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Abstract

Despite recent dramatic successes, Natural Language Processing (NLP) is not ready
to address a variety of real-world problems. Its reliance on large standard corpora,
a training and evaluation paradigm that favors the learning of shallow heuristics,
and large computational resource requirements, makes domain-specific application
of even the most successful NLP techniques difficult. This paper proposes Techni-
cal Language Processing (TLP) which brings engineering principles and practices to
NLP specifically for the purpose of extracting actionable information from language
generated by experts in their technical tasks, systems, and processes. TLP envisages
NLP as a socio-technical system rather than as an algorithmic pipeline. We describe
how the TLP approach to meaning and generalization differs from that of NLP, how
data quantity and quality can be addressed in engineering technical domains, and the
potential risks of not adapting NLP for technical use cases. Engineering problems
can benefit immensely from the inclusion of knowledge from unstructured data, cur-
rently unavailable due to issues with out of the box NLP packages. We illustrate the
TLP approach by focusing on maintenance in industrial organizations as a case-study.
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1 INTRODUCTION

Natural Language Processing (NLP) has recently made rapid
and significant advances across a wide variety of tasks. These
were enabled by improvements in language models that pre-
dict characters, words, or sentences from surrounding context,
which have become a central theme in NLP research1,2,3. The
foremost example, Generative Pre-trained Transformer 3 (GPT-
3), has been dubbed the “most powerful language model ever”4
and recently demonstrated strong performance onmany existing
data sets for a variety of NLP tasks such as translation, question
answering, unscrambling words, and news article generation5.
Early users have shown its ability to generate text ranging from
guitar tablature, to website layouts, to computer code4.

†This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States. Approved for public release; distribution
is unlimited.

For engineers and technical analysts wishing to use NLP
as part of their analyses of technical processes, there is less
reason to be optimistic. Despite impressive results with standard
challenge data sets, an open question remains as to what state-
of-the-art (SOTA) models are actually learning6. In particular,
claims that NLP systems understand language or the meaning of
text are overblown as evidenced by the failure of SOTA models
to generalize learned knowledge in a human-like manner1,3,6,7.

There is also concern that the current NLP training and evalu-
ation paradigm naturally favors models for which large amounts
of data are available3. This may not be an issue for academic or
research NLP systems: they are often successful when trained
on “standard” text that comes from e.g. English news wire and
other literature8,9. However, text encountered in technical appli-
cations, such as in industrial operations, differs significantly
from these benchmarks, causing performance of deployed NLP
systems to drop8,10, often to unacceptable levels.
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FIGURE 1: Technical Language Processing expands the system boundary beyond the traditional NLP pipeline to include users,
engineering use cases, TLP resources such as dictionaries, as well as other “fortuitous” data sources (Section 6) which aid in the
interpretation of the primary text data.

Despite the volume of text data in industrial engineering,
it is in many ways a low-resource domain from the NLP per-
spective. The traditional response to addressing these domains
in machine learning is transfer learning in which the models
generated from annotated data from resource-rich domains are
adapted for the low-resource domain11,12,13. However, these
approaches often assume that the differences between two differ-
ent domains is constrained in particular ways. For example, the
lexical, grammatical, and terminological differences between
“standard” English and that found in industrial maintenance logs,
has spawned a whole set of domain-specific NLP adaptations
that are largely outside of mainstream NLP9,14.
The classical NLP goal of having computers attain human-

like language abilities3 may also bias NLP towards impressive
— but complex and resource-intensive — technologies, while
ignoring those that are more in line with practical engineering
needs15,16. With all this in mind, we sought an approach which
will help bridge the gap between the promise of NLP and the
realities confronted in many technical domains.
Technical Language Processing (TLP) is our proposed

human-in-the-loop, iterative approach to tailor NLP tools to
technical data that explicitly considers industrial engineering
use cases as inputs along with the raw text (see Fig. 1. Our inten-
tion is to address perceived shortcomings of applying standard
NLP to technical text data. As an engineering discipline, TLP
includes explicit notions of process and can catalog and dis-
seminate successful patterns of application. The TLP process
builds specialized resources from existing components includ-
ing NLP techniques such as tokenizers and embeddings. Some

of the burden on domain experts is alleviated via computational
support tools that elicit expert input when necessary. Analysts
also benefit from TLP resources such as industry standards and
technical dictionaries. TLP strives to improve its resources and
computational support tools to reduce error and increase confi-
dence in analyses through collaboration between analysts and
domain experts. Community-driven TLP resource development
is iterative and influenced by text analysis.

