
Combinatorial Testing Metrics for Machine
Learning

Erin Lanus∗ , Laura J. Freeman∗ , D. Richard Kuhn† , Raghu N. Kacker†
∗Hume Center for National Security and Technology, Virginia Tech, Arlington, VA, USA {lanus, laura.freeman}@vt.edu

†National Institute of Standards and Technology, Gaithersburg, MD, USA {kuhn, raghu.kacker}@nist.gov

Abstract—This paper defnes a set difference metric for com-
paring machine learning (ML) datasets and proposes the differ-
ence between datasets be a function of combinatorial coverage.
We illustrate its utility for evaluating and predicting performance
of ML models. Identifying and measuring differences between
datasets is of signifcant value for ML problems, where the
accuracy of the model is heavily dependent on the degree to which
training data are suffciently representative of data encountered
in application. The method is illustrated for transfer learning
without retraining, the problem of predicting performance of a
model trained on one dataset and applied to another.

Index Terms—combinatorial testing, machine learning, oper-
ating envelopes, transfer learning, test set selection

I. INTRODUCTION

In software and hardware, component systems are often well
designed and tested, but failures occur during integration due
to unexpected interactions between components. A study [1]
of empirical data found that nearly all failures in software are
caused by a limited number of interacting components and
concluded that testing interactions of between four and six
components could detect all failures in the software systems
considered. This result has led to broader adoption of combina-
torial testing, because it showed that strong assurance could be
achieved without exhaustive testing of software and hardware
systems [2].

Conducting testing of systems with embedded machine
learning (ML) using conventional software approaches poses
challenges due to characteristics of ML such as the large input
space, effort required for white box testing, and emergent
behaviors apparent only at integration or system levels [3], [4].
CT is a black box approach to testing an integrated system
using a pseudo-exhaustive strategy for large input spaces.
Thus far, CT has been applied to test case generation for
autonomous vehicle systems with embedded ML components
[5], testing the internal state space of a neural network [6],
feature selection [7], and explainable ML [8].

An ML model is trained on examples consisting of val-
ues assigned to features and possibly a label, such as the
membership class for the example. The data is fundamental
to ML model performance. In this paper, we leverage CT
for testing ML systems through comparison of datasets to
consider how differences between members of two classes
lead to classifcation decisions and if differences between

Research of EL and LJF funded in part by MITRE University Innovation
Exchange program.

datasets are useful for predicting whether a model trained on
one dataset will perform as expected on another. Comparing
datasets via combinations of features is possible at three levels
of granularity: 1) the count of combinations that are present or
absent, 2) which specifc combinations are present or absent,
and 3) the distribution of combinations.

In this work, we defne a new combinatorial coverage metric
for comparing ML datasets in § II focusing on the frst level of
granularity (presence/absence of combinations). We highlight
two distinct areas of applications of the metric in § III. The
metric’s utility based on interpretable features in the data is
demonstrated for fault localization and explainable classif-
cation. The use of the metric to defne a model’s operating
envelope extends to applications in transfer learning, selection
of training and test datasets, and directing data collection and
labeling efforts. We discuss problems for future work in § IV.

II. METRICS

We treat features, including the label when available, as
factors for CT. Continuous-valued factors must be discretized
prior to applying CT so that each factor has a corresponding f-
nite set of values. A t-way value combination is an assignment
of specifc values to t of the factors, or a t-tuple of (factor,
value) pairs. If there are k factors, each example then contains �
k
�

factor combinations with one value combination each. t
Combinatorial coverage, also called total t-way coverage, is

a metric from the CT literature [9] to describe the proportion
of valid t-way value combinations appearing in a set (Fig. 1).
Value combinations that appear in the set are covered by
the set. Defne a universe with k factors and their respective
values so that U is the set of all valid examples, and let Ut
be the set of valid t-way value combinations. If some value
combination is invalid, it is a constraint and can be removed
from Ut. Given a dataset D ⊆ U , defne Dt as the set of t-
way value combinations appearing in D. (We acknowledge a
slight abuse of notation as D may be a multiset. This does not
impact the metrics.) Denote set cardinality by |Dt|. The t-way
combinatorial coverage [9] of D is

|Dt|
CCt(D) = .

