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Abstract

We study various properties of the family of elliptic curves x+1/x+y+1/y+ t = 0,
which is isomorphic to the Weierstrass curve

Et : Y 2 = X

(
X2 +

(
t2

4
− 2

)
X + 1

)
.

This equation arises from the study of the Mahler measure of polynomials. We show
that the rank of Et(Q(t)) is 0 and the torsion subgroup of Et(Q(t)) is isomorphic
to Z/4Z. Over the rational �eld Q we obtain in�nite subfamilies of ranks (at least)
one and two, and �nd speci�c instances of Et with rank 5 and 6. We also determine
all possible torsion subgroups of Et(Q) and conclude with some results regarding
integral points in arithmetic progression on Et.

1. Introduction and Main Result

The family of polynomials

Pt(x, y) : x+
1

x
+ y +

1

y
+ t,

has attracted signi�cant attention. The polynomial Pt(x, y) is well known for those

who are familiar with Mahler measure. The (logarithmic) Mahler measure of a

non-zero Laurent polynomial, P (x1, . . . , xn), with complex coe�cients is de�ned as

m(P ) =

∫ 1

0

· · ·
∫ 1

0

log|P (e2πit1 , . . . , e2πitn)|dt1 · · · dtn.

In [3], Boyd studied the Mahler measure of several families of polynomials. In

particular, he considered the two-variable family

Pt(x, y) = x+
1

x
+ y +

1

y
+ t,



INTEGERS: 21 (2021) 2

where t ∈ N. The zeros of Pt(x, y) correspond, generically, to a curve of genus 1. Let

Et denote the elliptic curve corresponding to the algebraic closure of Pt(x, y) = 0.

Let us denote m(t) = m(Pt). Boyd computed m(t) for positive integers t less than

or equal to 100. He found that

m(t)
?
= rtL

′(Et, 0),

where rt is a rational number, L(E, s) is the well-known L-series, and the question

mark stands for an equality that has only been established numerically (typically

to at least 50 decimal places).

There are many conjectures (a few of which are now theorems) related to the

family Pt(x, y) [8, 22, 23, 24]. For example, in [8] Deninger proved the formula

m(x+
1

x
+ y +

1

y
+ 1)

?
=

15

4π2
L(E, 2) = L′(E, 0),

where the Laurent polynomial de�nes an elliptic curve E of conductor 15, and

L(E, 2) is its L-series at s = 2.

In this article we study the polynomial Pt(x, y) in a di�erent direction. The

algebraic closure of Pt(x, y) = 0 is a genus one curve which we denote by Et. Over

the years, several authors have given considerable e�ort to study di�erent families

of elliptic curves. See, for example, [10, 13, 14, 15, 30]. First we explore Et over

the function �eld Q(t). Then we will study Et over the rational �eld Q. We will

also try to �nd high rank curves in the family {Et}, as well as explore the integral
points on Et.

The organization of this paper is as follows. In Section 2, we will introduce the

notion of elliptic surfaces and study the curve Et over the function �eld Q(t). In

Section 3, we consider the curve family over Q and examine the torsion subgroup,

before constructing in�nite families with ranks (at least) 1 and 2. We also run some

experiments to �nd high rank curves in the family Et. Finally, we explore integral

points which are in arithmetic progression in Section 4, and give some directions

for future study.

2. Elliptic Surfaces

The aim of this section is to study the curve Et over Q(t). First we recall some

basic notions about elliptic surfaces.

De�nition. Let C be a smooth, irreducible projective curve over an algebraically

closed �eld k. An elliptic surface over C is a pair (S, f), where S is a smooth,

irreducible, projective surface over k, and f : S −→ C is a relatively minimal elliptic

�bration having a singular �ber and a zero section. We often write f : S −→ C to

denote the elliptic surface (S, f) over C.
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Let k(C) denote the function �eld of the curve C. Given an elliptic curve E over

k(C), one can associate an elliptic surface f : E −→ C with generic �ber E, the

existence and uniqueness of which is guaranteed by the work of Kodaira and Néron.

This elliptic surface is known as the Kodaira-Néron model of the elliptic curve E

over k(C).

