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Abstract—This paper presents a comprehensive framework for
generating radio frequency (RF) datasets, designing deep learning
(DL) detectors, and evaluating their detection performance using
both simulated and experimental test data. The proposed tools
and techniques are developed in the context of dynamic spectrum
use for the 3.5 GHz Citizens Broadband Radio Service (CBRS),
but they can be utilized and expanded for standardization of
machine learned spectrum awareness technologies and methods.
In the CBRS band, environmental sensing capability (ESC)
sensors are required to detect the presence of federal incumbent
signals and trigger protection mechanisms when necessary. To
support the development and evaluation of detection techniques
for ESC sensors, we provide software tools for generation and
augmentation of simulated radar datasets as well as baseline
DL detectors that can be replicated, evaluated, and tested in a
simulated or an experimental environment. We find that all the
proposed detectors exceed ESC requirements for incumbent de-
tection. The software tools, the pre-trained DL models and their
configurations, and the experimental setup are made available in
the public domain.

Index Terms—3.5 GHz, CBRS, deep learning, environmental
sensing capability sensor, machine learning, radar detection,
RFML, RF dataset generation.

I. INTRODUCTION

The success of recent auction in the 3.5 GHz Citizens
Broadband Radio Service (CBRS) has paved a new path and
created many opportunities for spectrum sharing among dif-
ferent stakeholders [1]. In this multi-tiered framework, federal
incumbent radar systems, e.g., SPN-43, must be protected from
harmful interference from lower tier commercial users [2]. An
environmental sensing capability (ESC)—a network of sensors
deployed along the coasts—is utilized to detect the presence
of incumbent radar signal and to trigger protection alerts. In
[3], the authors show that classical matched-filter detectors can
provide feasible detection results in the presence of co-channel
interference from commercial users as well as out-of-band
emissions from adjacent-band radars. However, these detection
techniques usually require full or partial knowledge of the
radar waveforms, which might not be available, especially for
advanced, classified radar systems.

Having been successfully applied to many areas, machine
learning (ML) and deep learning (DL) techniques can offer
appealing solutions to the radar detection problem. The survey
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in [4] and the tutorial in [5] provide numerous ML and
DL applications for mobile and wireless networks. These
techniques can be used for cognitive radios [6] and physical
layer applications [7]. Higher-order statistics and cumulant
features are proposed for signal detection and classification
in [8]–[10]. Signal classification problem can also be solved
by using support vector machine (SVM) and various DL
techniques [11]–[14]. Furthermore, DL techniques are also
utilized for signal detection in [15]–[20]. In [21], the authors
use over 14 000 spectrograms collected in the 3.5 GHz band to
evaluate the performance for SPN-43 radar detection of three
methods including a classical energy detection, a convolutional
neural network (CNN), and a long short-term memory recur-
rent neural network (LSTM RNN). In [22], ML-based radar
detectors are proposed and evaluated using field-measured
radar waveforms in the presence of out-of-band emissions
and Long Term Evolution (LTE) interference signals. Finally,
multiple deep learning models are studied and evaluated for
ESC radar detection in [23]. Although field-measured radar
waveforms are best suited for testing ML and DL algorithms
in real world scenarios, they often lack the ground truth and
are not widely available for general public due to operational
security concerns of the incumbent radar systems.

Related to this paper, the IEEE Dynamic Spectrum Access
Networks Standards Committee (DySPAN-SC) [24] recently
created the IEEE 1900.8 Working Group (WG) to standardize
the storage format for structured Radio Frequency Machine
Learning (RFML) datasets and the interfaces that connect
stages of the RFML model training pipeline. The IEEE 1900.8
standard will address use cases for RF signal detection, clas-
sification, and characterization as well as identification of RF
emitters. The IEEE 1900.8 WG is considering adoption of the
National Institute of Standards and Technology (NIST) radar
waveform generator software as part of a reference workflow
for generating RFML datasets.

