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Abstract—This paper defnes a set difference metric for com-
paring machine learning (ML) datasets and proposes the differ-
ence between datasets be a function of combinatorial coverage. 
We illustrate its utility for evaluating and predicting performance 
of ML models. Identifying and measuring differences between 
datasets is of signifcant value for ML problems, where the 
accuracy of the model is heavily dependent on the degree to which 
training data are suffciently representative of data encountered 
in application. The method is illustrated for transfer learning 
without retraining, the problem of predicting performance of a 
model trained on one dataset and applied to another. 

Index Terms—combinatorial testing, machine learning, oper-
ating envelopes, transfer learning, test set selection 

I. INTRODUCTION 

In software and hardware, component systems are often well 
designed and tested, but failures occur during integration due 
to unexpected interactions between components. A study [1] 
of empirical data found that nearly all failures in software are 
caused by a limited number of interacting components and 
concluded that testing interactions of between four and six 
components could detect all failures in the software systems 
considered. This result has led to broader adoption of combina-
torial testing, because it showed that strong assurance could be 
achieved without exhaustive testing of software and hardware 
systems [2]. 

Conducting testing of systems with embedded machine 
learning (ML) using conventional software approaches poses 
challenges due to characteristics of ML such as the large input 
space, effort required for white box testing, and emergent 
behaviors apparent only at integration or system levels [3], [4]. 
CT is a black box approach to testing an integrated system 
using a pseudo-exhaustive strategy for large input spaces. 
Thus far, CT has been applied to test case generation for 
autonomous vehicle systems with embedded ML components 
[5], testing the internal state space of a neural network [6], 
feature selection [7], and explainable ML [8]. 

An ML model is trained on examples consisting of val-
ues assigned to features and possibly a label, such as the 
membership class for the example. The data is fundamental 
to ML model performance. In this paper, we leverage CT 
for testing ML systems through comparison of datasets to 
consider how differences between members of two classes 
lead to classifcation decisions and if differences between 
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datasets are useful for predicting whether a model trained on 
one dataset will perform as expected on another. Comparing 
datasets via combinations of features is possible at three levels 
of granularity: 1) the count of combinations that are present or 
absent, 2) which specifc combinations are present or absent, 
and 3) the distribution of combinations. 

In this work, we defne a new combinatorial coverage metric 
for comparing ML datasets in § II focusing on the frst level of 
granularity (presence/absence of combinations). We highlight 
two distinct areas of applications of the metric in § III. The 
metric’s utility based on interpretable features in the data is 
demonstrated for fault localization and explainable classif-
cation. The use of the metric to defne a model’s operating 
envelope extends to applications in transfer learning, selection 
of training and test datasets, and directing data collection and 
labeling efforts. We discuss problems for future work in § IV. 

II. METRICS 

We treat features, including the label when available, as 
factors for CT. Continuous-valued factors must be discretized 
prior to applying CT so that each factor has a corresponding f-
nite set of values. A t-way value combination is an assignment 
of specifc values to t of the factors, or a t-tuple of (factor, 
value) pairs. If there are k factors, each example then contains �
k
� 

factor combinations with one value combination each. t 
Combinatorial coverage, also called total t-way coverage, is 

a metric from the CT literature [9] to describe the proportion 
of valid t-way value combinations appearing in a set (Fig. 1). 
Value combinations that appear in the set are covered by 
the set. Defne a universe with k factors and their respective 
values so that U is the set of all valid examples, and let Ut 
be the set of valid t-way value combinations. If some value 
combination is invalid, it is a constraint and can be removed 
from Ut. Given a dataset D ⊆ U , defne Dt as the set of t-
way value combinations appearing in D. (We acknowledge a 
slight abuse of notation as D may be a multiset. This does not 
impact the metrics.) Denote set cardinality by |Dt|. The t-way 
combinatorial coverage [9] of D is 

|Dt|
CCt(D) = . 

|Ut| 

Let S and T be datasets and defne St, Tt as the set of t-
way value combinations appearing in S, T , respectively. The 
set difference Tt \St is the set of value combinations appearing 

mailto:raghu.kacker}@nist.gov
mailto:laura.freeman}@vt.edu


Ut Dt

Fig. 1. Venn diagram showing CCt(D) as the coverage of Ut by Dt. 
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Fig. 2. Venn diagrams of the set theoretic relationships between S and T . 