Given that all the relevant results needed to prove our main theorem are well

known, we just give their statements and omit the proofs.

Theorem 1 ([26, Corollary 2.2]). Let (S, f) be an elliptic surface over C. The

Néron-Severi group, denoted NS(S), is �nitely generated and torsion-free.

Recall the classical Shioda-Tate formula.

Theorem 2 ([26, Corollary 5.3]). Let (S, f) be an elliptic surface over C. For

each point v of C having singular �ber, let mv denote the number of components

of the singular �ber above v. Let E denote the generic �ber of S. The rank of the

Néron-Severi group of S, denoted ρ(S), can be obtained from the equality

ρ(S) = rank E(k(C)) + 2 +
∑
v

(mv − 1),

where the summation ranges over the the points of C under singular �bers.

We will also need the following lemma.

Lemma 1 ([28, Theorem IV.8.2] and [27, Corollary 7.5]). Let E be an elliptic curve

over Q(t). Let Σ ⊂ P1(Q(t)) be the set of points of bad reduction of E. Let G(Fv)

denote the group generated by simple components of the �ber Fv at v ∈ Σ. There

exists an injective homomorphism

φ : E(Q(t))tors −→
∏
v∈Σ

G(Fv).

If Fv is of multiplicative type In in Kodaira notation, the corresponding group is

Z/nZ. If Fv is of additive type I∗2n, the group is (Z/2Z)2.

We now turn to the main object of our study, the polynomials Pt(x, y). A

Weierstrass model for Pt can be given by

Et : Y 2 = X

(
X2 +

(
t2

4
− 2

)
X + 1

)
, (1)

where

x =
tX − 2Y

2X(X − 1)
, y =

tX + 2Y

2X(X − 1)
.

Then Et is an elliptic curve, provided that t 6= 0,±4. The main result of this

section is the following theorem.
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Theorem 3. Let Et be an elliptic curve over Q(t) given by the equation

Et : y2 = x(x2 + (t2/4− 2)x+ 1).

Then

(i) The associated elliptic surface (denoted E) is rational.

(ii) The rank of Et(Q(t)) is 0,

(iii) The torsion subgroup of Et(Q(t)) is isomorphic to Z/4Z.

2.1. Proof of Theorem 3

In this section, we give the proof of Theorem 3.

Proof. The elliptic curve Et (or equivalently Equation (1)) over Q(t) can be written

in short Weierstrass form as

y2 = x3 +A(t)x+B(t),

where

A(t) = −27(t4 − 16t2 + 16),

B(t) = 54(t2 − 8)(t4 − 16t2 − 8).

The discriminant is then given by

∆(t) = t2(t− 4)(t+ 4).

We now prove each of the parts of the theorem.

(i) Given an elliptic curve

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x+ a6(t)

over Q(t) in long Weierstrass form, we know from [26, Equation 10.14] that

if deg(ai(t)) ≤ i for each i, then the associated elliptic surface E is rational.

In our case, since deg(A(t)) = 4 and deg(B(t)) = 6, the underlying elliptic

surface is rational.

(ii) From the expression of the discriminant, we see that Et has singular �bers at

the values t = 0,±4, and ∞. We determine the numbers mv, of irreducible

components of the �ber over v, from Kodaira types of singular �bers [17,

section 4]:
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v
coe�cients

ordt=v(A) ordt=v(B) ordt=v(∆) Kodaira type mv − 1
0 0 0 2 I2 1
−4 0 0 1 I1 0
4 0 0 1 I1 0
∞ 0 0 8 I8 7

Since E is a rational surface, we have ρ(E) = 10. Thus by Theorem 2 we obtain

10 = rank Ek(Q(t)) + 2 + 1 + 0 + 0 + 7,

and hence rank Ek(Q(t)) = 0.