Our goal for this paper is to further argue for the creation of
an NLP field that focuses on the technical text that appears in the
computer-mediated communication used to support business
processes within specialized domains. We will focus on indus-
trial maintenance as our motivating example and we consider
the need for TLP when analyzing the text found in maintenance
management systems.
The remainder of this paper is organized as follows. We

will discuss maintenance, along with its records and text, and
the challenges that they present in Section 2. We will then
question in Section 3 whether algorithms have the ability to
generalize what they learn and show how TLP addresses this
concern. Section 4 introduces two issues related to the use
of large data sets and Section 5 examines the problems with
domain adaptation for technical text. We discuss the benefits
of “fortuitous” data in Section 6 and discuss computational
costs and TLP’s strategies for mitigating them in Section 7.
Using a set of ethical concerns, we present three general risks
of applying existing NLP to technical text and why we believe
that TLP can help in Section 8. We close with Section 9, a
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summary of how TLP addresses the challenges of applying
NLP to technical text.

2 WHAT IS MAINTENANCE?

The health and prosperity of a nation is built on its infrastructure.
Consider our roads, water and power networks, buildings, and
manufacturing capacity. The assets that provide these services
require maintenance. The management of this maintenance is
often an invisible process until something fails17. Asset main-
tenance involves a wide variety of stakeholders such as asset
owners, operators, contractors, original equipment manufactur-
ers and specialist service providers. All these stakeholders keep
their own records about assets. Maintenance records are created
by maintenance technicians, engineers and operators. Collec-
tively we call this group ‘maintainers’. To become a maintainer
requires years of training involving learning the language of
engineering and maintenance, developing physical, chemical,
structural, electrical and digital knowledge of how assets and
asset systems function, and how they fail18. Maintainers’ train-
ing enables them to share information efficiently using common
mental models, often codified in standards and standardized
or well-known procedures. Maintainers use their expertise to
describe the maintenance work they perform, usually in a free
text format. Much information, especially about relationships is
implicit, and jargon and abbreviations are widely used19. The
language of engineering and maintenance is challenging for
non-maintainers (and computers) to understand.

2.1 Maintenance Records and Text
A maintenance work order (MWO) is created for every mainte-
nance activity. It may be generated by a maintainer on noticing
that an asset needs maintenance work or by a Computerized
Maintenance Management System (CMMS), in which case
the original work order text would have been generated as
semi-structured text by a maintenance planner20. Examples of
both are shown in Table 1. Hundreds, sometimes thousands of
MWOs, are generated each month depending on the complexity
of the organization. Currently, without NLP tools that are fit
for purpose, all these MWO records need to be read by humans
in order to be planned, scheduled and executed. In the past,
records were kept on paper, but are nowadays stored in unstruc-
tured text fields in relational database systems and spreadsheets.
These MWO records are akin to medical records for an individ-
ual21, and are vital to efforts that estimate the reliability of the
asset and potential for functional failures. However there are a
number of challenges in extracting knowledge from these texts.

2.2 Maintenance Text Challenges
The text taken from maintenance management systems devi-
ates from “standard” English in a number of ways. As shown
in Table 1, the sample MWO’s describe the state of an asset
and/or the work that needs to be done. Work order description
fields can usually be characterized as containing at least one
verb such as ‘replace’ to describe desired action or word that
describes the asset state such as ‘plugged’. In general, such enti-
ties in MWO corpora are unbalanced with a relatively small
number of verbs describing maintenance work and the observed
state and a large number of n-grams27 used to describe the
assets. As yet there is no widely agreed structure for named
entity recognition for those seeking to create annotated data
sets. A number of different named entity recognition classes
are being used for MWO annotation: Item-Activity-State10,
Item-Problem/ Symptom-Solution/ Action28,29.