in Tt but not in St. We defne the t-way set difference 
combinatorial coverage 

|Tt \ St|
SDCCt(T \ S) = 

|Tt| 
as the proportion of t-way value combinations appearing in T 
but not S . Constraints need not be explicitly defned as only 
value combinations present in T are considered. SDCCt is a 
score between 0 and 1 inclusive. The set theoretic relationships 
(Fig. 2) and corresponding ranges of SDCCt are: 

1) St ⊂ Tt =⇒ 0 < SDCCt(T \ S) < 1, 
2) St = Tt =⇒ SDCCt(T \ S) = 0 ,T 
3) (St 6⊂ Tt) ∧ (Tt 6⊂ St) ∧ (St Tt 6= ∅) =⇒ 

0 < SDCCt(T \ S) < 1, 
4) Tt ⊂ St =⇒ SDCCt(T \ S) = 0,T 
5) St Tt = ∅ =⇒ SDCCt(T \ S) = 1. 

Set difference combinatorial coverage is directed; SDCCt(T \ 
S) may not be equal to SDCCt(S\T ). As a difference metric, 
higher values correspond to a larger difference between the 
frst and second sets. 

At the coarsest level of granularity, coverage is represented 
as a single score or Venn diagram. To provide more informa-
tion, the value combinations not appearing in Dt for CCt and 
value combinations in the set difference Tt \St for SDCCt are 
listed or plotted as status per value combination. A heatmap 
of value combination frequency for CCt and difference in 
relative frequency for SDCCt provides the fnest granularity. 

III. APPLICATIONS 

A. Fault localization 

Set differencing of t-way value combinations has been 
applied to the problem of fault localization. A variety of 
set theoretic operations can be used in reducing the set of 
possible failure-triggering value combinations in deterministic 
software [10]. Running a test set typically results in a large 
number of passing tests and a small number of failing tests, 
but only a small subset of value combinations in the failing 
tests will induce a failure. For Pt = value combinations in 
passing tests and Ft = value combinations in failing tests 
and Ct = fault-triggering value combinations, the frst step 
in identifying failure-triggering value combinations is a basic 
elimination rule: compute Ft\Pt, value combinations in failing 
tests that are not in any passing tests, which for deterministic 
systems must contain the fault-triggering value combinations 
Ct. Basic set operations can also be used to further reduce the 

possible value combinations involved in a failure. For example, 
a value combination continuity rule says that if a particular t-
way value combination in Ft is included in all higher strength 
value combinations that contain the same t factors, then the 
t-way value combination is suffcient to detect the error. 

B. Explainable Classifcation 

From a certain perspective, the problem of classifcation in 
ML is essentially the same as the fault localization problem 
in CT. We seek to identify a small subset of factors that 
distinguish the class from examples not in the class. This 
process could be viewed as generalizing the fault localization 
problem, where the failing tests are the class and passing tests 
are non-class members – what value combinations of factor 
values are unique to the failing tests? 

This simple observation leads to a method of producing 
explanations or justifcations of ML classifcations [11] to 
achieve explainable AI (XAI), by computing Ct \ Nt, the set 
of t-way value combinations that appear in members of the 
class C which are not in the non-class members of N , or 
are more strongly associated with C than N . For example, 
applying this method in a database of animal characteristics 
produces seven predicates that are unique to reptiles (within 
this database): not aquatic AND not toothed AND four legs, 
egg-laying AND not aquatic AND four legs, etc. These value 
combinations have an obvious mapping with simple rules: “if 
non aquatic AND not toothed AND . . . ”. No single-factor 
or 2-way value combinations are uniquely associated with the 
reptile class, but including 3-way value combinations makes 
it possible to identify class members. 

Previous model induction methods have been developed to 
reverse engineer an explanation or model from ML output 
[12], [13], using statistical methods to identify characteristics 
most closely associated with a class. The combinatorial XAI 
method extends this approach by producing combinations of 
characteristics for explanation. This distinction is important 
because closely associated single factors are not necessarily 
contained in identifying value combinations. Rule-based expert 
systems are often considered easy to explain but generally 
are not as profcient as more opaque methods such as neural 
networks [14]. The combinatorial approach to XAI provides a 
natural mapping to clearly understandable diagnostic rules. 

