradients  [52] might have played a 

role. However, the main reason for concluding that the data on the 10% alloy were occurring 

under transient coarsening conditions was the fact that the data failed to conform to the spatial 

correlations and PSDs predicted by the Akaiwa-Voorhees theory  [53]. This is a highly unusual 

assertion, because when robust data do not fit a theory the fault is generally not with the data, but 

with the theory. The most logical conclusion is that there is either something wrong with the 

theory or it simply does not apply to the specific conditions of the experiments. There is no 

question that the data on the kinetics of Sn-particle coarsening are robust and remarkably 

consistent from one mission to the next. We are inevitably drawn to the conclusion that all MDC 

coarsening theories fail to describe the data on coarsening of solid Sn particles in Pb-Sn alloys. 

We propose herein an alternative explanation, specifically that the data are consistent with the 

predictions of the TIDC theory of coarsening. We argue the case in the following sections, but 

believe it is helpful to point out here that the mechanism of atom transport through a diffuse 

interface differs quite distinctly from mechanisms involving the rate-controlling attachment of 

atoms or molecules to atomically sharp interfaces, such as supported and/or colloidal 

nanoclusters  [54–56]. 
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III. THE CASE FOR TIDC COARSENING 

A.  Computer Simulations of the Solid Sn-Liquid Pb-Sn Alloy Interface Properties 

The TIDC theory of coarsening  [27] is predicated on the existence of a diffuse interface 

of width d between the matrix and particle phases. Solute atoms must be transported through this 

interface to ensure growth or shrinkage of the particle itself. If diffusion in the particle phase is 

much slower than diffusion in the matrix phase, the kinetics of particle growth will inevitably be 

controlled by the slower process. Since the kinetics is controlled by diffusion through the 

interface, rather than to it, there is no effect of volume fraction on the kinetics. The TIDC theory 

has been shown previously to account for the absence of an effect of volume fraction on the 

coarsening behavior of ordered g¢ precipitates in Ni-base alloys, binary Ni-Al alloys  [4,31] and 

ternary Ni-Al-Cr alloys  [57] being representative examples. Moreover, in so-called “inverse” 

alloys, specifically binary Ni3Al and Ni3Ge alloys containing Ni-Al and Ni-Ge solid solution 

precipitates  [58,59], the kinetics of coarsening is strongly dependent on fe. In the inverse alloys 

diffusion in the ordered matrix is much slower than in the interface. These findings are fully 

consistent with the demands of the TIDC theory. 

Like the precipitate-matrix interfaces in g/g¢ alloys, solid-liquid interfaces in alloys have 

also been shown to be diffuse, exemplified by numerous examples in a variety of different 

alloys  [60-70]. Although some computational modeling has been done on solid-liquid Pb-Sn 

alloys  [71], the widths of the solid-Sn/liquid Pb-Sn interface have not been previously modeled, 

thus providing the rationale for the research described in this section. We present here the main 

results, with many of the details described in Appendix A. 

Atomic interactions in the Sn-Pb system were modeled using the modified embedded-

atom interatomic potential developed by Etesami et al.  [71]. Molecular dynamics (MD) and 

semi-grand canonical Monte Carlo simulations (SGCMC) were performed with the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS)  [72]. To verify the methodology, 

we first reproduced the solidus and liquidus lines in the hypereutectic region of the Sn-Pb phase 

diagram, shown in Fig. 5, and found them to be in good agreement with the results of Etesami et 

al.  [71]. As noted in Appendix A, there is no predicted solubility of Pb in solid Sn, which is due 

to the choice of the MEAM potentials used in the simulations. 
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FIG. 5.  The computed hypereutectic region of the Pb-Sn phase diagram (filled circles). The 

open circles represent points digitized from the phase diagram computed by Etesami et al.  [71]. 
The letters L and L + S refer to the liquid and liquid + solid regions of the phase diagram. 

 
The interface properties were computed in a 16,000-atom simulation block containing the 

Sn-based solid phase and the liquid solution coexisting in thermodynamic equilibrium, separated 

by a planar solid-liquid interface. Two interface orientations were modeled: (001) with the c-axis 

of the tetragonal b-Sn structure normal to the interface, and (010) with the c-axis lying in the 

interface plane. The properties of the interface were characterized by profiles representing the Sn 

concentration, the energy density, and one of the bond order parameters across the interface 

plane. The atomic structures of the interfaces are shown in Fig. 6, and high-resolution profiles of 

the planar concentrations, CSn, across the interfaces at 458 K are shown in Fig. 7. CSn is defined 

as the number of Sn atoms per unit volume in thin layers parallel to the interface plane (see 

Appendix A for details of the calculation of concentration profiles). The ragged nature of the 

interface is apparent in Fig. 6, and is consistent with variations in the planar concentrations seen 

in Fig. 7; these consist of sharp peaks corresponding to the crystal planes in the solid phase. It is 

evident that the transition from the solid phase (left) to the liquid phase (right) occurs over an 

interface region of ~2 nm. 
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FIG. 6. Representative structures of the Sn-Pb solid-liquid coexistence system at 458 K for 

the (a) (010) and (b) (001) interfaces. The Sn and Pb atoms are shown in blue and red colors, 
respectively. 

 
FIG. 7. Sn density profiles across the (a) (010) and (b) (001) interfaces for two interface 

orientations in the Sn-Pb system. 