The familiar assumptions of NLP often mislead in the analy-
sis of maintenance text. For example, while the overall number
of maintenance records can be similar to the number of doc-
uments in an NLP corpora, the MWO text tends to be much
smaller (Table 2). Maintenance text itself is often more simi-
lar to shorthand notation than standard English text9,10. Stop
words, commonly removed in NLP, provide important context
for the interpretation of MWO14. As seen in Table 1, many of
the words are domain-specific and most are abbreviations or
acronyms, some created by specific individuals or groups of
maintainers9,10,30, that are used inconsistently and interchange-
ably14,31 and are not consistently marked with periods9. Words
can be misspelled, omitted, or run together and longer words are
often contracted with sporadic apostrophes9,14. Unlike “stan-
dard” English where each form of punctuation has a specific use,
punctuation in maintenance data is typically used interchange-
ably to separate distinct ideas14. These lexical issues can lead to
semantic ones. Multiple instances of parts, actions, and symp-
toms co-exist in a single record and their correct associations
must be established31. Many individual concepts are expressed
using multiple words, that must be parsed as a single unit to get
the intended meaning14. The same concept can also be referred
to in many different ways, ‘frontShockAbsorber’, ’shockAb-
sorbedFront’, ‘shockFrtAbsorber’ and ‘brakeAbsorber’ all refer
to the same part but are lexically inconsistent29.
As a result of the many challenges associated with mainte-

nance text, there have been domain adaptations, largely ad hoc,
some of which we will discuss in Section 5.

3 DO ALGORITHMS UNDERSTAND?

The excitement of SOTA NLP is often conveyed with claims
that these systems understand or capture meaning of the text
being analyzed1. But what does this really mean? The “symbol
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TABLE 1: Example Maintenance Work Orders; abbreviations and typos appear in the original.

Asset identifier Functional location Work order description Date

Pneumatic System 2222 10.01.20-AS222 Replace air dryer silencer 02/09/17 07:57
02 Sump pump PUMP-AI025-SUP002 pump electrically dead trouble shoot. if u/s disconnect for

c/o
04/06/19 08:34

h5 Motor H5 Replaced pin in pendant and powered machine -Possible
short in pendant cable

04/06/20 08:34

Grinding Ball Mill BM001 40.03.05-ML001 1W Mech Insp Ball Mill BM001 04/12/20 --:--
Thickener Concentrate TR0003 DSHT Cons Thkner rplace bed press. 16/03/16 06:12
Lighting and small power SE00401 Lighting uprgrades ,grnd flr filter bld 05/06/19 08:27
Fuel tank EDD0020 Fuel tank leak 04/02/18 09:42
VAV Box AHU RESET FAN FAILS AND START EQUIOPMENT 17/02/18 13:42
Tractor TRD0250 Reseal RH F/drive Komatsu 08/03/19 09:42
150428 216 B54 Emergency retract solonoid failure 02/12/17 13:45
Pump-Centrifugal ESI-DD01 Control valve may be plugged 04/03/19 12:22
Motor, Exchanger, 20 HP Flare System 05E112 05E112B -replace damaged motor 06/08/19 15:16

TABLE 2: Comparison of sizes (count and average words-per-document, if reported) of selected work order collections and
typical NLP training corpora. The average words per document (WPD) for the work order records is smaller than those of the
NLP training documents.

