
1 

Metamorphic Testing on the Continuum of 
Verifcation and Validation of Simulation Models 

M S Raunak, Megan M Olsen 

Abstract—Metamorphic testing has been shown to be useful 
in testing “non-testable” programs in many domains. Modeling 
& simulation is one such domain, where both verifcation and 
validation can be diffcult due to lack of oracles. Although the 
defnition of verifcation and validation vary slightly in modeling 
and simulation when compared to standard software, we show 
that metamorphic testing is appropriate in both aspects of 
ensuring that a simulation model is accurate. In this paper we 
expand on our fve years of prior work on metamorphic testing 
for simulation validation to show how metamorphic testing can 
be used for verifcation as well, and how the previously defned 
guidelines for validation can be utilized in eliciting metamorphic 
relations for verifcation. 

Index Terms—Modeling and Simulation, Verifcation and Val-
idation, Metamorphic Testing. 

I. INTRODUCTION 

Software systems have become an integral part of every 
aspect of our lives. From simple computation to complex 
analysis, from mundane automation to intricate simulation, 
computational models and their executable implementations 
are driving many areas of scientifc advancement. Ensuring the 
correctness and reliability of these systems is important, and 
done via verifcation and validation. Verifcation of software 
is defned as the set of activities that ensure the consistency 
between the specifcation of a software and its actual imple-
mentation. Validation of software, on the other hand, involves 
the set of activities that establishes how closely software meets 
its real requirements, i.e., the need of the users [1]. 

Software testing, a broad and multi-faceted term, is the 
primary approach used for verifcation. The goal of testing 
is to discover software faults or anomalies. Edsger Dijkstra 
famously pointed out, “Program testing can be used to show 
the presence of bugs, but never to show their absence!” 
Nevertheless, testing has been our primary vehicle to increase 
confdence that software behaves as expected under all inputs 
and conditions. Testing requires judiciously selecting a subset 
of a software’s usually infnite input and confguration space, 
executing it with the selected elements (test cases), and then 
ensuring that it matches the expected output. Exhaustive test-
ing, where all inputs and confgurations are tested for correct 
output, is infeasible for any reasonable software system due to 
the infnite input and confguration space. Hence, the goal of 
testing is to determine how to select the test cases and know 
when enough testing has been done such that testing can stop. 

M S Raunak is a Computer Scientist at the National Institute of Standards 
and Technology. E-mail: raunak@nist.gov 

Megan Olsen is an Associate Professor at the Department of Com-
puter Science, Loyola University Maryland, Baltimore, MD 21210. E-mail: 
mmolsen@loyola.edu 

To run tests we also need a test oracle, which is a mech-
anism through which one knows if software is producing the 
correct output or behavior. Setting up a test oracle is a neces-
sary and reasonable step for most software systems. However, 
for some programs developing an oracle is either extremely 
diffcult or too expensive, and are thus often termed ‘non-
testable’ [2]. Metamorphic Testing (MT) has been successful 
in testing ‘non-testable’ programs in many domains [3], [4] 
such as cryptographic algorithm implementations [5]–[7], sci-
entifc computations [8], and machine learning algorithms [9], 
[10]. One important domain that is particularly well-suited for 
metamorphic testing is Modeling and Simulation (M&S), as 
simulation models and their executable implementations suffer 
from the same test oracle problem. 

Validation of simulation models differs from the standard 
software validation defnition as it specifes how well an 
executable simulation model mimics the real world system 
that it simulates. Often a simulation model is built when the 
real world cannot be directly experimented with due to its 
complexity, cost, or safety issues. Models of protein folding, 
nuclear reaction, and epidemic spread are examples of such 
scenarios. Once the model is conceptually defned and then 
implemented, we need to verify that it does not have bugs and 
validate that it mimics the real world scenario closely enough 
for its purpose. Standard validation approaches primarily rely 
on either an expert on the modeled system to determine 
whether the conceptual model correctly represents the system, 
or comparing the output to known results. Unfortunately, either 
or both of these resources may be diffcult to acquire at a 
suffcient level for any given model, leading to an oracle 
problem. Our prior work shows that metamorphic testing can 
fll this gap, and provides guidelines for its application [11]. 