The Pb concentration profiles are shown in Fig. 8. The profiles were fitted to the results 

of the simulations using the function  
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where XPb = XPb(y) is the atom fraction of Pb as a function of distance, y, (see Fig. 6), is the 

equilibrium concentration of Pb in the liquid phase,  is the equilibrium concentration of Pb 

in solid b-Sn, w is a parameter proportional to the interface width, d, and y0 is the position of the 

interface. Equation (9) is a version of the more general Eq. (A1) in Appendix A, which is used to 

describe the variation of any property as a function of distance across the interface. To generate 

the curves in Fig. 8 the parameters substituted into Eq. (9) were  = 0.233,  = 0 and y0 = 

0, with w ≈ 1.08 nm yielding the best fit to the simulated data (see Table AI in Appendix A). On 

defining d as the value of ∆y corresponding to 1% differences between the equilibrium 

concentrations of Sn in the solid and liquid phases, we find d ≈ 1.7 nm, or equivalently d ≈ 1.6w. 

That the interface width is not sensitive to the orientation is consistent with the nearly spherical 

shape of the experimentally observed Sn particles, suggesting isotropic interfaces  [39,50]. 

 
FIG 8. The calculated Pb concentration, XPb, profiles across the solid-liquid interface for both 

orientations in the Sn-Pb system. 

The  simulations show that the solid-liquid interfaces in the Sn-Pb system are not 

atomically sharp but rather extend over a width of ~1.7 nm. Interestingly, as shown in Appendix 

A, w decreases with increasing temperature, which is an unexpected finding that is not fully 

understood. It is perhaps not obvious in Fig. 8 at first glance, but the interface is not quite 

symmetric about y = 0, extending further into the liquid than in the solid. This might be an 

artifact of the absence of solubility of Pb in b-Sn in the simulations, and is very likely an 

indication that the interface width is underestimated due to the chosen MEAM potentials. 
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B.  Diffusion Coefficients in the Liquid and Solid Phases 

In the particular case of coarsening of solid Sn particles in a liquid Pb-Sn matrix the 

TIDC theory of coarsening predicts that the diffusion of Sn through the interface should be rate-

controlling when árñ satisfies the condition [see Eq. (1) in  [27]] 

, (10) 

where  is the chemical diffusion coefficient in the liquid and  is the average chemical 

diffusion coefficient in the interface region. Diffusion through the interface will certainly be 

dominated by diffusion in the solid phase and we assert that to a good approximation  can be 

replaced by , the chemical diffusion coefficient in the solid. 

To see this more clearly, consider the path of a Pb atom through the liquid into the solid 

region of the interface, the regions themselves acting as diffusion layers of infinitesimal 

thickness connected in series. For a composite structure consisting of individual layers of 

thickness dm Crank  [73] shows that the effective unidirectional diffusivity, Deff, of the composite 

is obtained using the formula d/Deff = S(dm/Dm), where d is the total thickness of the composite 

(which we identify here as the interface width) and Dm is the diffusion coefficient in each layer. 

Applying this reasoning to the problem of unidirectional diffusion through the S-L interface, we 

have Deff = . Applying Eq. (A2), we obtain the result . As we 

show in the following paragraph,  >>  hence Deff ≈ 2 . In this context the factor of 2 is 

unimportant. For diffusion through layers in series, the layer with the smallest diffusion 

coefficient always dominates the effective diffusivity. 

We have been unable to find any information at all on the diffusion of Pb in solid Sn, but 

since the solubility of Pb in solid Sn is quite small at the eutectic temperature (  ≈ 

0.02  [40]), the best we can do is use the data on self-diffusion of Sn at 458 K, 2° above the 

eutectic temperature. Chemical diffusion in the liquid containing XPb = 0.261, the eutectic 

composition, is well represented by the data of Khairulin et al.  [74] and Cahoon et al.  [75], 

whose empirical representation of numerous sets of data support the conclusion of Khairulin et 

al. that diffusion in the liquid is essentially independent of composition. Self-diffusion in 
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monocrystalline b-Sn has been measured by Meakin and Klokholm  [76], Coston and 

Nachtrieb  [77] and Huang and Huntington  [78]. All these results, represented by calculations 

based on their empirical equations, are shown in Fig. 9. Also shown in Fig. 9 is the datum on the 

diffusivity cited by Hardy et al.  [47], which was itself taken from the diffusion coefficients used 

by Jordan and Hunt  [79] to fit their data on the lamellar growth of the Pb-Sn eutectic. 

 
FIG. 9. Arrhenius plots of the data on the diffusion coefficients, D, in the liquid Pb-Sn 

phases and solid b-Sn. The curves on diffusion in the liquid were taken from the work of 
Khairulin et al.  [74] and Cahoon et al.  [75]. The curves on self-diffusion in solid b-Sn were 
taken from Meakin and Klokholm (MK [76]), Coston and Nachtrieb (CN [77]) and Huang and 
Huntington (HH [78]): (a) parallel to [001]; (b) parallel to [010}. The eutectic temperature, Te = 
456 K, is indicated by the solid aqua line. The open circle shows the diffusion coefficient in the 
Pb-Sn liquid phase used by Hardy et al.  [47] to evaluate the results of their grain-boundary 
grooving experiments. 