Source Type Count WPD

South African fuel service stations22 MWO 373,344 18
Helicopter Maintenance Records9 MWO 100,000 —
UWA Excavators Maintenance Records23 MWO 5485 5
Reuters-2157824,25 NLP 21,578 160
Reuters Corpus Vol. I26 NLP 804,414 200

grounding problem”, which occurs when symbols are inter-
preted based on other symbols in a circular fashion rather than
their meaning in the external world, is a concern when evalu-
ating the ability of computational machines to understand the
intrinsic meaning in language32. NLP systems operate under
the distributional hypothesis that words surrounding a word in
question give clues to its meaning and when taken in aggregate,
all of its contexts appear to give us what we seek2. This may
especially be not true in technical text though techniques using
contextual information have been developed in the automotive
industry31.

The ability to generalize, when a model behaves as expected
in novel situations beyond the training context, is closely related
to the problem of meaning33. Challenges with proper general-
ization of SOTA NLP systems suggest that such systems are not
able to meaningfully learn from their training data, evidenced
by inconsistent results when input data differs in distribution
from training data and the need for significant retraining to
adapt models to new tasks3,34,35.

Some of this semantic disability can be traced to the current
training and evaluation paradigm which does not encourage
human-like generalization by having the test data drawn from
the same distribution as the training data 3. Under these condi-
tions, many SOTA learning systems learn shallow heuristics
that work for the training data instead of really learning the
expected generalizations6,7,34,36,35,37,38. The current paradigm
and shallow heuristics conspire to create models that are, in
a sense, overfitted to particular data sets and lack the ability
to generalize as their creators intended3,39. As a result, claims
that these models offer a human-level capacity for real-world
meaning and understanding are exaggerated1.

TLP is an adaptation of and is firmly rooted in NLP. There is
nothing precluding the use of any and all useful NLP approaches.
By expanding the system boundary away from algorithms
and data pipelines to include humans in the loop, we hope to
overcome grounding issues.

Unlike NLP approaches that learn from text in an exclusively
unsupervised fashion2, TLP allows and encourages iterative
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human intervention and supervision at every stage; we describe
this aspect of TLP in detail in21. This connection to the outside
world goes beyond merely interfacing with sensors which some
believe to be sufficient32. We see TLP as leveraging humans to
provide a rich source of semantic information and meaningful
action through their ability to discriminate between, manipulate,
identify, describe, and respond to real world objects, events and
states. This will allow us to inject meaning into analyses.

TLP can help tackle the problem of generalization by promot-
ing the use and development of computational resources such
as annotation tools that support hybrid datafication via artificial
intelligence-assisted human tagging, where datafication refers
to the process of structuring text information to facilitate the
understanding of its context40. These NLP-based tools allow
for the manual injection of real-world knowledge into the learn-
ing process by providing ontological information that can guide
categorization and generalization. Two such tools, Nestor41 and
Redcoat42, allow for the tagging of short technical text, such as
found in maintenance work order descriptions, with annotations
that facilitate processing. Machine learning systems can then
use these tags as a signal to promote generalization by helping
to mitigate the shallow heuristics and spurious correlations that
could otherwise affect learning.

4 MORE DATA ISN’T THE ANSWER

We believe that the problem of learning of shallow heuristics
is further exacerbated by two issues associated with analyses
of large amounts of data: spurious correlations and the low
probability of regularities due to the underlying phenomena of
interest43. Very large data will contain spurious correlations
that exist solely due to the size of the data and not because
of any other intrinsic property. Such correlations cannot be
distinguished algorithmically from other types of correlations
and can overwhelm detection of the “true correlations”. Sec-
ond, even though “true correlations” are the signals sought
during analyses, the probability of regularities due to the under-
lying phenomena appearing in the data is low. The larger the
data analyzed, the greater the chance that spurious correlations
dominate the results and lead to erroneous conclusions.
The domain-specific pre-processing and data normalization

steps in TLP help improve the visibility of system behaviors
against their naturally noisy backdrop as well as reducing the
opportunity for spurious correlations. Because NLP is focused
on “standard” English, we believe that pre-processing and data
normalization do not receive sufficient attention. In TLP, these
issues become areas of active interest and we expect that prac-
titioners across different TLP domains will share and evaluate
experiences and approaches. Over time, TLP will develop a

systematic framework for preprocessing and normalization that
can be easily adapted to new technical domains.