(iii) By Lemma 1 and the table in the proof of (ii) above, we see that the tor-

sion subgroup of Et(Q(t)) is embedded in Z/2Z × Z/8Z. We have the cyclic

subgroup {∞, (0, 0), (1,±t/2)} on the elliptic curve Et and (0, 0) is the only

point of order 2. Thus the possibilities for Et(Q(t))tors are Z/4Z and Z/8Z.
Now we claim that there is no point of order 8 on Et(Q(t)). If P = (x, y) is

a point of order 8, then 2P = (1,±t/2). (Note that P ∈ Et(Q(t)) means that

x, y ∈ Q(t).)

We have x2P = (x4 − 2x2 + 1)/(4x3 + (t2 − 8)x2 + 4x). Setting this equal to

1, we have

(tx+ x2 − 2x+ 1)(tx− x2 + 2x− 1) = 0.

Solving, we get

x =
(2 + t)±

√
t(t+ 4)

2
,

(2− t)±
√
t(t− 4)

2
/∈ Q(t).

Thus there is no point of order 8 in Et(Q(t)). Hence Et(Q(t))tors = Z/4Z.
Since all the torsion points of Et(Q(t)) are also de�ned over Q(t), it follows

that Et(Q(t))tors = Z/4Z.

3. The Torsion Subgroup over Q

We now turn to examining the curve family Et over the rationals Q. We start with

determining what the possible torsion subgroups are.

Theorem 4. For any value of t 6= 0,±4, the torsion subgroup of Et(Q) is Z/4Z,
Z/2Z× Z/4Z, or Z/8Z.
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Proof. By Mazur's theorem, there are only a �nite number of possibilities for the

torsion subgroup: Z/nZ, for n = 1, 2, . . . , 10 or n = 12, and Z/2Z × Z/nZ with

n = 1, 2, 3, 4. As noted earlier, for any value of t 6= 0,±4, we have the point

P = (1, t/2) which has order 4. Thus, the only possible torsion subgroups are

Z/4Z,Z/8Z,Z/12Z or Z/2Z× Z/4Z.
The point 2P = (0, 0) is of order 2. To have other points of order 2, it is

necessary that the y-coordinate equal 0 or in other words x2 + (t2/4− 2)x+ 1 = 0.

The discriminant of this quadratic in x is t2 − 16. In order for this to be a square,

say t2 − 16 = j2, we parameterize solutions by setting

t =
m2 + 16

2m
,

j =
m2 − 16

2m
.

For any rational value of m, if we set t as above, then there will be two additional

points of order 2: (−m2/16, 0), and (−16/m2, 0). In this case, the torsion group

will be Z/2Z× Z/4Z. The other points of order 4 are the points (−1,±m
2−16
4m ).

We also investigate whether the torsion group can be Z/8Z or Z/12Z. For the

Z/8Z case, we must solve 2R = (1, t/2). Using the formulas for the x-coordinate

when doubling points, this is equivalent to solving

(−x2 + (t+ 2)x− 1)(x2 + (t− 2)x+ 1) = 0.

The discriminants of these quadratics are t2 + 4t and t2 − 4t respectively. We

can parameterize solutions to these discriminants being square by t = 4/(m2 − 1)

and t = −4/(m2 − 1) respectively. In either case, the points of order 8 are then

((m− 1)/(m+ 1),±2m/(m+ 1)2) and ((m+ 1)/(m− 1),±2m/(m− 1)2).

Finally, in order for Z/12Z to be the torsion group, then there must be a rational

point of order 3. The 3-torsion polynomial for this curve is

3x4 + (t2 − 8)x3 + 6x2 − 1 = 0.

This equation is a genus 1 elliptic curve in the variables t and x. We can use a

birational transformation to turn it into the Weierstrass equation

y2 = x3 − x2 + 4x− 4.

This curve has rank 0, and 8 torsion points. Tracing back these eight torsion points

does not lead to any rational solutions of the 3-torsion polynomial. Thus, there are

no values of t for which Et has a point of order 3.

We give concrete examples to show each torsion subgroup is possible. If we let

t = 5 then the curve E5 := y2 = x3 + (17/4)x2 + x has torsion group Z/2Z×Z/4Z.
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The points (1,±5/2) and (±1,±3/2) have order 4, while the points (0, 0), (−1/4, 0),

and (−4, 0) each have order 2. If instead we let t = 1/2, the curve E1/2 : y2 =

x3 − (31/16)x2 + x has torsion group Z/8Z. The points (2,±3/2) and (1/2,±3/8)

have order 8. The points (1,±1/4) have order 4, while the point (0, 0) has order 2.