Several facts are quite evident in Fig. 9: 1. The data on diffusion in the liquid phase are in 

quite good agreement; 2. The data on self-diffusion in b-Sn are also in good agreement for 

directions both parallel to, Fig. 9(a), and perpendicular to, Fig. 9(b), the c-axis of the tetragonal 

b-Sn crystal structure; 3. Most importantly in the context of this study, diffusion in liquid Pb-Sn 

alloys is 6 to 7 orders of magnitude faster than diffusion in solid Sn. Moreover, the diffusion of 

Pb in b-Sn should be much slower than Sn self-diffusion, given the significantly larger atomic 

size of Pb relative to Sn (175 pm cf. 140 pm). Applying Eq. (10) to the value of d estimated from 

the atomistic modeling (~1.7 nm), we find that TIDC coarsening of b-Sn particles in a liquid Pb-

Sn matrix of near eutectic composition should prevail for particle radii smaller than at least 1,700 

µm. This size is over an order of magnitude larger than the largest particle size reported by 

Thompson et al.  [39]. This result, in conjunction with the absence of an effect of volume 
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fraction on the kinetics of coarsening, completely justifies the re-examination of all the data on 

coarsening of solid Sn particles in liquid Pb-Sn acquired under microgravity conditions. This re-

examination follows. 

C.  The PSDs of the TIDC Theory of Coarsening---Comparison with Experimental Data 

1.  Evaluation of the PSDs and ECDFs in Solid-Liquid Pb-Sn alloys 

The PSDs play an important role in the TIDC theory of coarsening because fitting 

experimental histograms and experimental cumulative distribution functions (ECDFs) provide 

the most reliable way to evaluate the temporal exponent n, thereby paving the way for analyses 

of data on the kinetics of coarsening. 

Thompson et al.  [39] published PSDs for the f = 0.15 and 0.20 alloys aged for 48 h. A 

PSD for f = 0.30, also aged for 48 h, is reported in Thompson’s Ph.D. dissertation but was not 

included in  [39]. Details of the evaluation of experimental histograms are presented in Appendix 

B. Foremost are the requirements that the area, A, under histogram constructed using the scaled 

variable u, as well as áuñ, must both equal unity. The criteria A = 1 and áuñ = 1 can be somewhat 

subjective if a visual fit to a theoretical PSD is all that is implemented for purposes of comparing 

experimental histograms with theoretical PSDs. More quantitative evaluation is necessary if a 

Goodness-of-Fit is attempted, as done herein. The extraction of both u and g(u) from published 

histograms is fraught with uncertainties in the accuracy of plotting, small distortions introduced 

in printing and the accuracy with which the data can be extracted from published figures. We 

point out here that small adjustments were needed to ensure that both A and áuñ were equal to 

unity to within 4 significant figures, i.e. A = áuñ = 1 ± 0.0001. For all 3 PSDs analyzed the bin 

widths, ∆, were accurately reported, but small changes in g(u), the order of ±1%, were required 

to ensure A = 1. On the other hand, the raw data extracted from the published histograms 

required more significant translations of the histograms in order to find the true zeros of the 

entire plot; we call these the Zero Offsets (ZO). If the true origins of the histograms and 

theoretical PSDs do not coincide exactly, it is impossible to arrive at a valid quantitative analysis 

of the ECDFs. This issue is elaborated on further in Appendix B2. For the Sn particle PSDs the 

ZO was much smaller than the bin width. 

The PSDs for the 3 alloys and aging conditions were converted to ECDFs for the purpose 

of applying the one-sample Kolmogorov-Smirnov (K-S) test  [80]. The K-S test is widely used to 
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test the Null Hypothesis in statistics that the data are drawn from a given theoretical distribution 

(e.g., a common default assumption is that the data follow the normal distribution) or, in the case 

of the so-called two-sample test, that there is no statistically significant difference between two 

data sets. In our case, the TIDC CDF H(z) given by Eq. (B7) is used as the theoretical 

distribution; expressed in terms of the variable u, the theoretical CDF, G(u) is known to be 

equivalent to H(z)  [81]. The K-S test statistic is calculated as the largest absolute deviation, DN, 

otherwise known as the supremum, supu, between the ECDF, GN(u), and G(u), 

. (11) 

When statistical data involve measurements of a discrete statistical property (mm of rainfall in a 

community, positive outcomes of a medical testing protocol, for example), GN(u) is calculated 

using the equation 

, (12) 

where N is the number of measured entities, ui represents the scaled magnitudes of the entities 

and q is the Heaviside function. The value of the K-S test statistic is that it is used to derive the 

𝑝-value of a test distribution; the p-value is a parameter that quantifies the probability that the 

data could have been produced by a random sampling from the assumed theoretical CDF. A 

typical 𝑝-value of 5% is used as the threshold below which the Null Hypothesis is rejected and a 

conclusion is made that the data are unlikely to be drawn from the theoretical distribution. 

When the entities in question are the sizes of individual particles we can use Eq. (12), in 

conjunction with G(u) of the TIDC theory, itself calculated for different trial values of the 

temporal exponent n, to calculate DN. Unfortunately, published data on particle size statistics do 

not include all the measurements made on individual particles. There are many reasons for this, 

some having to do with the measurement procedures themselves and others having to do with the 

limitations of older publications where it was awkward or unacceptable to present many pages of 

tabulated data. Instead, typical statistical data are presented in the form of histograms, and our 

only recourse is to make use them. Unfortunately, Eq. (12) cannot be applied to statistical data in 

the form of histograms, so to implement the K-S test it is necessary to devise an alternative 

procedure. As explained in Appendix B3, we use Monte Carlo simulations to generate a 

statistical population of particles based on the theoretical PSD of the TIDC theory, with specific 

DN = supu GN u( )−G u( )

GN u( ) = 1
N θ u − ui( )
i=1

N
∑
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values of n as the input parameter. We then calculate the K-S test statistic using the ECDFs 

constructed using Eq. (B12). 