The aim of this work is to provide an alternative to using
classical detection techniques and limited field measurements
data. We use radar detection in the 3.5 GHz CBRS band
as a case study to present our RF data generation and DL
detection techniques. Nevertheless, the techniques developed
in this paper can be used for other cases of RF signal detection
and augmentation of simulated RF data. Fig. 1 shows the
workflow for using our dataset, tools, and models to develop
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and test radar detectors for the CBRS band. The workflow
demonstrates the flexibility of our framework. The experience
can range from full development of the models and generating
the data to only using our pre-trained models for inference. For
example, the user can use our published dataset, or generate
a new dataset and adds more testing waveforms as needed
using our RF dataset generator. On the other hand, another user
may choose to only use the practical implementation approach
with experimental data followed by the performance evaluation
step. In a different example, the user can start development
by using our pre-trained models, or develop new models
without the need to invest time and resources in generating
a dataset. Hence, our framework is flexible since it expedites
the development and testing without the need to go through
all the steps in the process.

We present an in-house developed software tool that can
generate various radar waveforms and augment these wave-
forms with interference to create applicable RF datasets [25].
Using the simulated datasets, we then train and test several
DL detection techniques, as a baseline, to detect the presence
of radar signal. We formulate the detection problem as a
binary classification problem and utilize CNN as well as
selected state-of-the-art classification networks to solve it. In
addition, we select a few best DL models and analyze their
detection performance, in terms of probability of detection and
probability of false alarm. Furthermore, we perform a hands-
on experiment to evaluate the performance of some detectors
intended to be used in this band.

The remainder of this paper is as follows. In Section II,
we describe the radar waveform generation software tool.
Section III presents DL-based radar detection techniques. We
discuss simulated detection performance results in Section IV
and practical implementation tests in Section V. Finally, we
summarize the paper in Section VI.

II. RADAR WAVEFORM GENERATION

The motivation behind the RF dataset generator tool is part
of an effort by the Communications Technology Laboratory
(CTL) at NIST to facilitate and support the use of machine
learning in next generation wireless applications. One target
application is to create curated RF signal datasets focusing
on signals, schemes, systems, and environments for shared
spectrum communications systems [26].

For developing and testing of the radar detectors in the
3.5 GHz CBRS band, the need for radar waveforms is in-
evitable. Field-measured radar waveforms have been collected,
e.g., in [21], but they are not widely available due to op-
erational security issues of the radar systems. To overcome
this challenge, we design a radar waveform generator tool
that enables us to generate different radar waveforms with
randomized parameters, mix the waveforms with noise and/or
interference, and output the results as RF datasets [25]. We

Fig. 1: DL radar detector development workflow.

develop the tool in MATLAB1, and we utilize a graphical user
interface (GUI) to simplify the selection of parameters and to
automate the waveforms generation process.

The tool can be used to generate radar waveforms with
parameters similar to what the National Telecommunications
and Information Administration (NTIA) proposed in their

1Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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testing procedures for ESC sensor certification [27]. To the
best of our knowledge, most of these radar waveforms have not
been widely simulated or generated by commercial software
tools and released in the public domain. As listed in Table 1 in
[27], the radar signals are divided into five types depending on
the type of pulse modulation and the set of parameter bounds
for the signal. Specifically, they are called waveform bins and
labeled as: P0N#1, P0N#2, Q3N#1, Q3N#2, and Q3N#3. Each
bin includes a range of parameters that encompasses specific
existing or anticipated future radar designs in the 3.5 GHz
CBRS band. The signals in the first two bins, e.g., P0N#1 and
P0N#2, are simple pulsed radar. In addition, bin P0N#2 signal
is phase-coded. The radar signals in the other three bins, e.g.,
Q3N#1, Q3N#2, and Q3N#3, are linear frequency modulated
with different sets of parameter bounds.

The waveform parameters include pulse modulation, pulse
width, pulse repetition rate, chirp width, and number of
pulses per burst. In addition to these parameters, our tool
selects and randomizes the following parameters during the
mixing process such as signal-to-noise ratio (SNR) range,
noise power level, radar signal peak power level, start time
of the radar signal, and the baseband center frequency of the
radar signal. The peak power of the radar signal is used for
SNR computation. The SNR and the WGN power levels are
computed in a 1 MHz bandwidth that is centered at the peak
of the radar signal in the frequency domain.