5 WHAT ABOUT DOMAIN ADAPTATION?

Domain adaptation is a class of approaches that attempt to
transfer learning from a task in a source domain with abundant
annotated data to a similar task in a target domain, one with
little or no annotated data12. An underlying assumption is that
there exists a resource-rich domain that is similar enough to the
low-resource domain; this is unclear for the technical domains
that we are considering, such as maintenance. Adding to the
uncertainty, the NLP literature sometimes equates domain adap-
tation with transfer learning,13 it lacks a consistent definition
for the concept of a domain, and its notion of domain adaptation
focuses on assumptions that are unrealistic for technical text.
One such assumption is that syntactic structures and parts

of speech (POS) are stable between two domains because they
reflect intrinsic properties of a shared, clean natural language
whose only differences are the appearance, roles, or distribu-
tions of certain domain-specific words12,13. Shared features
can then be leveraged. So for example, there are known shared
words whose POS tags can be used to predict POS tags for
unknown words.

There is then an expectation that NLP systems will work suffi-
ciently well when trained either using annotated source domain
data alone or with a combination of a small set of annotated data
from the new domain combined with the annotated data from
the source domain12. Normalizing the target domain’s data to
make it more closely resemble the data used to originally train
the system also seems viable8. However, given the grammati-
cal, spelling, and usage issues present in technical text, these
approaches will likely not work in general, though they might
be useful in some contexts. For maintenance, not only are typi-
cal NLP systems not suited9, but neither are standard domain
adaptation techniques.
Like other technical domains, a variety of bespoke

maintenance-specific NLP adaptations have appeared in the
literature. Out-of-the-box pre-processing pipelines require mod-
ifications. As part of their work with military aircraft mainte-
nance, Bokinsky et al.14 andMcKenzie et al.9 made adaptations
to Natural Language Toolkit functionalities, such as introduc-
ing a token “sterilizer”, which addressed observed challenges
of inconsistent punctuation, necessary punctuation and words
with no semantic difference through injection of special rules
- replacing all punctuation with an identical special punctua-
tion token and all tokens containing numbers with a special
identical code token.
We see the presence of bespoke NLP adaptations as evi-

dence that the lack of a well-developed notion of a domain is
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a central issue that hampers domain adaptation for TLP. We
favor the approach taken by Plank8 which critiques the current
approaches to domain adaptation as focusing on the dichotomy
between the source and target domains without a real inter-
est in their essential differences8. She states that there is little
research that addresses how text varies and how these variations
affect the use of NLP and proposes a definition of a domain as
a region in a high-dimensional variety space. This space is an
unknown high-dimensional space whose dimensions include
many latent variables beyond the text itself such as social factors.
The concept of a variety space is defined by a set of variables,
some of which are latent, that describe the different ways that
texts and their contexts can differ8. Variety spaces can accom-
modate variables that exist outside of the text like gender or
geographic location, the medium used, or area of domain exper-
tise. A domain is a region in this space where it can be said that
texts are similar; it is a bounded cluster of points in this variety
space.
In the conventional NLP conception of domains, all that

can be considered formally is the text by itself. One problem
with this restricted way of thinking about domains is that two
texts can appear to be very similar. By using the variety space
definition, one can formalize the need for using two separate
dictionaries to decode the terms found in them and process
them accordingly.