The results are shown in Figs. 10 and 11. The optimum values of n were obtained from 

the K-S fit (see Appendix B3) and then used to calculate the theoretical PSDs. It is evident in 

Fig. 10 that the visual fits between G(u) and the ECDFs are superb. The fits between g(u) and the 

experimental histograms, Fig. 11, are also excellent. They are certainly at least as good if not 

better than the variety of theoretical PSDs chosen by Thompson et al.  [39] to compare with their 

PSDs. In addition to a stronger basis in the theory of probability, it is clearly seen in Figs. 10 and 

11 that from a purely quantitative perspective the fitting of ECDFs is far superior to fitting the 

PSDs. 

 

FIG. 10. Plots of the ECDFs and the theoretical CDFs of the TIDC theory (red curves) G(u), 
vs. u = r/árñ for the 3 distributions reported by Thompson et al.  [39] and Thompson  [50]. The 
zero offsets in (a), (b) and (c) were -0.052, -0.065 and 0.088, respectively. The values of n 
resulting from the K-S tests, shown in each figure, were used to compute G(u) and are identical 
to the values of nopt shown in Table IV in Appendix B3. 

 

FIG. 11. The theoretical PSDs, g(u), of the TIDC theory (red curves) superimposed on the 
histograms for the 3 alloys. The three figures correspond to those in Fig. 10, with the same zero 
offsets. 
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2.  The Kinetics of Particle Growth 

In the TIDC theory the equation for the kinetics of growth of a particle of average radius 

is given by Eq. (1), but with the temporal exponent 3 replaced by an unknown exponent, n, 

which satisfies the condition 2 ≤ n ≤ 3. In this case Eq. (1) becomes 

árñn – ár0ñn = knt,  (13) 

where the rate constant kn also depends on n and the thermodynamic and kinetic parameters of 

the system, but does not depend on fe. In particular, kn depends on the ratio , both of which 

can vary with r. The assumption d µ rm leads directly to Eq. (13), with 0 £ m £ 1 and n = m + 

2  [31]. This relationship demands that d increase slowly as the particle radius increases, 

reaching the flat-interface value at t = ¥, i.e. the simulated value for the flat interface, d = 1.7 

nm. On the other hand, the concentration dependence of solute diffusion near the interface can 

also produce a result that depends on rm  [82]; this also leads to Eq. (13), but with kn differing for 

the 2 different physical processes. We do not have enough information on the size dependence of 

d or diffusive transport through the interface to know their relative importance, but are confident 

that in concert they justify the existence of a temporal exponent that differs from 3. 

The kinetics of solute depletion, volume-fraction augmentation and particle evanescence 

also depend on n, but as we have demonstrated, the kinetics of particle evanescence reported by 

Thompson et al.  [39] were not reported accurately, so we must rely on analyses of the PSDs and 

kinetics of particle growth to examine how well the TIDC theory of coarsening describes the 

data. Using as a compromise the average value n = 2.5 originating from fitting the ECDFs, Fig. 

10, the data of Thompson et al. are shown in Fig. 12, where they are plotted as árñn vs. t, for 

consistency with Eq. (13). The axes in Fig. 12 are scaled so that the slopes can easily be 

compared visually. As is the case for MDC coarsening, n = 3, the slopes are roughly equal, kn 

being the smallest for the fe = 0.15 alloy and largest for the fe = 0.30 alloy. With the exception of 

the fe = 0.30 alloy the correlation coefficients are slightly smaller than those in Fig. 1. 

!DI δ
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FIG. 12.  The data of Thompson et al.  [39] showing the dependence of the average particle 

radius, árñ, raised to the n = 2.5 power, with aging time, t. The missions, equilibrium volume 
fractions, fe, and correlation coefficients, R2, are shown in each figure. 

3. Implications for Data on Coarsening in Other S-L Alloy Systems 

The data on the coarsening of solid Pb alloy particles  [35] in liquid Pb-Sn alloys and 

solid Co particles in liquid Cu-Co alloys  [33,83] are the only other data sets that can be 

considered moderately extensive. The data of Seyhan et al.  [35] are, at best, in only 

semiquantitative agreement with the predictions of the “first principles” theory of Akaiwa and 

Voorhees  [53] and the “effective-medium” theories of Marsh and Glicksman  [84] and 

Brailsford and Wynblatt  [85]. Seyhan et al. [33] considered numerous reasons why quantitative 

agreement was elusive, offering the following thought late in the Discussion Section of their 

paper, to wit “Finally, of course, the reason for the disagreement between theory and experiment 

could be that the theory is inadequate.” Of all the possible suggestions, we find this one to be the 

most plausible. The TIDC theory of coarsening did not yet exist at the time of publication of the 

paper by Seyhan et al. [33], so they bear no blame or fault in not considering it. We suggest that 

the constancy of their measured rate constants for growth of the average particle, for their alloys 

containing 30, 40 and even 50% solid Pb alloy particles, is fully consistent with the predictions 

of the TIDC coarsening theory. Additional work remains to be done to confirm this conjecture, 

for example atomistic investigations of the Pb(Sn)-liquid interface, measurements of the PSDs in 

3-D and potentially useful experiments on the kinetics of solute depletion in aged specimens.  
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 The conflicting results of experiments on the coarsening of solid Co particles in S-L Cu-

Co alloys  [33,83] cannot be untangled from the results of this investigation. As is the case for 

the solid Pb-liquid alloy system, far more work remains to be done, mirroring the work 

mentioned in the previous paragraph. 