Fig. 2 shows the radar waveform generator GUI. A reference
RF dataset was generated using this software and can be
downloaded from https://doi.org/10.18434/M32116. The refer-
ence dataset consists of 40 000 waveforms. Half of the dataset
includes waveforms with radar signals plus white Gaussian
noise (WGN), and the other half includes waveforms with
WGN only. At the time of writing this article, the testing
procedures for ESC sensor certification in [27] only consider
WGN as the interference source. We set the sampling rate of
the waveforms to 10 MHz, which is equal to the CBRS channel
bandwidth. In addition, we set the duration of the waveforms
to 80 ms. We choose this value based on the longest possible
duration when using the set of the parameters from Table 1
in [27]. Furthermore, these values for the sampling rate and
the duration allow us to randomize the center frequency and
the start time of radar signal, respectively. The randomization
of the start time and center frequency of the radar enables us
to generate more realistic detection scenarios. This is because
the sensor does not have knowledge of these parameters in
practice, and therefore acquires the waveforms at random time
instances and frequencies with respect to the radar signals.
The steps for generating the datasets and the full set of
the parameters used to generate the reference dataset are
documented in the software manual of the NIST simulated
radar waveform and RF dataset generator [25].

III. RADAR DETECTION USING DEEP LEARNING

A. Radar Detection in the CBRS Band

Classical detection techniques can be used for detection of
radar signals. In the ideal scenario with a known radar signal

in WGN, a matched filter is the optimal detector [3]. However,
this approach is not feasible for the CBRS band because the
radar signal parameters vary over a wide range. Consequently,
we need to match a large number of templates if matched filter
is used. Therefore, we investigate the use of machine learning
approaches for detection of the radar signals. The approach
consists of training a deep learning model on a large dataset
of waveforms. These waveforms must be representative of the
signals in the CBRS band.

B. Deep Learning Detection Based on Binary Classification

The radar detection problem can be formed as a binary
classification problem. We investigate three groups of DL
classifiers based on the type of input. We modify the input
space in the preprocessing step. Specifically, signal processing
techniques are applied to the input space to emphasize the
features of the signal of interest. In addition, the preprocessing
step enables us to change and reduce the dimensions of the
input space. Fig. 3 demonstrates the three input types of the
classifiers. The waveform in this example is of pulsed radar
type (bin P0N#1) and can be accessed from the reference
RF dataset through Group 1, subset 7, and waveform number
144. The plot illustrates the same waveform in time domain,
spectrogram with max-hold, and full resolution spectrogram
along the same time axis.

In the following, we present different DL architectures for
each input type. The models are implemented and trained
using Keras [28] with Tensorflow backend. The code of
the models, and a subset of the pre-trained models are re-
leased to researchers and developers and can be accessed at
https://git.io/RadarDL. These models can be used for further
development and baseline performance comparisons.

1) Classifiers with raw signal input: For this group of clas-
sifiers, we use the raw input signal with minimal prepro-
cessing. Specifically, we use the magnitude of the signal
as the input to the classifiers. Furthermore, we normalize
the input signal in two steps. First, we subtract the mean
and divide by the standard deviation of the signal. In the
second step, we compute the magnitude and normalize
the signal between 0 and 1. For classifiers with raw
signal input, we design two architectures: CNN model-1
with one convolutional layer and CNN model-2 with two
convolutional layers.
• CNN model-1: The CNN model-1 is a simple network

with one convolutional layer, followed by a max-pooling
and two fully connected layers.

• CNN model-2: The CNN model-2 consists of two con-
volutional layers, followed by a max-pooling and two
fully connected layers.

2) Classifiers with spectrogram and max-hold input: For this
group of classifiers, we use the spectrograms of the signals
and apply a max-hold procedure over the time dimension of
the spectrogram to reduce the size of the input. While this
technique reduces the temporal resolution of the input, i.e.,
loss of information, the reduction in size results in a faster
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Fig. 2: Radar waveform generator GUI.