On the other hand, the meaning of verifcation for simulation 
is largely the same as in standard software: making sure 
that the computer code implementing the model is internally 
consistent and matches the model’s specifcation. Metamor-
phic testing has been shown to be useful for verifcation of 
simulations in a number of case studies [12]–[14], as it can 
be most natural to apply it for testing. However, there is no 
defned process for eliciting the metamorphic relations for 
verifcation, or determining if a metamorphic relation is for 
verifcation or validation. In this paper, we present a cohesive 
process for using MT on both verifcation and validation of 
simulation models, building on our prior process on using MT 
for simulation validation [11], [15], [16]. We propose that 
verifcation and validation of simulation models need to be 
considered as a continuum, and demonstrate how MT should 
be applied within that spectrum. 

mailto:mmolsen@loyola.edu
mailto:raunak@nist.gov


2 

II. RELATED WORK 

Bair and Tolk argued that there is no unifed frame of 
reference in the literature for simulation validation [17]. Nev-
ertheless, researchers and practitioners in the M&S community 
discuss three different areas of validation: conceptual valida-
tion, data validation, and operational validation [18]. From 
the software engineering verifcation and validation (V&V) 
angle, the primary area of concern is the operational validation, 
which checks how well the model represents the real world 
behavior that it simulates [15]. The Handbook of Simulation 
presents over 75 different V&V techniques categorized in four 
different groups: informal, static, dynamic, and formal [19]. 
Informal techniques such as review, inspection, visualization, 
and face validation are some of the most commonly used 
approaches for validating simulation models. Static techniques 
are based upon software static verifcation, and some can 
be applied for analyzing operational validity of simulation 
models in a limited way. Dynamic techniques are essentially 
extensions of software testing techniques, and are used for 
verifcation of simulation code. Most of these verifcation 
techniques are not directly applicable for model validation, 
however. Some dynamic techniques that are specifcally used 
for validation purposes, e.g. statistical techniques, rely heavily 
on the presence of real world data from the system under 
study (SUS) [18], [20]. Model validation has thus been a 
well-established challenge in building trustworthy and useful 
simulation models [21]. A consequence of this challenge is 
that validation efforts on specifc models are often absent or 
not clearly reported in the literature [22]. 

Over the last two decades, Metamorphic Testing (MT) 
has grown as a dominant technique for testing systems that 
suffer from the ‘oracle problem’ [3], [4]. Researchers have 
applied it to cryptographic algorithms implementations [5]– 
[7], memory systems [23], Artifcial Intelligent (AI) applica-
tions in autonomous systems [9], [13], [24], and driver-less 
cars [25] amongst many other domains. Of particular relevance 
to the work presented here, MT has also occupied a very 
interesting and important place for verifcation and validation 
of modeling and simulation. Some early work showed the 
presence of metamorphic relations and use of metamorphic 
testing in simulation models with limited applicability and a 
narrow focus. In one of the earliest works in this domain, 
Murphy and Raunak showed that MT is useful in fnding 
bugs in simulation software [12]. Lindvall et al. presented a 
case study of using metamorphic testing on an autonomous 
robot simulation, which verifed the simulation code [13]. 
He et al. showed the use of MT for verifcation of a high 
performance numerical simulation program, and pointed out 
that even though MT is a highly promising and successful 
technique for testing simulation, there are still many chal-
lenges [14]. Ding and Hu, for example, articulated the need 
for measuring and enhancing the adequacy of Metamorphic 
Relations (MRs) using a Monte Carlo simulation program 
[26]. Olsen and Raunak articulated a process for using MT for 
simulation model validation after noting that many researchers 
were only applying MT as verifcation in simulation, and 
there was no obvious approach for validation [15], [16]. They 

Fig. 1. Applying MT for simulation exists over a V&V Continuum. 

presented ideas and examples on how to modify MT to be 
applicable for validating both agent-based as well as discrete 
event simulation models. [11] presented a general framework 
for validating simulation models using MT and showed its 
applicability through a set of detailed guidelines and case 
studies, with the extension to verifcation left as future work. 

In summary, the primary work thus far on metamorphic 
testing in modeling and simulation has either been examples 
of verifcation, or guidelines and case studies for validation. 
There has not been an overarching approach yet that en-
compasses both verifcation and validation. We have noticed 
that many researchers are unsure how to differentiate MR for 
verifcation vs. validation, when applying MT to simulation 
models. In this paper, we propose that MT can be an effective 
tool for both verifcation and validation of simulations, and 
propose how to identify, apply, and differentiate metamorphic 
relations for both purposes. 