Finally, for t = 2, the curve E2 := x3 − x2 + x has torsion subgroup Z/4Z, being
generated by P = (1,±1).

We note that if (x, y) is a point on Et, then (x, y) + (0, 0) results in the point

(1/x,−y/x2).

3.1. In�nite Families with Positive Rank

A quick experiment seems to show that the rank of Et (over Q) is frequently 0 or

1, with the number of curves yielding each rank being about equal. One interesting

property we observed is that most of the rational non-torsion points on the positive

rank curves (including the generators) seem to have x-coordinates which are squares.

In a small number of cases, they are negative squares. We are not sure why this is

the case.

To construct a subfamily E′c of Et which has positive rank, let t = c2 + c− 2, for

c 6= −3,−2, 1, 2. Then there is a rational point R(c) = (c2, c(c−1)(c2 +2c+2)/2) on

E′c. We now use [12, Theorem 1.3] to show that rank of E′c(Q(c)) is exactly one. The

theorem deals with elliptic curves E given by y2 = x3+A(t)x2+B(t)x, where A,B ∈
Z[t] with exactly one nontrivial 2-torsion point over Q(t). If t0 ∈ Q satis�es the

condition that for every nonconstant square-free divisor h of B(t) or A(t)2 − 4B(t)

in Z[t] the rational number h(t0) is not a square in Q, then the specialized curve Et0
is elliptic and the specialization homomorphism at t0 is injective. If additionally

there exist P1, . . . , Pr ∈ E(Q(t)) such that P1(t0), . . . , Pr(t0) are the free generators

of E(t0)(Q) then E(Q(t)) and E(t0)(Q) have the same rank r, and P1, . . . , Pr are

the free generators of E(Q(t)).

For E′c we have A(c) = (c4 + 2c3 − 3c2 − 4c− 4)/4 and B(c) = 1. We rescale by

an isomorphism (x, y)→ (22x, 23y) so that the coe�cients are integers. This yields

A′(c) = c4 + 2c3 − 3c2 − 4c− 4 and B′(c) = 16. Then we calculate

A′(c)2 − 4B′(c) = (c− 2)(c+ 3)(c2 + c+ 2)(c+ 2)2(c− 1)2.

There are 31 squarefree factors of this polynomial, which are the various non-trivial

products of the factors c − 2, c + 3, c2 + c + 2, c + 2 and c − 1. We �nd that the

specialization at c = 8 satis�es all the conditions of [12, Theorem 1.3], with all the

squarefree factors evaluating to be nonsquare. Also at c = 8 the specialized curve

E′8 is easily computed to have rank 1, with R(8) = (64, 2296) being a generator [25].

Thus E′c has rank 1 over Q(c) and we can conclude that R(c) is its free generator.

It is not di�cult to construct other positive rank (in�nite) subfamilies of the

curves Et. In the next section we show how to do so yielding curves with (at least)
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two linearly independent points. We note that the record for in�nite curve families

over Q(t) with torsion group Z/4Z is 5 [10].

3.2. A Rank 2 family

In this section we construct another in�nite family with positive rank. Again let

c be a given rational value, for which we want to have a rational point with x-

coordinate c be on the curve. Setting x = c in Equation (1), we are led to consider

the equation

y2 − (c2/4)t2 = c(c− 1)2

as a quadratic in y and t. We may parameterize the solutions by

t =
cm2 − 4(c− 1)2

2cm
,

y =
−cm2 − 4(c− 1)2

4m
.

Thus, given any value of c we may set t by the equation above. The point(
c,
−cm2 − 4(c− 1)2

4m

)
will then be a rational point on the curve Et.

Assuming that c 6= ±1, the point will almost assuredly have in�nite order. In-

deed, let m = 1 and c = 3. Then t = −13/6 and the point (3, 19/4) lies on the curve

E−13/6 and has in�nite order. By Silverman's specialization theorem [29], the rank

of this in�nite family is (at least) 1 for all but �nitely many values of c and m.