Fig. 3: Model input examples.
training of the model or lower computing resources. We
generate the spectrogram using the following parameters:
the size of fast Fourier transform (FFT) is 128, the length of
the segments is 128, and the number of overlap points be-
tween the segments is 24. After generating the spectrogram,

we compute the maximum over a window with a length of
60 points. The resulting spectrogram size is 128 × 128.
Consequently, each point in the resulting spectrogram is
mapped to 0.624 ms in time and 78.125 kHz in frequency.
For training and inference, we normalize the spectrogram
between 0 and 1.
• CNN model-3: For the spectrogram with max-hold input

case, the proposed CNN architecture consists of three
convolutional layers, and each one followed by a max-
pooling layer. Then, we added a fully connected layer
before the output layer.

In addition to our proposed architecture, we have trained
the following state-of-art deep architectures [28]: ResNet50
with 50 layers, Xception with 71 layers, and MobileNetV2
with 53 layers. For these models, we set the size of the
output layer to 1 and the activation to sigmoid function.

3) Classifiers with full spectrogram input: Similar to the
spectrogram with max-hold, we compute the spectrogram
of the input signal with following parameters: FFT length
is 256, length of the segments is 256, and the number of
overlap points between the segments is 24. For this case we
use the full resolution of the spectrogram with the size of
256× 3448 as an input to the models. Consequently, each
point in the resulting spectrogram is mapped to 0.0232 ms
in time and 39.0625 kHz in frequency. Furthermore, we
normalize the spectrogram between 0 and 1 for training
and inference.
We propose two CNN architectures for the full spectrogram
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input case as follows:
• CNN model-4: The first proposed CNN architecture

consists of three convolutional layers each followed by a
max-pooling then, one fully connected layer before the
output.

• CNN model-5: The second proposed CNN architecture
input is a max-pooling layer. Then, we added three
convolutional layers each followed by a max-pooling
layer and a fully connected layer before the output.

IV. DETECTION PERFORMANCE RESULTS

In this section we describe the steps and procedures for
training the models and analyzing the testing results.

A. Model Training and Accuracy Results

In order to choose the training hyper-parameters, we exper-
imented with different optimizers, learning rates, batch sizes,
and number of epochs. We used all the 40 000 waveforms in
reference RF dataset to train and test the models. We divided
the dataset to subsets of 35 %, 15 %, and 50 % for training,
validation, and testing, respectively. The higher number of
waveforms for testing is chosen in order to provide enough
testing data points for further analysis of the results. Specifi-
cally, we used testing results to generate receiver operating
characteristic (ROC). We used the training and validation
subsets to train all the models. After training, we saved the
trained model and the inference results of the testing subset.
For the accuracy results, we tested the inference output of the
models against a fixed threshold of 0.5 and made the binary
decisions accordingly. Table I shows the testing accuracy of
each model.

We observe from the accuracy results that models with raw
signal magnitude input, i.e., CNN model-1 and CNN model-
2, had the lowest performance. Adding additional convolu-
tional layer in CNN model-2 degraded the accuracy slightly
in comparison to CNN model-1. Models with spectrogram
and max-hold input, i.e., CNN model-3, ResNet50, Xception,
and MobileNetV2, performed very well. Among them, CNN
model-3 and Xception models performed the best. However,
we chose CNN model-3 instead of Xception model from this
group because of its simplicity in comparison to the state-
of-art image classification models. The results also suggest
that radar signal detection with spectrogram does not require
sophisticated classification models due to presence of unique
signal features in the spectrogram.

Finally, models with the full spectrogram input, i.e., CNN
model-4 and CNN model-5, provided comparable results to the
models with spectrogram and max-hold input. This finding is
expected since the models make use of all the information in
the spectrogram. The performance of CNN model-5 was lower
than CNN model-4 because the max-pooling layer at the input
of CNN model-5 removes some of the spectral features from
the input. Consequently, our favored model of all architectures
is CNN model-4 since this model has the potential of providing
good detection results even with a wider range of scenarios
due to no information loss at the input.

TABLE I: Summary of Classification Accuracy.