|Ut|

Let S and T be datasets and defne St, Tt as the set of t-
way value combinations appearing in S, T , respectively. The
set difference Tt \St is the set of value combinations appearing

mailto:raghu.kacker}@nist.gov
mailto:laura.freeman}@vt.edu

Ut Dt

Fig. 1. Venn diagram showing CCt(D) as the coverage of Ut by Dt.

Ut TtSt Ut St =Tt Ut St Tt
Ut

St
Tt

Ut TtSt

1 2 4 53

Fig. 2. Venn diagrams of the set theoretic relationships between S and T .

in Tt but not in St. We defne the t-way set difference
combinatorial coverage

|Tt \ St|
SDCCt(T \ S) =

|Tt|
as the proportion of t-way value combinations appearing in T
but not S . Constraints need not be explicitly defned as only
value combinations present in T are considered. SDCCt is a
score between 0 and 1 inclusive. The set theoretic relationships
(Fig. 2) and corresponding ranges of SDCCt are:

1) St ⊂ Tt =⇒ 0 < SDCCt(T \ S) < 1,
2) St = Tt =⇒ SDCCt(T \ S) = 0 ,T
3) (St 6⊂ Tt) ∧ (Tt 6⊂ St) ∧ (St Tt 6= ∅) =⇒

0 < SDCCt(T \ S) < 1,
4) Tt ⊂ St =⇒ SDCCt(T \ S) = 0,T
5) St Tt = ∅ =⇒ SDCCt(T \ S) = 1.

Set difference combinatorial coverage is directed; SDCCt(T \
S) may not be equal to SDCCt(S\T). As a difference metric,
higher values correspond to a larger difference between the
frst and second sets.

At the coarsest level of granularity, coverage is represented
as a single score or Venn diagram. To provide more informa-
tion, the value combinations not appearing in Dt for CCt and
value combinations in the set difference Tt \St for SDCCt are
listed or plotted as status per value combination. A heatmap
of value combination frequency for CCt and difference in
relative frequency for SDCCt provides the fnest granularity.

III. APPLICATIONS

A. Fault localization

Set differencing of t-way value combinations has been
applied to the problem of fault localization. A variety of
set theoretic operations can be used in reducing the set of
possible failure-triggering value combinations in deterministic
software [10]. Running a test set typically results in a large
number of passing tests and a small number of failing tests,
but only a small subset of value combinations in the failing
tests will induce a failure. For Pt = value combinations in
passing tests and Ft = value combinations in failing tests
and Ct = fault-triggering value combinations, the frst step
in identifying failure-triggering value combinations is a basic
elimination rule: compute Ft\Pt, value combinations in failing
tests that are not in any passing tests, which for deterministic
systems must contain the fault-triggering value combinations
Ct. Basic set operations can also be used to further reduce the

possible value combinations involved in a failure. For example,
a value combination continuity rule says that if a particular t-
way value combination in Ft is included in all higher strength
value combinations that contain the same t factors, then the
t-way value combination is suffcient to detect the error.

B. Explainable Classifcation

From a certain perspective, the problem of classifcation in
ML is essentially the same as the fault localization problem
in CT. We seek to identify a small subset of factors that
distinguish the class from examples not in the class. This
process could be viewed as generalizing the fault localization
problem, where the failing tests are the class and passing tests
are non-class members – what value combinations of factor
values are unique to the failing tests?