III. OUR APPROACH 

To properly defne metamorphic testing for simulation, 
three aspects need to be determined: 1) How to differentiate 
between verifcation and validation for Metamorphic Relations 
(MR); 2) How to defne MRs for verifcation; and 3) How to 
defne MRs for validation. Our previously published guidelines 
provide a process for eliciting MRs for validation in agent-
based and discrete event simulation models [11]. At a high 
level, there are two types of MRs: those that are defned by a 
change to a parameter value, and those that are defned by a 
change to the model. We provide a framework within which 
MRs for validation should be defned, based on the common 
aspects of these types of models. We also provide guidelines 
on how to defne these relations and test them [11], [15], [16]. 

In this paper, we propose that MT should be considered as a 
continuum for increasing trust in simulation models and their 
implementations (Figure 1). The primary difference between 
MT used for validation and those used for verifcation are 
what information is used to defne the output-pair. In the case 
of validation, we use the abstract model or the real world 
system to predict how a change in model or parameter affects 



3 

Fig. 2. The overall process for applying Metamorphic Testing for verifcation and validation of simulation models. Expanded from Figure 3 in [11], with 
additions for verifcation highlighted. 

the change in simulation output. In the case of verifcation, 
we are using implementation details to make that prediction. 
The line between verifcation and validation for simulation is 
not always clear. However, we propose that if one focuses on 
what is informing the MR, then it becomes clear whether a 
MR is for verifcation or validation. 

Verifcation of simulation code is generally easier to accom-
plish than model validation. However, not all aspects of the 
model’s implementation may have an available oracle. It is 
in those cases that MT will be most valuable. The question 
then remains as to how one develops the verifcation MRs. The 
process of eliciting these MRs can also lead to identifying test 
cases for which an oracle is already present. Our earlier work 
details the different aspects of a simulation model in terms of 
categories that one needs to consider for discovering the MRs. 
As an addition to that framework, we propose the following 
steps to verify and validate simulation models using MT: 

1) Consider what aspects of the model must be verifed and 
validated. 

2) Identify aspects from step 1 that cannot be tested using 
traditional verifcation or validation techniques. Focus 
on eliciting MRs from these aspects. 

3) For each aspect enumerated, consider how a change to a 
parameter should affect the system. There may be more 
than one change/result pair for a given parameter. 

4) For each aspect enumerated in step 2, consider how 
a change to the model should affect the system, for 
example, a small change to an algorithm. Again, more 
than one change/result pair is possible for an aspect. 

5) Classify the change/result pairs as one of the following: 

a) If the outputs are exactly known values, it indicates 
that you have successfully specifed an oracle for 
those test cases. Add them to the standard test suite. 

b) If the outputs aren’t exactly known values, yet the 
type of change in an output can be predicted due 
to expert domain knowledge of the system being 
modeled, it is a MR for validation. 

c) If the outputs aren’t exactly known values, yet the 
type of change in an output can be predicted due 
to the code or implementation details, it is a MR 
for verifcation. 

When eliciting MRs, there are two sources of information 
to aid the process: the code or implementation plan, and 
knowledge of the system being modeled (“domain knowl-
edge”). In general, the code or implementation will inform 
the verifcation MRs and the domain knowledge will inform 
the validation MRs. However, as one is eliciting metamorphic 
relations, creation of a relation for validation may cause an 
intuition of a relation for verifcation, or vice versa. Thus, the 
need for step 5. 

As one follows step fve above, it will become clear that 
some MRs are almost both verifcation and validation; thus, 
the continuum in Figure 1. In general, the validation MRs 
could be defnable by a domain expert who is not involved in 
model development, whereas the verifcation MRs are more 
likely to be defned by a simulation developer. In practice, 
the simulation developer is likely to be the creator of both 
sets of relations. We propose that when it is unclear exactly 
where to draw the line between verifcation and validation, 
that the modeler use their best judgement based on their 
knowledge of the domain and the simulation being tested, 
and considering our guidelines. The key is to consider what 
information is informing the predicted change: the system 
being studied (validation), or the implementation or model 
design details (verifcation)? This consideration will lead the 
modeler to correctly categorize the MRs within the continuum. 