6 MAKING USE OF FORTUITOUS DATA

To enable interpretation, Plank8 also argues for the value of
“fortuitous” data associated with text that includes metadata and
data from other sources which is usually ignored during NLP
analyses. In maintenance, this data includes data extracted from
other fields in the maintenance management system, such as
cost or time spent, as well as information obtained from pur-
chase systems, weather databases, and maintenance manuals.
She claims that the pairing of fortuitous data with learning algo-
rithms allows for rapid adaptation to new varieties of language.
In particular, she argues for rapidly gathering annotated data
and the increased use of unsupervised and weakly supervised
methods.
While for many use-cases, a rules-based approach can han-

dle the presence of zero, one or multiple labels on a single
maintenance work order, this can challenge supervised learn-
ing approaches 28,30 and performance depends on the handling
of class imbalance. Seale44 handled the challenge of 1200 dif-
ferent component classes by injecting additional information
relevant to the physical systems into the model training systems
through “privileged information” which is a form of fortuitous
data8. A common example of this knowledge in engineering
is that components have natural hierarchical structuring and

this taxonomic information can be used to identify correct and
incorrect components. Another example is knowledge of the
cause and event relationships to predict components involved
in a failure or repair activity.
We believe that TLP can further develop the idea of fortu-

itous data by encouraging community development and use of
shared computational resources. The creation and use of knowl-
edge dictionaries, typified by ConceptNet45, to improve the
semantic processing of natural language and provide additional
assistance in pre-processing the data, managing word tagging
and/or any special rules have gained traction. Such dictionar-
ies are reusable, developed/tuned as a data pre-processing step
across the data and often use common NLP tools to assist in
their creation 10,28,40. Sexton et al.40 developed an importance
based vocabulary tagging system using term frequency–inverse
document frequency (TF-IDF) weighting27. Gao et al.10 used
spellcheckers (pyspeller) and string distance (fuzzywuzzy)
to support dictionary creation process for domain specific
uses. Such dictionaries have helped manage misspellings and
variations of the same terms in pre-processing for word represen-
tations46,47. POS tagging has also been customised, examples
include the use of a modified version of the widely-used Penn
Treebank Set and custom tags for domain-specific concepts9,14
and context-relevant State-Activity-Item tags10.
On the surface, these resources can help mitigate the lexi-

cal variations in technical text and simplify domain adaptation
between similar technical domains by constraining termino-
logical variation to the intrinsic differences found between
facilities21. But from a deeper perspective, they provide a
source of standardized fortuitous data; they represent shared
knowledge that can be used to understand the latent variables
associated with a domain and help define the proper context for
their interpretation. This knowledge can also help with the com-
parison of domains and further foster the sharing and adaptation
of analysis approaches.

7 DOING MOREWITH LESS

Engineering researchers have started to widely use SOTA NLP
approaches to mine text data15,16. However, there is also a ten-
dency to gloss over its high computational costs15. For example,
the article introducing GPT-35 does not mention its estimated
cost of 355 graphics processing unit (GPU) years or $4.6 M
(USD) 48.

Even smaller efforts can incur large costs; Strubell, Ganesh,
and McCallum49 examined the cost of a representative NLP
research project: 27 GPU-years for training and tuning costing
in excess of $100K (USD) for cloud compute time and $9870
for electricity.
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How can we ensure accessibility to the benefits of NLP to
those who can’t afford large computing clusters? Can something
be done to mitigate the computational requirements?

In some domains, crowd sourcing50, the use of large numbers
of people across a network performing an information process-
ing task, has successfully added complex NLP51 to an analysis
with minimal computational cost. In technical domains, how-
ever, the data is often proprietary business information that
cannot be shared outside of the organization. This dramatically
limits the usefulness of crowd sourcing.
We will instead focus on TLP’s engineering mindset that

encourages discussions about the most practical approaches for
achieving real-world goals. For example, Xu et al.52 used neural
word embeddings and convolutional neural networks (CNN) to
perform text classification. Their CNN model took 14 hours to
train. Following an approach that is congruent with TLP, Fu and
Menzies15 performed a replication study that used an optimizer
to fine tune a traditional support vector machine (SVM) to
achieve similar performance while decreasing training time by
a factor of 84.
Subsequently, Majumder et al.16 repeated the replication

study using local learning via clustering the data prior to train-
ing an SVM on each cluster. They reported a 570× speed up
on a single core and a 965× speed up eight cores relative to Xu
et al. while achieving F1 score results within 2 %. While from
an NLP perspective, the classification scores did not improve,
the accessibility and usefulness did by mitigating the need for
large computational resources while achieving useful results.
These results show the value of applying an engineering

perspective to an application domain text analysis problem
instead of solely using the current NLP state of the art. Because
the NLP literature focuses on advancements along its frontiers,
applied results, particularly those which address computational
costs, are relegated to the literature of disparate domain-specific
communities, such as software engineering. TLP allows for the
aggregation and dissemination of these patterns of usage within
its community.