This simple observation leads to a method of producing
explanations or justifcations of ML classifcations [11] to
achieve explainable AI (XAI), by computing Ct \ Nt, the set
of t-way value combinations that appear in members of the
class C which are not in the non-class members of N , or
are more strongly associated with C than N . For example,
applying this method in a database of animal characteristics
produces seven predicates that are unique to reptiles (within
this database): not aquatic AND not toothed AND four legs,
egg-laying AND not aquatic AND four legs, etc. These value
combinations have an obvious mapping with simple rules: “if
non aquatic AND not toothed AND . . . ”. No single-factor
or 2-way value combinations are uniquely associated with the
reptile class, but including 3-way value combinations makes
it possible to identify class members.

Previous model induction methods have been developed to
reverse engineer an explanation or model from ML output
[12], [13], using statistical methods to identify characteristics
most closely associated with a class. The combinatorial XAI
method extends this approach by producing combinations of
characteristics for explanation. This distinction is important
because closely associated single factors are not necessarily
contained in identifying value combinations. Rule-based expert
systems are often considered easy to explain but generally
are not as profcient as more opaque methods such as neural
networks [14]. The combinatorial approach to XAI provides a
natural mapping to clearly understandable diagnostic rules.

C. Model Operating Envelope

Computer vision includes tasks such as detecting or classi-
fying an object in an image. The complexity of the domain
– all of the variables affecting the production of an image –
leads to high likelihood of interaction effects. Consider the
problem of detecting a white truck in an image. A white
truck against a light background at noon from an overhead
view likely presents a more diffcult detection scenario than
a white truck against the same light background in late
afternoon where shadows are present or from profle such
that the horizon line breaks up the background. The operating
envelope of an ML model describes the contexts in which it is
expected to perform correctly; deploying to contexts outside

Ut
Rt
Tt

Ut St Tt
Ut Tt

Pt

Fig. 3. Set differences used to select a source for a target from a model zoo.

of the envelope can lead to unexpected outcomes. An ML
model learns about examples on which it trains, so to perform
as expected in each of these contexts, it is anticipated that
“enough” representative examples must be included in the
training dataset. The challenge is how to defne contexts and
measure representativeness of the training examples.

One dimension of the operating envelope of a computer
vision model is defned by describing the contexts in which
the model trained as coverage of value combinations among
features present in the dataset. These features may be derived
directly from the image data, but there are two benefts of using
metadata such as “Time of Day” or “Location” collected along
with the image acting as a surrogate for contexts present in the
image. Metadata are more understandable by human operators;
“Time of Day” as a surrogate for lighting effects in the image
is more interpretable than presenting values for luminance and
contrast. Metadata may be available when image data is not,
such as the case when an event is occurring in the near future
in a new deployment environment for which no images have
been collected. Expected factors such as “Time of Day” and
“Location” can be extracted from the event profle.

When class labels are available, we describe a special way
of calculating value combinations. Label centrism forces all
value combinations to include a label; a label-centric value
combination includes the label and t − 1 of the other features.
Label centrism describes the contexts in which objects appear.

Claims of representativeness by a training dataset often rely
on randomized selection or counts by object type, but may
fail to be representative of larger contexts in the deployment
environment. Combinatorial coverage (CC) computed on a
training dataset provides a measurement of the contexts on
which the model trained via value combinations given the
tunable parameter t. In the case of transfer learning, a model
trained in one environment is deployed to a new environment,
possibly without retraining or fne tuning. Where CC is
a measure of coverage by a dataset with respect to some
defned universe, the new metric, SDCC, describes a directed
difference between two datasets and is useful for measuring
the distance between a source dataset S where the model is
trained and a target dataset T where the model is deployed.
When multiple source models are available in a model zoo, the
source dataset S with the smallest SDCCt(T \ S) provides
the best coverage of contexts in the target by the source
(Fig. 3). Additionally, as value combinations in a set difference
describe contexts unseen by the trained model, the list of value
combinations in the set difference provides a mechanism for
directing data collection or labeling efforts to include examples
containing these value combinations.

A use case for the set difference application to operating
envelopes for transfer learning is demonstrated on the “Planes

Value Combinations in Southern Value Combinations in Northern
Covered

Not
Covered

Fig. 4. Coverage of 2-way label-centric value combinations indexed by
combination (y-axis) and value combination within a combination (x-axis).