At the end of this process, a test suite will exist. Figure 
2 shows an overall process from identifying the model to be 
validated and verifed to creating and testing the metamorphic 
relations. This fgure expands on our proposed process for 
metamorphic testing for simulation validation [11]. For val-
idation in particular there is a risk that an initially defned 
MR may actually be a misconception on the domain, and thus 
if a test fails it should be considered whether the error is in 
the model or the MR. Please see [11] for a full discussion 
on this type of situation. Although we leave this step in the 
overall process diagram, we expect that any errors resulting 
from verifcation MRs are due to errors in the model only, 
and thus will indicate bugs to be fxed. 

IV. CASE STUDY 

To illustrate the idea of MT on the continuum of verifcation 
and validation of simulation models, we present a case study 



4 

Fig. 3. The three network types modeled: a) Small-World Network, b) Scale-
Free Network, c) Random Network. 

Fig. 4. An example gossip network. A node with a star is an observer, where 
the gossip initiates. Shaded nodes are distorters who change the bit string. 

simulating how gossip can propagate in a human social 
network. This case study was used in [11], [16] for eliciting 
MRs for validation, and is based on a published model [27]. 

The simulation is an agent-based model where nodes rep-
resent gossipers that are connected within a network. The 
topology of the connections between the nodes will defne how 
information can fow (Figure 3). The edges between the nodes 
can be assigned randomly (random network), using a power 
law distribution (scale-free network), or such that most nodes 
are not direct neighbors of each other but have a short distance 
separating them (small-world network). Gossip is defned as a 
bit string, and begins at randomly assigned “observers.” At 
each step of the model, any node that previously received 
gossip will spread their gossip to any neighbor with whom 
they have a strong enough connection (Figure 4). However, 
there are predefned distorters within the system that modify 
some percentage of a bit string message before passing it on to 
their neighbors. Nodes that received more than one potential 
belief will make a decision on what gossip to believe using one 
of three decision rules: mode, which choose the most common 
message; bitwise mode, which choose the most common bit 
at each position in the bit string message; and random, which 
chooses a received message uniformly at random. Once gossip 
is done spreading within the system, a ftness between 0 and 
1 is assigned to each node and the system overall based on 
how close to the truth each node believed. 

In the following sections we will frst defne the aspects 
of the model that must be verifed and validated, then show 
metamorphic relations for both verifcation and validation and 
discuss their differences. 

A. Defning Aspects of Model to Test 

As described in our approach, the frst step is to determine 
the parameters and model aspects that need testing. The 
potential parameters are mean node degree, number of agents, 
number of observers, number of distorters, choice of network 
type, choice of decision rule, message length, amount of 
distortion, and threshold of weight for sending to neighbors. 

Aspects of the model that should be considered are the 
creation of each type of network, the creation of the correct 
number of nodes, the creation of observers, the creation of 
distorters, process of gossip propagation for an individual 
node, management of the gossip propagation steps (“waves”), 
calculation of ftness, heterogeneous decision rule usage, mode 
decision rule, bitwise mode decision rule, random decision 
rule, belief updates, and weight updates. 

Some aspects of the model already have oracles, such as 
testing that the networks are properly created, and that updates 
to ftness are correctly calculated. We can also verify that the 
correct number of observers and distorters are created in the 
system, the mean node degree is represented in the created 
network, the specifed network type was created, the message 
length is correct, the distortion amount is correct, the threshold 
of the weight is correctly represented, and the decision rules 
are using the correct processes on individual decisions. 

Although this model benefts the most from using MT on 
the validation side of the continuum, there are still aspects 
to gossip propagation that can be further verifed using MT. 
In the following subsections we will examine metamorphic 
relations that are appropriate for each end of the continuum. 

B. Eliciting Metamorphic Relations for Validation 

In our prior work we showed the development of MRs for 
simulation validation in this particular model [11], [15], [16]. 
We proposed that MRs for validation should be defned as 1) 
the parameter or property to which the MR applies; 2) the 
modifcation; and 3) the expected change to the output. The 
fnal version of the MRs for this model can be seen in the 
top part of Table I, and full details on the process followed to 
elicit these relations can be read in the paper [11]. The table 
shows that metamorphic relations are divided into categories 
defned for agent-based models: A2 is agent parameters; A3 
is agent topology; A4 is interactions between agents; and A6 
is individual agent behaviors. 