V. SUMMARY 

1.  We have demonstrated that the data on the kinetics of particle growth, taken at face value and 

analyzed according to the LSW theory, Eq. (1), indicate that the rate constants for coarsening are 

essentially independent of the volume fraction of solid b-Sn particles. This is especially true for 

the data on the fe = 0.10, 0.15 and 0.20 alloys. It is also most probably true for the fe = 0.30 alloy, 

where the rate constant k(fe) is slightly larger than for the other 3 (see Table I), due most likely to 

the increased role of coalescence in the higher volume fraction alloy and the influence of the 

single datum on 48 h of aging, see Figs. 1(d) and 4. 

2.  Apart from the fact that the slopes of plots of árñ3 vs. t are essentially independent of fe, 

advocacy of the TIDC theory of coarsening is supported by several other findings. Atomistic 

simulations of the interface between the liquid of eutectic composition and solid b-Sn particles 

show that the width of the interface is ~1.7 nm at 458 K. Using the best data available on 

diffusion of Pb in the solid and liquid phases in the eutectic system, we show that this value of d 

is fully consistent with the condition , Eq. (10), that formalizes the maximum 

particle size below which TIDC| coarsening is valid. Specifically, árñ should be smaller than 

~1,700 µm, an average particle radius which far exceeds the largest average radius reported in 

the Pb-Sn coarsening experiments (~100 µm). 

3.  The PSDs and especially the ECDFs are in excellent agreement with those predicted by the 

TIDC theory. In fact, our calculations show that the ECDFs pass the one-sample Kolmogorov-

Smirnov test, which indicates that the experimental histograms are well described by the 

theoretical TIDC particle size distributions. To the best of our knowledge, this finding is unique 

for experimental statistical data on coarsening in alloys, and furthermore emphasizes the 

importance of analyzing the ECDF quantitatively rather than relying on visual comparison 

between experimental histograms and theoretical PSDs. 

〈r〉≪δ !DL !DI
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VI. CONCLUSION 

Based on all the analyses of the data on coarsening of solid b-Sn particles in liquid Pb-Sn 

alloys obtained under conditions of microgravity, there is only one possible conclusion, and it is 

inescapable; the data are completely consistent with the TIDC theory of coarsening. 
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APPENDIX A: SIMULATION OF S-L INTERFACES IN THE Sn-Pb ALLOY SYSTEM 

1. Simulation geometry and atomic interactions. 

The β-Sn structure was constructed using the conventional unit cell with the lattice 

vectors A1 = ax, A2 = ay and A3 = cz, where a and c are the lattice constants of the tetragonal unit 

cell and x, y and z are unit vectors. The basis vectors have the lattice coordinates , 

 and ; for example, . The solid-liquid 

coexistence simulations used a simulation block containing the solid and liquid phases separated 

by a plane interface. Two cases were considered, with the interface plane being parallel to either 

the (001) or (010) crystallographic planes of the solid phase. In both cases the interface normals 

were aligned with the y axis of the cartesian coordinate system (see Fig. 6). The simulation block 

had the dimensions of 5.914 × 12.947 × 5.914 nm for y normal to (001) and 5.914 × 11.828 × 

6.473 nm for y normal to (010). The number of atoms was 16000 in both simulations. 

Atomic interactions in the Sn-Pb system were described by the modified embedded-atom 

method (MEAM) potential developed by Etesami et al.  [71]. For simulations involving only Sn 

atoms, we used MD in the appropriate statistical ensembles as detailed below. The MD 

integration step was 1 fs. For the binary Sn-Pb system, the SGCMC method was used. The latter 
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was implemented in the hybrid MC/MD mode  [72] with 250 swap attempts after every 250 MD 

steps. Other combinations of the swap attempts and MD steps were also tested and the results 

were found to be insensitive to these choices. The atomic structures and chemical distributions 

were visualized using the Open Visualization Tool (OVITO)  [86]. 

As a test of methodology, the energy of the β-Sn structure was minimized with respect to 

atomic positions and the unit cell dimensions. The minimum energy was found to be −3.0901 eV 

with a = 0.5914 nm and c = 0.3236 nm, giving c/a = 0.5473. These values are in excellent 

agreement with the results of Etesami et al.  [71]. 

2. Phase diagram calculations. 

The first step of the work was to verify our methodology by computing the solidus and 

liquidus lines on the Sn-rich side of the Sn-Pn phase diagram using the phase coexistence 

method  [28,87–92]. The simulations were performed on the solid-liquid systems with the (001) 

interface orientation, but this choice cannot possibly affect the results since thermodynamic 

equilibrium between bulk phases does not depend on the interface crystallography. 