Model Accuracy Number of Parameters
Input: Raw signal (magnitude), Input size: 800 000x1
CNN model-1 0.808 275 706
CNN model-2 0.783 276 316
Input: Spectrogram with max-hold, Input size: 128x128
CNN model-3 0.944 831 009
ResNet50 0.923 23 583 489
Xception 0.949 20 862 953
MobileNetV2 0.925 2 258 689
Input: Full spectrogram, Input size: 256x3448
CNN model-4 0.948 429 737
CNN model-5 0.908 273 953

Fig. 4: ROC curves.

B. Detection Performance Analysis

In the following, we further analyze the results of selected
best models from each group. Specifically, we generate ROC
curves for CNN model-1, model-3, and model-4. To compute
ROC curves, we vary a threshold over the inference output of
the model and compute the average values for probability of
false alarm (PFA) and probability of detection (PD) at each
threshold step. Fig. 4 shows ROC curves for selected best
models from each group. Both CNN model-3 and model-4
achieve near perfect detection (PFA = 0 and PD = 1) at
16 dB SNR. On the other hand, CNN model-1 shows lower
performance at 16 dB SNR. However, further analysis on the
performance of CNN model-1 showed the model requires
18 dB or higher SNR to achieve perfect detection. Recall that
in the CBRS band, the NTIA requires that ESC sensors must
achieve 99 % probability of detection within 60 s of incumbent
radar onset at a level of −20 dB WGN power below radar pulse
peak power [27]. Hence, CNN model-1 can still potentially be
used in practice.

In addition, we observed that the behavior of the detector
in all the models depends on the modulation type and the
set of parameters for the radar pulse. Fig. 5 shows the ROC
curves for each waveform bin over the entire test dataset, i.e.,
SNR range of 10 dB to 20 dB, for CNN model-4. Among
the worst performing radar types is bin P0N#1. Nevertheless,
the inadequate detection performance of this bin in Fig. 5 is
only due to the lower SNR range. For instance, the detection
performance for this bin is near perfect when the SNR is higher
than 16 dB, which is 4 dB below the NTIA’s requirement of
20 dB SNR.
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Fig. 5: ROC curves per pulse modulation for CNN model-4.

C. Additional Tests with Low SNR

We use the simulated radar waveform and RF dataset gen-
erator [25] to generate an additional testing dataset. The new
dataset includes 10 000 waveforms and has similar parameters
as the reference RF dataset except for the range of SNR. We
set the SNR between 5 dB and 9 dB with a step size of 2 dB.
We use our CNN model-4 that was trained on SNR levels
over a range of 10 to 20 dB to evaluate the model’s detection
accuracy of the waveforms with the lower SNR range. We
define the following performance measures:

• True negative rate (TNR): The rate of correct detections
when the radar signal is absent.

• False positive rate (FPR): The rate of false detections
when the radar signal is absent.

• False negative rate (FNR): The rate of false detections
when the radar signal is present.

• True positive rate (TPR): The rate of correct detections
when the radar signal is present.

Table II compares the accuracy results of the testing dataset
(SNR range in [10, 20] dB) against the lower SNR dataset
(SNR range in [5, 9] dB). As the SNR range decreases,
the overall accuracy only degrades from 0.948 to 0.721,
whereas the TPR degrades significantly from 0.922 to 0.471.
Further analysis would be required to analyze the performance
degradation for each SNR step in the new dataset. In addition,
this test raises a question of whether retraining the model
on the lower SNR dataset could improve the performance?
However, addressing these questions is beyond the scope of
this paper and will be addressed in future work.

TABLE II: Confusion Matrices for CNN model-4.

0 TNR=0.975 FPR=0.025

Ta
rg

et

1 FNR=0.078 TPR=0.922
0 1

Predicted
Accuracy=0.948

0 TNR=0.971 FPR=0.029

Ta
rg

et

1 FNR=0.529 TPR=0.471
0 1

Predicted
Accuracy=0.721

(a) SNR range in [10, 20] dB. (b) SNR range in [5, 9] dB.