Value Combinations in Southern \ Northern Value Combinations in Northern \ Southern In
Difference

In
Intersection

Not in Set

T
set membership; T \ S is dark, T S is medium, and ¬T is light.

in Satellite Imagery” Kaggle dataset [15]. The dataset is
intended for binary classifcation and is comprised of images
that either have a plane or do not have a plane along with
metadata indicating the location as Northern California or
Southern California. If a model is trained on the Southern
subset of data S , a performance drop occurs when used to
make predictions on the Northern subset of data T , indicating
a transfer learning problem. The drop is not noted when
the direction of transfer is reversed. We apply our metrics
to highlight differences between the datasets that might be
responsible. Twelve features are derived from the image data
(the mean and variance each for the red, green, blue, hue,
saturation, and luminance) and values for each feature are
discretized by forming three bins encompassing equal-sized
ranges. Value combinations are label-centric and t = 2. The
Southern set contains 21,151 images and the Northern set

60contains 10,849 images. The CC2(S) = = 0.83 and72

Fig. 5. Set differences of 2-way label-centric value combinations shaded by

67CC2(T) = = 0.93, meaning that the Northern set covers 72
more of the universe than the Southern set despite having
half as many images. Fig. 4 plots the coverage of value
combinations in the sets side by side.

The utility of CC for comparing a source and target pair
is limited. Suppose S 0 contains all value combinations in thet
left half of a given plot and none in the right half, while T 0 = t
Ut \ S 0 contains the complement. Both have CC2 values oft
0.5. Suppose S 00 = T 00 yet CC2(S 00) = 0.25. The relationship
between the respective sets is not apparent via CC, which is
the limitation for which SDCC is designed. For the Planesnet

1datasets, SDCC2(S \T) = = 0.02 and SDCC2(T \S) = 60
8 = 0.12 (Fig. 5). For this dataset, SDCC2 is correlated with 67

a drop in performance in transfer learning without retraining.
Combinatorial coverage is useful in testing for deterministic

failures in software systems where the appearance of a value
combination among components in one test is suffcient to
cause a failure; if the components will interact to cause a

https://CC2(S00)=0.25

Value Combination Frequencies in NorthernValue Combination Frequencies in Southern

lo
g 1
0(#

 a
pp

ea
ra

nc
es

 e
ac

h
va

lu
e

co
m

bi
na

tio
n)

lo
g 1
0(#

 a
pp

ea
ra

nc
es

 e
ac

h
va

lu
e

co
m

bi
na

tio
n)

Fig. 6. Frequencies of value combinations provide distributional information.

failure, this is detected by a test suite containing that value
combination at least once. Statistical learning does not have
this property. We propose the CC and SDCC metrics as
tools to identify contexts in the target environment that are not
likely to be within the model’s operating envelope. However,
as models are trained by updating weights each time these
contexts are seen, we suspect that distribution of coverage
would improve the operating envelope description. Frequently
appearing value combinations indicate contexts on which the
model was well trained; they could also indicate instances of
overftting. Infrequently appearing value combinations indicate
contexts on which the model trained less; they could present
contexts in which the model has diffculty making classifca-
tions. Our work measures and plots this distribution (Fig. 6).

D. Test Set Design

Datasets are partitioned into training S , validation, and
testing T sets. When datasets are large and random selection
is applied, the hope is that the test set is representative of
the training set as they are drawn from the same population.
Computing SDCCt(S \ T) and SDCCt(T \ S) provides
assurance against a bad random draw. A simple randomized
algorithm makes several random partitions and keeps the one
with the lowest SDCC values. This is equivalent to testing
within the operating envelope of the model.