The system was brought to thermodynamic equilibrium by hybrid SGCMC simulations in 

the NPT ensemble (fixed number of atoms, temperature and zero pressure). At a chosen 

temperature, a series of simulations was performed at different values of the chemical potential 

difference ∆µ between Sn and Pb. At each ∆µ, the system energy was recorded as a function of 

time. The energy increased or decreased with time, depending on whether the solid phase was 

growing or melting. The rate of the energy change as a function of ∆µ was calculated and 

interpolated to zero to find ∆µ corresponding to the two-phase equilibrium. Typical structures of 

the equilibrium solid-liquid systems are illustrated in Fig. 6. The chemical compositions of the 

coexisting solid and liquid phases,  and  were obtained by separate single-phase NPT 

SGCMC simulations on smaller systems with the equilibrium value of ∆µ. The simulations were 

repeated at several temperatures to obtain the functions and describing the 

solidus and liquidus lines on the phase diagram. The diagram obtained is shown in Fig. 5 and 

agrees well with the hypereutectic liquid + solid region of the Pb-Sn phase diagram calculated by 

Etesami et al.  [71]. Any minor discrepancies are likely to be due to the difference in the size of 

the simulation block. Note that the MEAM  [71] potential underestimates the solubility of Pb 

atoms in the solid Sn phase in comparison with the experimental phase diagram [40]. 

XSn
S XSn

L

XSn
S T( ) XSn

L T( )
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Finding the melting temperature Tm of single-component Sn required a separate 

calculation since the SGCMC method was not applicable. In this case, NPT MD simulations 

were performed on the same solid-liquid system as above but with Sn atoms only. Again, the rate 

of energy change was recorded for a set of different temperatures and interpolated to zero to 

obtain Tm. The melting temperature of Sn predicted by this potential, Tm = 511 K, is close to the 

value Tm = 510 K reported by Etesami et al.  [40], but exceeding the experimentally measured 

melting temperature of ~505 K. 

3. Analysis of the solid-liquid interface properties. 

The solid-liquid interfaces are characterized by various properties, described by the 

generic variable P(y), which varies throughout the interface region from the liquid to the bulk 

solid. The interface properties are presented as profiles of P(y) vs. y, where P(y) is calculated by 

averaging the property over thin layers parallel to the interface. Two choices of the layer width 

were utilized. For the atomic density profiles, P(y) = CSn(y), where resolution of individual 

crystallographic planes was required, the layer width, l, was chosen to be 0.001 nm. We define 

CSn using the formula CSn = NSn/lAs, where NSn is the number of Sn atoms in the layer and As is 

the cross-sectional area of the simulation block. Within each layer, CSn was averaged in time 

throughout a 1 ns long simulation run. Since the interface location did not change on this 

timescale, the density profiles did not require re-centering. The results of these simulations are 

shown in Fig. 7. The Pb layer concentration, CPb, was also obtained as part of the same 

calculation. 

For other properties, smoother profiles were computed by choosing a larger layer size of 

0.2 nm. Such properties included the potential energy, U, of the atomic interactions, the chemical 

compositions, and the bond-order parameters, Qi, of Steinhardt et al.  [93] for i = 4, 6, 8, 10 and 

12 implemented in LAMMPS. The profile P(y) of each property was averaged over 20000 

instantaneous profiles computed from snapshots saved during a 10 ns long MD run. To eliminate 

the effect of any possible drift of the average interface position, the instantaneous profiles were 

re-centered to the same position before averaging. To this end, each instantaneous profile was 

fitted using the analytic function 

, (A1) P y( ) = PL − PS2
tanh

2 y − y0( )
w

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+1

⎧
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⎪
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⎫
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where PL and PS are the values of the property in the liquid and solid phases, respectively and w 

is related to the width of the interface. As in the previous work  [91], the profiles were smoothed 

before fitting by averaging the data points with their nearest neighbors to reduce the thermal 

noise. Next, all the profiles were superimposed by shifting them to the same interface position y0 

(re-centering), and the final profile was obtained by computing the moving average over this 

superposition. The Qi profiles were additionally shifted by the same amount to achieve a zero 

value of the respective order parameter in the liquid phase. This shift did not affect the interface 

width and only served to clarify the presentation. 

The average value of any property through the interface region, áPñ, is readily calculated 

using the formula áPñ = . On performing the integration using Eq. (A1) with y0 = 

0, we obtain the general result 

. (A2) 

Applying Eq. (2) to obtain the average concentration of Sn in the interface region, for example, 

we find , which is an illustrative though unsurprising result. 

For the chemical composition profiles, PL =  and PS = , the magnitudes of which 

were determined from the calculations of the phase diagram. We preferred to present the 

composition profiles in Fig. 8 using XPb(y) rather than XSn(y) since the traditional representation 

of composition profiles in coarsening processes involves the minority component. Equation (9) 

follows from Eq. (A1) on using the relationship XPb(y) = 1 – XSn(y). Table III summarizes the 

solid-liquid coexistence properties computed as a function of temperature. The equilibrium 

chemical potential difference ∆µ is included for reproducibility of the results. The first three 

columns of the table allow the reader to reconstruct the relevant part of the computed phase 

diagram, Fig. 5. The last line reports the Sn melting temperature. 

In order to model the hypereutectic region of the Pb-Sn phase diagram it was essential to 

compute the profiles of the local energy per atom, U, the concentration of Sn, XSn, and the bond 

order parameter Q10 across the L-S interface as functions of temperature. The results of these 

computations are shown as the profiles across the (001) and (010) interfaces over the temperature 

range 450 to 511 K in Figs. 13 and 14. 