V. EXPERIMENTAL RESULTS

This section describes how to evaluate radar detector per-
formance using an experimental dataset that is collected using
Software Defined Radios (SDRs). Our radar detector models

are trained on simulated data samples created by our waveform
generation software. It is convenient to train detector models
on simulated radar samples because it requires significantly
less effort than capturing and labeling RF data from actual
radar systems and avoids the operational security constraints
of working with military radars. Once trained, the detector’s
performance is evaluated with waveform samples that exhibit
RF distortion and impairments caused by RF hardware im-
perfections. These impairments are imparted by passing a
set of test waveforms through the analog RF front ends and
digital baseband circuitry of sending and receiving SDRs.
Our assumption is that the model’s detection accuracy will
be degraded by being trained on simulated data and tested
on experimental data that exhibits RF impairments. But, the
question remains, in what way and to what extent is the
accuracy degraded? The following is a description of our
experimental approach for evaluating a detector’s performance
using SDRs.

A. Method for Collecting Experimental Test Data

The radar test waveforms are created using the NIST
radar waveform generator software described in Section II.
The software is configured to generate 900 unique waveform
samples over a SNR range of 10 to 20 dB with a fixed average
noise power of 0 dBm/MHz. Each 80 ms waveform sample
contains one of five possible radar waveform modulations
summed with appropriately scaled WGN that results in a
specified SNR level. The rational for creating and sending a
composite waveform of signal plus noise is that it increases the
confidence of obtaining a specified SNR level at the receiver.
This is reinforced by sending composite waveforms where the
average noise power is at least 40 dB greater than the thermal
noise floor of the receiver, thereby ensuring that any change
in SNR due to receiver’s thermal noise floor is imperceptible.
This approach is preferred over attempting to send a precisely
scaled radar waveform that attains a specified SNR based
on knowledge of the thermal noise floor of the receiver and
the RF pathloss between the sending and receiving SDRs.
Furthermore, each radar waveform sample is randomly offset
in frequency to represent the expected misalignment between
real-world radar channels and RF spectrum sensors. The
experimental test dataset is augmented by adding 900 noise-
only waveform samples for evaluation of the detector’s FPR
and TNR metrics.

As shown in Fig. 6, experimental waveforms are collected
using two Universal Software Radio Peripherals (USRP) N210
SDRs [29] connected via a 2 meter RF coaxial cable with
a 30 dB RF attenuator attached to the transmit RF port of
the sending SDR. Each USRP is connected to its own host
computer using a 100BASE-TX Ethernet interface. Custom
waveform transmit and receive software is written using MAT-
LAB’s USRP Communication Toolbox support package. This
SDR software package simplifies the design and operation of
transmitting and receiving large batches of waveform sam-
ples. The MATLAB test script commands the Sending SDR
Node to sequentially transmit 80 ms radar sample at 10 MSps
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Fig. 6: Test equipment setup and connection diagram.

while another script commands the Receiving SDR Node
to asynchronously collect the waveform samples at 10 MSps
and store the data. A 80 ms RF muting period is inserted
as a receiver sync signal prior to sending 200 consecutive
80 ms waveform samples. After collecting the entire 16 s of
waveform samples, the receiver’s data collection script detects
the rising edge of the first received radar waveform sample
and marks that sample index as the start of the test data.
The subsequent 16 s of data samples are then reshaped into
a 800 000 row by 200 column matrix of complex double-
precision floating point numbers and saved in a MATLAB
workspace file that includes the ground truth labels of the
waveform samples. This workspace file is then loaded by post-
processing scripts for evaluation of the detector’s accuracy
metrics. The original (simulated) and experimentally collected
radar waveform datasets are available for download at the
following URL: https://doi.org/10.5281/zenodo.4521678. This
dataset archive includes the MATLAB scripts that were used
to control USRP SDRs to send and collect the experimental
waveform data.