We can further increase the rank of the family. To do so, we force 3c to be an

x-coordinate of a rational point. The resulting equation which needs to be satis�ed

is

144c4 + (360m2 − 576)c3 + (9m4 − 144m2 + 864)c2 + (−24m2 − 576)c+ 144 = z2,

for some rational z. We �nd a solution is

c =
6m4

(m2 − 24)(m4 − 24m2 + 72)
.

The resulting value of t is

t =
m12 + 72m10 − 6480m8 + 141696m6 − 1213056m4 + 4478976m2 − 5971968

6m5(m2 − 24)(m4 − 24m2 + 72)
.

With this value of t, there are then rational points with x-coordinates c and 3c.

By specialization, we may see they are linearly independent points. Take m = 3,
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and then t = 2257/1890 and c = 18/35. The two points are (18/35, 3413/7350)

and (54/35, 2797/2450). Using SAGE, we compute the determinant of their height

pairing matrix, which is 23.3477634284835 6= 0. Thus, the points are linearly inde-

pendent, which shows the rank of this family is (at least) 2.

The exact same technique may be done more generically, replacing 3c by rc, for

any rational value of r. We omit the details.

We now use [12, Theorem 1.3] to show that rank of Em(Q(m)) is exactly two.

As before, we need to scale by an isomorphism so that the coe�cients are integers.

The resulting coe�cients are

A′(m) = m24 − 144m22 + 19872m20 − 1686528m18 + 78879744m16

− 2170810368m14 + 37076963328m12 − 403537821696m10

+ 2818207531008m8 − 12558905376768m6 + 34549889236992m4

− 53496602689536m2 + 35664401793024,

and

B′(m) = 20736m20(m2 − 24)4(m4 − 24m2 + 72)4.

Then

A′2(m)− 4B′(m) = (m12 − 24m11 + 72m10 + 1152m9 − 6480m8 − 15552m7

+ 141696m6 + 41472m5 − 1213056m4 + 4478976m2

− 5971968)(m12 + 24m11 + 72m10 − 1152m9 − 6480m8

+ 15552m7 + 141696m6 − 41472m5 − 1213056m4 + 4478976m2

− 5971968)(m12 + 72m10 − 6480m8 + 141696m6 − 1213056m4

+ 4478976m2 − 5971968)2.

It is easy to obtain the squarefree factors from the formulas above. Specializing

atm = 8/5 leads to none of them being rational squares. The rank of the specialized

curve is 2. Using SAGE, we have checked that the two points with x-coordinates

c and 3c (resulting from m = 8/5) are generators. Concretely, these points are

(−9600/89579, 46430503325/64195177928) and (−28800/89579, 148191339735/64195177928).

3.3. Examples of Elliptic Curves of High Rank

We searched for curves Et with high rank, and were able to �nd a single elliptic

curve of rank 6 in the family Et, as well as many curves of rank 5. The record for

elliptic curves with torsion group Z4 is 13 [9].

We use the sieving method based on Mestre-Nagao sums ([16], [20]). Let E/Q
be an elliptic curve, and p be a prime. Set ap = ap(E) = p+ 1− |E(Fp)|. Given a

�xed integer N , the Mestre-Nagao sum is de�ned by
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S(N,E) =
∑

primes p≤N

(
1− p− 1

|E(Fp)|

)
log(p)

=
∑

primes p≤N

−ap + 2

p+ 1− ap
log(p).

It has been conjectured that in general, larger values of S(N,E) tend to cor-

respond to curves with high rank. Provided N is not too large, S(N,E) can be

calculated using SAGE [25].

We performed some experiments and searched the family Et for integral t with

t ≤ 1, 000, 000 (without loss of generality we may assume t > 0. We found many

curves with rank 4. Up to t < 500, 000, the list for such t includes the following

values: 15388, 63404, 63436, 95493, 103437, 107684,120006, 128176, 144231, 182249,

187351, 190381, 207404, 302512, 316863, 324972, 422212, 426404. We also searched

using rational values of t, where the numerator and denominator were bounded

by 5000. We again found many curves with rank 4, with the �rst three being

t = 101/251, 110/221, 242/279. In addition, we found some curves with rank 5:

t = 1121/595, 1577/1309.