 

δ −1 P( y)d y
−δ /2

δ /2
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Table III: Summary of the computed S-L coexistence properties of the Sn-Pb system at various 
temperatures. These include the liquidus and solidus compositions,  and , the parameters 
w characterizing the (001) and (010) interfaces (indicated by the subscripts) and the equilibrium 
differences between the chemical potentials, ∆µ, between Sn and Pb. 
 

T (K)    w(001) (nm) w(010) (nm) ∆µ (ev) 

450.0 0.706 0.999 1.165 1.142 0.9541 
458.0 0.766 0.999 1.087 1.077 0.9490 
460.0 0.780 0.999 1.124 1.189 0.9471 
470.0 0.850 0.999 1.149 1.039 0.9387 
480.0 0.905 0.999 1.069 0.985 0.9275 
490.0 0.948 0.999 0.913 0.916 0.9101 
500.0 0.976 0.999 0.849 0.828 0.8816 
511.5 1.000 1.000 --- --- --- 

 

  
FIG. 13. The profiles of (a) energy, (b) atom 
fraction of Sn, XSn, and (c) order parameter, 
Q10, across the (001) solid-liquid interface in 
the Sn-Pb system. 

FIG. 14. The profiles of (a) energy, (b) atom 
fraction of Sn, XSn, and (c) order parameter, 
Q10, across the (010) solid-liquid interface in 
the Sn-Pb system. 
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APPENDIX B: PARTICLE SIZE DISTRIBUTIONS AND CUMULATIVE 
DISTRIBUTION FUNCTIONS 

1.  Theoretical considerations 

The probability density function predicted by the LSW theory is represented by Eq. (7). 

Generalization to the TIDC theory requires some background information. In a polydisperse 

array large particles grow at the expense of small ones, and there exists a critical radius, r*, 

which is momentarily neither growing nor shrinking at time t; r* depends on t in the same way 

that árñ does, but r* and árñ are not necessarily equal. In all theories of coarsening the initial 

scaling of the particle size distribution is expressed in terms of the variable z = r/r*, the 

probability that the radius of a particle lying between r and r + dr equaling the probability that 

the scaled radius lies between z and z + dz; this probability is h(z)dz. Since r* is not generally 

measurable, experimental data on PSDs are expressed in terms of the scaling variable u = r/árñ. 

Comparison between experimentally measured and theoretical PSDs therefore requires 

knowledge of the relationship between r* and árñ. It follows from the definitions of u and z that u 

= z/ázñ, where ázñ = árñ/r* is the first moment of the theoretical probability density function h(z), 

which generally differs from g(u). In most situations we need to convert h(z) to g(u), in order to 

compare experimental histograms with theory. Given that h(z)dz = g(u)du, it follows that g(u) = 

h(z)dz/du = ázñh(z). In the special case of MDC coarsening it happens that r* = árñ  [1,2], so that z 

= u, g(u) = h(z) and ázñ = áuñ =1. 

An important feature of the TIDC theory is that n related to the theoretically predicted 

PSD, h(z), through the equations  [25] 

, (B1) 

, (B2) 
and 

, (B3) 

where the factor of 3 in Eq. (B2) was inadvertently omitted. In statistical terms h(z) is a 1-

parameter probability density function in the sense that all second and higher moments are 

determined uniquely by the value of n. 

h(z) = −3φ(z)exp ξ(z){ }
ξ z( ) = 3 φ x( )dx0

z∫

φ( z )= z n−1( )

z −1( ) nn

n−1( )(n−1)
− zn
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Analytical solutions to the system of Eqs. (B1) to (B3) are possible only for n = 2 (IRC 

coarsening) and n = 3 (the LSW case). The PSD for IRC coarsening, n = 2, was first published 

by Wagner  [2]; the equation is 

. (B4) 

Interestingly, Eq. (B4) is identical to the PSD derived by Hillert  [94] for the process of 3-

dimensional grain growth, the kinetics of which is also governed by Eq. (2). To illustrate the 

difference between g(u) and h(z) we first note that ázñ for IRC coarsening is 8/9 [2], hence u = 

9z/8. Eq. (B4) expressed in terms of the scaling variable u is therefore 

 (B5) 

Equations (7) and (B5) predict maximum allowable particle sizes for MDC and IRC coarsening; 

they are umax = 3/2 for MDC coarsening and umax = (3/2)2 = 9/4 for IRC coarsening. 

In the statistics community, measures of Goodness-of-Fit of theoretical distributions are 

nearly universally done by comparing theoretical cumulative distribution functions (CDFs) with 

experimental cumulative distribution functions (ECDFs)  [95]. In terms of the variable u, the 

CDF expresses the probability of that a given particle has a scaled radius smaller than u; in 

mathematical terms this is written as the equation 

, (B6) 

where G(u) is the theoretical CDF. Since the theoretical PSDs are calculated using the variable z, 

it is necessary to take some care in comparing a theoretical CDF with an ECDF. It was shown 

many years ago  [81] that H(z), the theoretical CDF, satisfies the equality H(z) = G(u), but since 

the statistical data in coarsening are expressed in terms of the variable u, and the CDF must be 

calculated using the variable z, it is necessary to transform z to u when analyzing experimental 

data. The general expression for H(z) is  [81] 

. (B7) 

Once H(z) is calculated, u cannot simply be substituted for z for comparison with an ECDF. 

h z( ) = 24z
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Instead, it is imperative to substitute u = z /ázñ , as is also done for the PSD. 