C. Model Operating Envelope 

Computer vision includes tasks such as detecting or classi-
fying an object in an image. The complexity of the domain 
– all of the variables affecting the production of an image – 
leads to high likelihood of interaction effects. Consider the 
problem of detecting a white truck in an image. A white 
truck against a light background at noon from an overhead 
view likely presents a more diffcult detection scenario than 
a white truck against the same light background in late 
afternoon where shadows are present or from profle such 
that the horizon line breaks up the background. The operating 
envelope of an ML model describes the contexts in which it is 
expected to perform correctly; deploying to contexts outside 
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Fig. 3. Set differences used to select a source for a target from a model zoo. 

of the envelope can lead to unexpected outcomes. An ML 
model learns about examples on which it trains, so to perform 
as expected in each of these contexts, it is anticipated that 
“enough” representative examples must be included in the 
training dataset. The challenge is how to defne contexts and 
measure representativeness of the training examples. 

One dimension of the operating envelope of a computer 
vision model is defned by describing the contexts in which 
the model trained as coverage of value combinations among 
features present in the dataset. These features may be derived 
directly from the image data, but there are two benefts of using 
metadata such as “Time of Day” or “Location” collected along 
with the image acting as a surrogate for contexts present in the 
image. Metadata are more understandable by human operators; 
“Time of Day” as a surrogate for lighting effects in the image 
is more interpretable than presenting values for luminance and 
contrast. Metadata may be available when image data is not, 
such as the case when an event is occurring in the near future 
in a new deployment environment for which no images have 
been collected. Expected factors such as “Time of Day” and 
“Location” can be extracted from the event profle. 

When class labels are available, we describe a special way 
of calculating value combinations. Label centrism forces all 
value combinations to include a label; a label-centric value 
combination includes the label and t − 1 of the other features. 
Label centrism describes the contexts in which objects appear. 

Claims of representativeness by a training dataset often rely 
on randomized selection or counts by object type, but may 
fail to be representative of larger contexts in the deployment 
environment. Combinatorial coverage (CC) computed on a 
training dataset provides a measurement of the contexts on 
which the model trained via value combinations given the 
tunable parameter t. In the case of transfer learning, a model 
trained in one environment is deployed to a new environment, 
possibly without retraining or fne tuning. Where CC is 
a measure of coverage by a dataset with respect to some 
defned universe, the new metric, SDCC, describes a directed 
difference between two datasets and is useful for measuring 
the distance between a source dataset S where the model is 
trained and a target dataset T where the model is deployed. 
When multiple source models are available in a model zoo, the 
source dataset S with the smallest SDCCt(T \ S) provides 
the best coverage of contexts in the target by the source 
(Fig. 3). Additionally, as value combinations in a set difference 
describe contexts unseen by the trained model, the list of value 
combinations in the set difference provides a mechanism for 
directing data collection or labeling efforts to include examples 
containing these value combinations. 

A use case for the set difference application to operating 
envelopes for transfer learning is demonstrated on the “Planes 
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Fig. 4. Coverage of 2-way label-centric value combinations indexed by 
combination (y-axis) and value combination within a combination (x-axis). 
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in Satellite Imagery” Kaggle dataset [15]. The dataset is 
intended for binary classifcation and is comprised of images 
that either have a plane or do not have a plane along with 
metadata indicating the location as Northern California or 
Southern California. If a model is trained on the Southern 
subset of data S , a performance drop occurs when used to 
make predictions on the Northern subset of data T , indicating 
a transfer learning problem. The drop is not noted when 
the direction of transfer is reversed. We apply our metrics 
to highlight differences between the datasets that might be 
responsible. Twelve features are derived from the image data 
(the mean and variance each for the red, green, blue, hue, 
saturation, and luminance) and values for each feature are 
discretized by forming three bins encompassing equal-sized 
ranges. Value combinations are label-centric and t = 2. The 
Southern set contains 21,151 images and the Northern set 

60contains 10,849 images. The CC2(S) = = 0.83 and72 

Fig. 5. Set differences of 2-way label-centric value combinations shaded by 

67CC2(T ) = = 0.93, meaning that the Northern set covers 72 
more of the universe than the Southern set despite having 
half as many images. Fig. 4 plots the coverage of value 
combinations in the sets side by side. 