B. Description of SDR RF Impairments

The USRP SDRs possess an analog RF front end that
distorts the RF waveform on transmission and reception. Some
distortion is caused by analog hardware imperfections, such as
In-Phase/Quadrature (IQ) mixer imbalance, Local Oscillator
(LO) phase noise, non-linear amplification of signals in the
transmit and receive RF chains, and filter rolloff at the band
edges due to the USRP’s digital sample decimation filters.
Another notable impairment is the frequency response “droop”
observed at the upper and lower edges of the band being cap-
tured by the USRP. This spectral coloration is due to the use
of computationally efficient digital Cascaded Integrator-Comb
(CIC) decimation filters that possess a gradual transition band
rolloff [30], [31]. Fortunately, the USRP N210 automatically
cascades a halfband decimation filter when the sampling rate is
set to 10 MSps. This secondary decimation filter has a steeper
transition band than the CIC filter and reduces the extent of
the droop at the band edges when cascaded with the CIC filter.
Finally, we mitigated LO leakage within the capture band by
setting the USRP’s LO frequency offset to 10 MHz.

C. Analysis of Experimental Accuracy

We use the previously described CNN model-4 that was
trained with simulated waveform samples to generate detection

TABLE III: Table of Detection Performance Metrics.

Simulated Data
Detection Results

Experimental Data
Detection Results

SNR FNR TPR FNR TPR
10 0.253 0.747 0.247 0.753
12 0.131 0.869 0.15 0.85
14 0.027 0.973 0.048 0.952
16 0.007 0.993 0.034 0.966
18 0.007 0.993 0.014 0.986
20 0 1.0 0 1.0

Average 0.071 0.929 0.082 0.918
Average TNR 0.959 0.830
Average FPR 0.041 0.170

Accuracy 0.944 0.874

results for the experimental test dataset. The accuracy metrics
shown in Table III were generated with a detection threshold
of 0.5 over 1800 collected waveform samples where the SNR
range is 10 to 20 dB. Despite training the model with simulated
waveform samples, the detector’s accuracy on experimental
data degraded only from 0.944 to 0.874, or a percent change
of 7.52 %. This limited reduction indicates that the CNN
model-4 detector is fairly robust to waveform distortion caused
by passing through SDRs with hardware impairments. Fu-
ture work will attempt to mitigate this performance impact
by adding experimentally collected samples to the training
dataset. Finally, for a SNR of 20 dB, the detector’s TPR of
100 % on the experimental test data exceeds the NTIA’s ESC
sensor certification criteria of attaining at least 99 % TPR
within 60 s [27].

We note that the RF impairments present in our laboratory
experiments do not represent the harsh RF environment experi-
enced by RF sensors when operating in real-world scenarios.
In the case of the CBRS band, the type of RF interference
is likely to be RF waveforms emitted by LTE or 5G New
Radio (5G NR) cellular network radios. Other possible sources
of interference are out-of-band emissions from other military
radars that appear in the CBRS band [32], [33]. The impact
of these real-world operating conditions can be characterized
using an extension to our modular radar detector development
workflow described in Fig. 1. The impact of RF multipath
fading on the detector can be characterised by sending radar
waveform samples through a RF mobile channel emulator and
capturing an experimental test dataset using the techniques
described in Section V-A. Similarly, detector degradation due
to other-user interference can be studied by superpositioning
a variety of cellular radio network signals onto the waveform
samples in the training dataset.

VI. CONCLUSION

In this paper, we have presented a comprehensive frame-
work for RF signal generation, detection, and evaluation.
Specifically, we provided a functional and effective software
tool that can generate different radar waveforms, add interfer-
ence to these waveforms, and produce associated RF datasets.
We also designed, trained, and tested several deep learning
based detection models—tailored to specific input types and
features—using the simulated RF datasets. We then identified
the best models, one in each input group, and took a deep dive
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analysis into their detection performance for different radar
pulse modulations and at different SNR levels. In addition,
we evaluated radar detector performance on the experimental
test data that exhibit realistic RF signal impairments.

This work was largely motivated by a need to create curated
RF signal datasets and baseline detection performance results
for machine learning in next generation wireless applications.
Although we mostly targeted the radar detection problem
for spectrum sharing in the 3.5 GHz band, researchers and
developers are encouraged to expand their own version of this
work to other scenarios and spectrum bands by utilizing the
tools and the approaches developed in this paper. For instance,
four ESC operators have been tested and certified against the
waveform bins described in [27] at the time of this writing.
If requirements for other types of radar waveforms in the
3.5 GHz band become available, our waveform generation tool
can be modified to incorporate the new waveforms.
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