In addition, we also searched the family Et, with t = c2 +c−2. As we saw in Sec-

tion 3.1, this ensures the rank is at least 1. We found a large number of curves of rank

5, and one curve with rank 6. The following values of c all yield rank 5 curves: c =

27/80, 52/85, 59/268, 75/208, 151/120, 157/280, 235/133, 265/272, 327/55, 381/56,

415/73, 442/159, 507/136, 540/37, 575/147, 598/37, 607/204, 635/46, 655/72,

659/22, 676/119, 687/35, 697/273, 699/143, 717/50, 736, 103, 745/99, 761/17,

791/55, 813/49, 830/49, 831/220, 885/259, 901/31, 915/161, 934/209, 958/261,

968/119, 974/77, 1027/168, 1051/177, 1055/296, 1091/280,157/323, 172/363,190/451,

242/345. The rank 6 curve is c = 1079/231, yielding t = 13899/13157.

We attempted to �nd high rank curves in the family of Section 3.2, but the

coe�cients quickly grow too large to e�ciently compute the ranks while doing any

kind of extensive search.

4. Directions for Future Work

Finding points in arithmetic progressions on the curves is one of the fascinating

problem of Diophantine equations. There are several papers dedicated to this prob-

lem [1, 2, 4, 5, 6, 7, 19, 18, 31]. One direction for future work is to consider arithmetic

progressions on Et. We say three points P1, P2, P3 lying on Et are in arithmetic

progressions if their x coordinates (or their y coordinates) are in arithmetic pro-

gressions. We know that T1 = (1,− t
2 ), T2 = (0, 0), T3 = (1, t2 ) are torsion points on

Et(Q). One can obviously see that the y- coordinates of T1, T2, T3 are in arithmetic
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progression. Likewise, any point (x, y) with y 6= 0 will lead to a length 3 progression

in the y-coordinates: (x, y), (0, 0), (x,−y).

Besides these trivial cases, we can try to create a progression using two of the

torsion points. As a �rst case, consider using the x-coordinates of T1 and T2; we

have x = 0 and 1. To obtain a longer progression, we thus need to check the cases

x = −1 and x = 2. For each case, we are led to a quadratic equation which can be

parameterized leading to in�nitely many values of k for which the particular value

of x is the x-coordinate of a rational point. For example, for x = 2 we need k2 + 2

to be square. Setting k = (m2 − 2)/2m will always make k2 + 2 a square. Thus,

there are in�nitely many values of k which lead to a progression with x = 0, 1, 2.

The same is true for the case x = −1. It is possible to try an extend this further to

a length 4 progression, but using the parameterization we are then led to a quartic

equation needing to be square. In every case, this is an elliptic curve for which we

can compute the rational points. In no instance does the progression extend further

for the many examples we tried.

If we examine the y-coordinates, we have 0,±t/2 for the coordinates of the Ti. If

we look for a point with y-coordinate t we are led to needing a root of the equation

x3 + (t2/4 − 2)x2 + x = t2, an elliptic curve. This curve only has only the trivial

point (0, 0), hence we do not have such a progression. We similarly check for points

with y-coordinates t/4 and ±3t/2, but have the same outcome.

In this work, we studied the elliptic curves de�ned by the polynomials Pt(x, y).

One could further explore the integral points of Et, including properties like whether

they are in arithmetic progressions or even in geometric progression. Possible ques-

tions to be answered are listed below.

• Question 1. Is there a non-trivial arithmetic progression of either the x− or

y-coordinates of {P1, P2, P3} on the curve Et when one of the points Pi is equal
to the torsion point T2 = (0, 0), and the other two points are non-torsion?

• Question 2. Does there exists three non-torsion points whose x or y-coordinates
are in arithmetic progression?

In the future we will try to answer these questions. It would also be interesting

to continue to �nd high rank curves in the family Et, or �nd speci�c curves with

rank higher than 6.
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