2.  Extraction and evaluation of data 

It is customary in the phase-transformations community to report scaled PSDs in the form 

of histograms, which must satisfy four conditions, two of which have already been stated: 1. The 

area under the histogram, A, must equal unity; 2. The average value of u, áuñ, must also equal 

unity. Additionally, there are 2 other important criteria: 3. The width of every interval (bin) in a 

histogram must have the same value, ∆; 4. The first bin in all histograms must begin at uk = 0, 

where uk represents the maximum value of u in the kth bin, and 

. (B8) 

It is quite easy to take these requirements for granted, but if any one of them is not fulfilled an 

accurate analysis cannot proceed. Assuming that all the frequencies in a histogram have been 

measured accurately, we note that as a general observation A =1 will be satisfied provided that ∆ 

accurately represents the width of the intervals in the histogram; condition #4 need not be 

satisfied because A is the same no matter where the true origin, uk = 0, is located. However, 

condition #4 must be satisfied in order to calculate all higher moments of the PSD, including áuñ. 

This also holds for calculating the ECDF. 

Within a histogram the value of g(u) is constant in each bin and we designate it as gk for 

the kth bin. It is easy to show that A and áuñ are given by the equations 

 (B9) 

and 

, (B10) 

for a histogram with Nh bins. A simpler formula for áuñ is obtained on defining uj in the center of 

the mth bin such that uj = uk – ∆/2. Noting that gj = gk, áuñ is given by the formula 

. (B11) 

The ECDF, designated here as Gk, is readily computed using the formula 

uk+1 − uk = ∆

A = ∆ gk
k=1

Nh
∑

〈u〉 = ∆ ukgk −
∆2

2
gk

k=1

Nh
∑

k=1

Nh
∑

〈u〉 = ∆ u j g j
j=1

Nh
∑
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. (B12) 

3. Implementation of the statistical tests 

In the limit of large N the distribution of the quantity  converges to the 

Kolmogorov distribution which has the following CDF: 

, (B13) 

where  is the Jacobi theta function (z and q are generic arguments used in this function). 

Equation (B13) expresses the probability that a randomly drawn sample from a given assumed 

theoretical distribution will have K < x. The p-value is given by p = 1 – Pr(x), and a small p-

value indicates that it is unlikely that the data came from the distribution g(u). It is remarkable 

that the limiting distribution of the test statistic DN does not depend on the theoretical g(u). For 

finite samples when N is on the order of hundreds, such as in typical coarsening experiments, the 

errors caused by using the N ® ¥ limit can reach a few per cent. A simple fix is to substitute 

 (B14) 

when evaluating the 𝑝-value, which reduces the error to a fraction of a tenth of a per cent when N 

= 100  [96]. 

The use of histograms in lieu of the raw data for N individual particles and the presence 

of a fitted PSD parameter n render the standard K-S test invalid, so Eq. (B13) cannot be used; to 

obtain a p-value one has to resort to Monte Carlo simulations. The procedure we used to arrive at 

the best fit to the ECDFs involved two steps, the aim of which was to determine the optimum 

value of n, nopt, for each volume fraction. 

The first step was a calculation of nopt using the equation  

, (B15) 

which minimizes the maximum deviation between the ECDF and theoretical CDF of the TIDC 

theory. In practice, Eq. (B15) is discretized and DN is no longer evaluated using the supremum, 

Eq. (11), but by the approximation 

,  (B16) 

Gk = Δ Gk−1 + gk( );G0 = 0

K = NDN

Pr x( ) = 2π
x

e− 2i−1( )2π2 8x2
i=1

∞
∑ = 1

x
π
2
ϑ2 0,e

−π2 2x2( )
ϑi z ,q( )

x = NDN + 1
6 N

+
NDN −1
N

nopt = argminnDN

DN ≈maxk GN uk( )−G uk( )



 35 

where uk is the maximum value of u in the kth bin, as in Eqs. (B9), (B10) and (B12). Some care 

must be exercised when minimizing Eq. (B16) numerically since the objective function is only 

piecewise differentiable. Since DN in this case was evaluated using the ECDFs we designate it as 

. 

The next step involved Monte Carlo simulations to generate 105 random sets of size Nh 

drawn from the theoretical PSD, with Nh equaling the number of particles measured 

experimentally. Each set was converted into a histogram using exactly the same bin widths and 

bin offsets as in the original ECDF. The simulations produced new values of nopt which were also 

determined using Eq. (B15), as well as the new test statistic , which was also calculated 

using Eq. (B16) but with the values of G(uk) generated by the Monte Carlo simulations. Finally, 

the 𝑝-values were estimated as the fraction of sets satisfying  > . Uncertainty in the 

value of nopt was estimated by taking the standard deviation of the fitted values over all 105 

random sets. The results are presented in Table IV. 

Table IV. Fitted values of the parameters nopt, and p-values for the 3 ECDFs generated 
from the histograms of Thompson et al.  [39] using K-S test statistics in conjunction with the 
Monte Carlo simulations. 

fe N nopt  p-value 

0.15 773 2.64 ± 0.07 3.1% 12.5% 
0.20 1380 2.41 ± 0.05 2.3% 11.2% 

0.30 1887 2.50 ± 0.04 1.6% 18.7% 
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