These MRs are defned based on the parameters and model 
aspects defned in the prior subsection, based on the expec-
tations in the real system being studied (e.g., actual gossip 
spread). The A2 MRs, the third A3 MR, the A4 MR, and the 
frst three A6 MRs result from changes in parameter values; 
the rest are examples of model changes. Results from testing 
these MRs can be seen in [11]. 

C. Eliciting Metamorphic Relations for Verifcation 

Metamorphic relations for simulation verifcation can be 
elicited using a similar process, as described in Section III. 
In this particular model, we beneft the most by using MT to 
examine the algorithms used to propagate gossip, as well as 
the parameters and constants that defne how the model runs 
during gossip propagation. To demonstrate, we provide two 
sets of tests: example MRs for verifcation that are tested via 
parameter change (”V1”); and example MRs for verifcation 
that are tested by model change (”V2”). Both sets can be seen 
in Table I. All verifcation MRs were elicited by examining 
the code. 



5 

TABLE I 
METAMORPHIC RELATIONS FOR THE NETWORKED AGENT BASED MODEL (ABM) STUDYING GOSSIP PROPAGATION. VERIFICATION MRS (V1-2) ARE 

NEWLY PROPOSED; VALIDATION MRS (A2-6) ARE BASED ON TABLE I FROM [11]. 

Type Parameter or Property Type of change Pseudo-oracle Answer 

Number of agents increase no change in ftness 

A2 
Number of agents decrease no change in ftness 
Ratio of observers increase overall ftness increases 
Ratio of distorters increase overall ftness decreases 

Observer placement in scale-free network placed as hubs ftness increases 
A3 Distorter placement in scale-free network placed as hubs ftness decreases 

Mean node degree Increases Fitness increases 
A4 Message length increases bitwise mode improves over standard mode 

Decision rule Bitwise mode Best result of 3 decision rules 
Decision rule Standard mode Outperforms random except in scale-free, 

only if all nodes are not distorters 
A6 Decision rule Standard mode Identical to random if all nodes are distorters 

Heterogenous decision rule: Standard with bitwise bitwise percent increases Fitness increases 
Heterogenous decision rule: Standard with random standard percent increases Fitness increases except in scale-free 
Heterogenous decision rule: random with bitwise bitwise percent increases Fitness increases 

V1 
Neighbor weight threshold increase wave length decreases 
message length with bitwise mode signifcant increase computation time increases 

Mode decision rule least common kept overall ftness decrease 
V2 Bitwise Mode decision least common kept overall ftness decrease 

Initial Message random No change to results 

Verifcation MRs that are tested via changing a parameter 
or constant value include: 

1) If the threshold of neighbor weight, which defnes to 
whom you share your gossip, is increased, then the 
length of the wave should decrease. 

2) If the message length signifcantly increases with bitwise 
mode, the computation time increases. 

Verifcation MRs that are tested via model changes include: 
1) If the mode decision rule is changed to take the least 

common belief instead of most common, overall ftness 
decreases. 

2) If the bitwise mode decision rule is changed to take the 
value with the smallest score instead of largest score, 
the overall ftness decreases. 

3) If the message is initialized randomly instead of all ones, 
the results should not change. 

D. Comparison of Validation and Verifcation 

All MRs for verifcation are defned based on knowledge 
of the code and implementation, as opposed to the system 
being studied. In each case they enable us to have better trust 
in the implementation of the model, as opposed to whether 
the model correctly represents gossip spread. As described in 
[11], the difference between verifcation and validation can be 
tricky when eliciting MRs for simulation models. The MRs 
on message length demonstrate how the same parameter may 
be both verifed and validated with different metamorphic 
relations. The validation relation states how the decision rules 
succeed based on message length; although there are imple-
mentation details causing that difference, the difference is 

primarily expected due to the real system being represented by 
those rules. The validation relation is therefore close to the line 
between validation and verifcation, but falls on the validation 
side. The verifcation relation defnes how computation time 
increases, which is based on implementation details; if this 
MR is upheld, then it increases our confdence that all of the 
involved parts of computing belief are implemented correctly. 
It does not, however, increase our confdence that it is correctly 
modeling the real system, as computation time has no analogy 
to the real world. It is therefore frmly a verifcation MR. 