The utility of CC for comparing a source and target pair 
is limited. Suppose S 0 contains all value combinations in thet 
left half of a given plot and none in the right half, while T 0 = t 
Ut \ S 0 contains the complement. Both have CC2 values oft 
0.5. Suppose S 00 = T 00 yet CC2(S 00) = 0.25. The relationship 
between the respective sets is not apparent via CC, which is 
the limitation for which SDCC is designed. For the Planesnet 

1datasets, SDCC2(S \T ) = = 0.02 and SDCC2(T \S) = 60 
8 = 0.12 (Fig. 5). For this dataset, SDCC2 is correlated with 67 

a drop in performance in transfer learning without retraining. 
Combinatorial coverage is useful in testing for deterministic 

failures in software systems where the appearance of a value 
combination among components in one test is suffcient to 
cause a failure; if the components will interact to cause a 
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Fig. 6. Frequencies of value combinations provide distributional information. 

failure, this is detected by a test suite containing that value 
combination at least once. Statistical learning does not have 
this property. We propose the CC and SDCC metrics as 
tools to identify contexts in the target environment that are not 
likely to be within the model’s operating envelope. However, 
as models are trained by updating weights each time these 
contexts are seen, we suspect that distribution of coverage 
would improve the operating envelope description. Frequently 
appearing value combinations indicate contexts on which the 
model was well trained; they could also indicate instances of 
overftting. Infrequently appearing value combinations indicate 
contexts on which the model trained less; they could present 
contexts in which the model has diffculty making classifca-
tions. Our work measures and plots this distribution (Fig. 6). 

D. Test Set Design 

Datasets are partitioned into training S , validation, and 
testing T sets. When datasets are large and random selection 
is applied, the hope is that the test set is representative of 
the training set as they are drawn from the same population. 
Computing SDCCt(S \ T ) and SDCCt(T \ S) provides 
assurance against a bad random draw. A simple randomized 
algorithm makes several random partitions and keeps the one 
with the lowest SDCC values. This is equivalent to testing 
within the operating envelope of the model. 

Another testing strategy is to identify where the model fails 
to generalize to new contexts it has not trained by selecting test 
sets outside of the envelope. In this case, selecting T so that 
SDCCt(T \S) is close to 1 creates a test set containing many 
untrained contexts. The importance of the reverse direction for 
this strategy is not as clear. When SDCCt(T \S) = 1, the sets 
Tt and St are disjoint and SDCCt(S \ T ) = 1 necessarily. 
When SDCCt(S \ T ) < 1, the score depends on |St|. 

IV. CONCLUSIONS AND FUTURE WORK 

This work discusses metrics that provide tools for explaining 
classifcation outcomes and defning the domain over which an 
ML model is expected to operate successfully. Future work is 
needed to test the hypothesis that models trained on source sets 
with smaller SDCCt distances to the target perform better in 
the target environment, as well as explore the usefulness of 
these metrics across multiple ML domains, the impact of label 
centrism, and choosing a “good” value combination size t. 

Additionally, the sensitivity of these metrics to feature or 
metadata selection is critical. In the classifcation application, 
the features were directly explainable. In the computer vision 

application, the research had to frst hypothesize reasonable 
features. The process of hypothesizing features, conducting 
initial screening experiments to select the meaningful features, 
and confrming results should be codifed to ensure that this 
work is not subject to confrmation biases of the research team 
or over interpretation of correlations as explanatory variables. 

Finally, additional work is needed to exploit the deeper 
levels of explainability, that is, which specifc value combi-
nations are present or absent and the distribution of those 
value combinations. The specifc value combinations present 
or absent should be explored for potential explanation of 
how and why models perform well or poorly, potential biases 
introduced into the models, and predictive capabilities to new 
operating envelopes. Set difference frequency metrics should 
be developed and their application to transferability evaluated. 
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