Another testing strategy is to identify where the model fails
to generalize to new contexts it has not trained by selecting test
sets outside of the envelope. In this case, selecting T so that
SDCCt(T \S) is close to 1 creates a test set containing many
untrained contexts. The importance of the reverse direction for
this strategy is not as clear. When SDCCt(T \S) = 1, the sets
Tt and St are disjoint and SDCCt(S \ T) = 1 necessarily.
When SDCCt(S \ T) < 1, the score depends on |St|.

IV. CONCLUSIONS AND FUTURE WORK

This work discusses metrics that provide tools for explaining
classifcation outcomes and defning the domain over which an
ML model is expected to operate successfully. Future work is
needed to test the hypothesis that models trained on source sets
with smaller SDCCt distances to the target perform better in
the target environment, as well as explore the usefulness of
these metrics across multiple ML domains, the impact of label
centrism, and choosing a “good” value combination size t.

Additionally, the sensitivity of these metrics to feature or
metadata selection is critical. In the classifcation application,
the features were directly explainable. In the computer vision

application, the research had to frst hypothesize reasonable
features. The process of hypothesizing features, conducting
initial screening experiments to select the meaningful features,
and confrming results should be codifed to ensure that this
work is not subject to confrmation biases of the research team
or over interpretation of correlations as explanatory variables.

Finally, additional work is needed to exploit the deeper
levels of explainability, that is, which specifc value combi-
nations are present or absent and the distribution of those
value combinations. The specifc value combinations present
or absent should be explored for potential explanation of
how and why models perform well or poorly, potential biases
introduced into the models, and predictive capabilities to new
operating envelopes. Set difference frequency metrics should
be developed and their application to transferability evaluated.
Acknowledgment: We thank Stephen Adams, Sayyed Ahamed, Peter Beling,
Tyler Cody, Adam Edwards, and Sachin Shetty for the motivating ML work
on the Planesnet dataset. We thank the reviewers for their helpful comments.
Disclaimer: Any mention of product names does not imply endorsement by
NIST nor that the products mentioned are necessarily the best available for
the purpose.

REFERENCES

[1] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions
and implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 1–29, 2011.

[3] D. Marijan, A. Gotlieb, and M. Kumar Ahuja, “Challenges of testing
machine learning based systems,” in 2019 IEEE International Confer-
ence On Artifcial Intelligence Testing (AITest), 2019, pp. 101–102.

[4] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, pp. 1–36, 2020.

[5] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with machine
learning components,” in 2018 IEEE Intelligent Vehicles Symposium
(IV), 2018, pp. 1555–1562.

[6] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019, pp. 614–618.

[7] S. Vilkomir, J. Wang, N. L. Thai, and J. Ding, “Combinatorial meth-
ods of feature selection for cell image classifcation,” in 2017 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), 2017, pp. 55–60.

[8] R. Kuhn and R. Kacker, “An application of combinatorial methods for
explainability in artifcial intelligence and machine learning (draft),”
National Institute of Standards and Technology, Tech. Rep., 2019.

[9] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial
coverage measurement concepts and applications,” in 2013 IEEE Sixth
International Conference on Software Testing, Verifcation and Valida-
tion Workshops, 2013, pp. 352–361.

[10] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical combinatorial testing,”
NIST special Publication, vol. 800, no. 142, p. 142, 2010.

[11] D. R. Kuhn, R. N. Kacker, Y. Lei, and D. E. Simos, “Combinatorial
methods for explainable AI.”

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?:
Explaining the predictions of any classifer,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1135–1144.

[13] F. Shakerin and G. Gupta, “Induction of non-monotonic logic programs
to explain boosted tree models using lime,” in Proceedings of the AAAI
Conference on Artifcial Intelligence, vol. 33, 2019, pp. 3052–3059.

[14] D. Gunning, “Explainable artifcial intelligence (XAI),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, vol. 2, no. 2, 2017.

[15] Rhammell, “Planes in satellite imagery,” Jan 2018. [Online]. Available:
https://www.kaggle.com/rhammell/planesnet

https://www.kaggle.com/rhammell/planesnet