E. Changes that Result in Oracles 

While developing MRs, in some cases an oracle is the 
answer for how the results should appear after making a 
change to a parameter or model. The following non-exhaustive 
list of tests can be performed for verifcation without the use 
of metamorphic testing, but can be elicited by following our 
process. In traditional verifcation, these can be considered as 
extreme case testing: 

1) If there are no distorters in the network, all nodes’ ftness 
and overall ftness should be 1. 

2) If distorters modify belief by zero (i.e., the distortion 
causes no change to the message) then all nodes’ ftness 
and overall ftness should be 1. 

3) If a node is allowed to have no neighbors, its ftness 
should be zero. 

The goal of verifying and validating a model is to ensure 
that it is trustworthy for asking questions about the system be-
ing studied. It is of course possible that some of these oracles 
could have been developed without the metamorphic testing 



6 

process, but the system only benefts from this opportunity to 
ensure a more complete test suite. 

V. CONCLUSION 

In this paper we defne guidelines for applying metamorphic 
testing within the continuum of verifcation and validation of 
simulation models. Simulation models are particularly diffcult 
to validate, as data from the real system are not always 
suffcient, while some aspects of the implemented model may 
be diffcult to verify as well. MT can therefore improve both 
verifcation and validation in simulation models. Although 
there are prior studies showing the use of MT for verifcation 
of specifc models, there was no guidance on how to determine 
if a MR is verifying or validating a simulation model. 

Building on the previously defned guidelines and case 
studies on applying MT for simulation validation [11], we 
provide a process for eliciting metamorphic relations for 
both verifcation and validation of simulation models, as well 
as how to differentiate between the two. We believe that 
this differentiation is particularly diffcult when applying MT 
for simulation, and that these guidelines will assist model 
developers in correctly using MT across the entire verifcation 
and validation continuum. We also show how this process can 
aid in the development of test oracles for some parts of the 
system’s verifcation. Using an agent-based model of gossip 
propagation, we demonstrate the use of these guidelines for 
applying metamorphic testing to the continuum of verifcation 
and validation. 

Work on applying MT to simulation models is ongoing. 
In the future we plan to expand this process to additional 
simulation model approaches, and continue development of 
an overall framework that can be used to apply metamorphic 
testing to verifcation and validation of all simulation models. 
We also plan to investigate whether MT for verifcation can 
provide test cases for aspects of a simulation model that 
already have oracles, but for which the oracle test may be more 
complicated and therefore too time consuming to perform. 

ACKNOWLEDGEMENTS 

The authors thank Mohammed Farhan and Caroline Krejci 
of the University of Texas Arlington for their valuable feed-
back on the ideas presented in this paper. Any mention of 
commercial products in this article is for information only; it 
does not imply a recommendation or an endorsement by the 
National Institute of Standards and Technology (NIST). 

REFERENCES 

[1] M. Pezzè and M. Young, Software Testing and Analysis: Process, 
Principles and Techniques. John Wiley & Sons Inc., 2008. 

[2] E. J. Weyuker, “On testing non-testable programs,” Computer Journal, 
vol. 25, no. 4, pp. 465–470, November 1982. 

[3] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q. 
Zhou, “Metamorphic testing: A review of challenges and opportunities,” 
ACM Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27, 2018. 

[4] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes, “A survey 
on metamorphic testing,” IEEE Transactions on Software Engineering, 
vol. 42, no. 9, pp. 805–824, 2016. 

[5] N. Mouha, M. S. Raunak, R. Kuhn, and R. Kacker, “Finding bugs in 
cryptographic hash function implementations,” IEEE Transactions on 
Reliability, vol. 67, no. 3, pp. 870–884, July 2018. 

[6] S. Pugh, M. S. Raunak, D. R. Kuhn, and R. Kacker, “Systematic testing 
of post-quantum cryptographic implementations using metamorphic test-
ing,” in 2019 IEEE/ACM 4th International Workshop on Metamorphic 
Testing (MET), 2019, pp. 2–8. 

[7] S. Pugh, M. S. Raunak, R. Kuhan, and R. Kacker, “Systematic testing 
of lightweight cryptographic implementations,” in 2019 Lightweight 
Cryptography Workshop. National Institute of Standards and Tech-
nology, Nov 2019. 

[8] U. Kanewala and J. M. Bieman, “Techniques for testing scientifc 
programs without an oracle,” in Proceedings of the 5th International 
Workshop on Software Engineering for Computational Science and 
Engineering (SE-CSE ’13). IEEE Press, 2013, pp. 48–57. 

[9] X. Xie, J. Hob, C. Murphy, G. Kaiser, B. Xue, and T. Y. Chen, “Testing 
and validating machine learning classifers by metamorphic testing,” 
Journal of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011. 

[10] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortesa, “Au-
tomated metamorphic testing on the analyses of feature models,” 
Information and Software Technology (IST), vol. 53, pp. 245–258, 
March 2011. 

[11] M. Olsen and M. S. Raunak, “Increasing validity of simulation models 
through metamorphic testing,” IEEE Transactions on Reliability, vol. 68, 
no. 1, pp. 91–108, 2019. 

[12] C. Murphy, M. Raunak, A. King, S. Chen, C. Imbriano, and G. Kaiser, 
“On effective testing of healthcare simulation software,” in Software 
Engineering in Health Care (SEHC ’11), 2011. 

[13] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic 
model-based testing of autonomous systems,” in Proceedings of the 
IEEE/ACM 2nd International Workshop on Metamorphic Testing (MET 
’17), in conjunction with ICSE, 2017. 

[14] X. He, X. Wang, J. Shi, and Y. Liu, “Testing high performance numerical 
simulation programs: Experience, lessons learned, and open issues,” in 
Proceedings of the 29th ACM SIGSOFT International Symposium on 
Software Testing and Analysis, ser. ISSTA 2020, 2020, p. 502515. 

[15] M. Raunak and M. Olsen, “Simulation validation using metamorphic 
testing (wip),” in Proceedings of the Summer Computer Simulation 
Conference (SCSC ’15), 2015. 

[16] M. Olsen and M. Raunak, “Metamorphic validation for agent-based 
simulation models,” in Proceedings of the Summer Computer Simulation 
Conference (SCSC ’16), July 2016. 

[17] L. J. Bair and A. Tolk, “Towards a unifed theory of validation,” in 
Proceedings of the 2013 Winter Simulation Conference: Simulation: 
Making Decisions in a Complex World, ser. WSC ’13. Piscataway, 
NJ, USA: IEEE Press, 2013, pp. 1245–1256. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=2675983.2676141 

[18] R. G. Sargent, “Verifying and validating simulation models,” in 
Proceedings of the 2010 Winter Simulation Conference (WSC ’10), 
2010, pp. 166–183. 

[19] J. Banks, Handbook of Simulation: Principles, Methodology, Advances, 
Applications, and Practice. John Wiley & Sons, 1998. 

[20] Sokolowski and Banks, Modeling & Simulation Fundamentals. Wiley, 
2010. 

[21] S. J. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, and 
J. Zander, “Grand challenges on the theory of modeling and simula-
tion,” in Proceedings of the Symposium on Theory of Modeling & 
Simulation-DEVS Integrative M&S Symposium. Society for Computer 
Simulation International, 2013, p. 34. 

[22] M. Raunak and M. Olsen, “A survey of validation in health care 
simulation studies,” in Proceedings of the 2014 Winter Simulation 
Conference (WSC ’14), 2014, pp. 4089–4090. 

[23] P. C. Caizares, A. Nez, and J. de Lara, “An expert system for 
checking the correctness of memory systems using simulation and 
metamorphic testing,” Expert Systems with Applications, vol. 132, 
pp. 44–62, 2019. [Online]. Available: https://www.sciencedirect.com/ 
science/article/pii/S0957417419303069 

[24] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software 
Engineering, 2020. 

[25] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,” 
Communications of the ACM, vol. 62, no. 3, p. 6167, Feb 2019. 

[26] J. Ding and X.-H. Hu, “Application of metamorphic testing monitored 
by test adequacy in a monte carlo simulation program,” Software Quality 
Journal, vol. 25, pp. 841–869, Sep 2017. 

[27] M. E. Laidre, A. Lamb, S. Shultz, and M. Olsen, “Making sense 
of information in noisy networks: human communication, gossip, and 
distortion,” Journal of Theoretical Biology, vol. 317, pp. 152–160, 2013. 

https://www.sciencedirect.com
http://dl.acm.org/citation.cfm?id=2675983.2676141