8 THE RISKS OF THE STATUS QUO

There are always risks which accompany the application of
technology, tools and techniques to any domain, including main-
tenance text. Some of these risks are of a more practical nature.
One central risk is lack of trust—due to missing, incomplete,
and inconsistent information, practitioners do not trust their
maintenance data, and by extension, do not trust the outputs
from application of NLP to this data. Another risk is that many
groups will likely develop ad-hoc solutions to particular issues
and, in general, mistakes will be made and solutions will be

re-invented many times. This re-iteration and reinvention effec-
tively represents a tax on an entire industry, one that could be
greatly reduced by shared conventions and standards.
A more pernicious set of risks can be articulated using a

set of ethical concerns which were originally intended for the
broad societal use of algorithms but they apply to this more
focused use as well 53. The concerns are unjustified actions,
inscrutable analyses, and systemic bias; maintenance-based
examples and their consequences are shown in Table 3.
Correlations emerge from the analysis of data and actions

may be taken from these findings. When the causal link is
unknown or not determined, the action may be unjustified as
well as costly and ineffective. The use of correlation to guide
actions is not without pitfalls; spurious correlations in the data
coupled with the low-probability of finding legitimate regulari-
ties and the tendency of SOTA NLP to learn shallow heuristics
can result in unjustified actions to address questionable con-
cerns identified by mining text-based records. For maintenance,
this is likely to be further exacerbated by the lexical noisiness
due to variations in spelling, abbreviation, and punctuation
found in the data.
Actions can be justified by examining the relationships

between data and conclusions. Though often hard to discern,
it is reasonable to expect that they are available for inspection.
Such scrutiny can help decide between competing conclusions
drawn from different analyses of the same data, or identify
ungeneralizable conclusions drawn from accidental features of
the data. Responsibility is an important component of engineer-
ing ethics and we see ability to analyze and justify technical
actions as key to being able to accept meaningful responsibility.

With the large amounts of complex data andmachine learning
that are used by SOTANLP, the rationale behind analysis results
can easily be obscured inside of inscrutable algorithmic black
boxes that impede human understanding and criticism. The
results and implied courses of action then have to be accepted at
face value with a lack of confidence. With competing analyses,
a final course of action must then be determined by outside
means driven by the personal biases of those left to make the
decision.

It is well known that analyses follow the “garbage in, garbage
out” principle and the quality of the results is heavily depen-
dent on the quality of the data. However, analyses are also
inherently biased by assumptions baked into tools and method-
ologies. These biases are often propagated into the conclusions.
For maintenance, any tendency of the NLP analytics pipeline
to overlook certain issues results in resources being instead
allocated to other activities. Because of their dependence on
large amounts of annotated training data, the use of popular
SOTA NLP techniques in technical domains such as mainte-
nance may cause a type of sampling bias; issues for which
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TABLE 3: Examples of risks and consequences with NLP-based analyses in industrial maintenance

Risks Example Situations Possible Consequences

Unjustified Actions The failure mode causing the most unplanned downtime
was not identified because of large variation in
misspellings

Improvement initiatives were not focused
on highest opportunity areas

Inscrutable Analyses An analysis uses complex algorithms and large amounts
of data that are hard to understand

Lack of confidence in analysis results;
final course of action decided by other
means

Systemic Bias A company’s maintenance analytics pipeline tends to
overlook certain issues

Resources routinely allocated to other
areas

training data is readily available will lead to machine learn-
ing systems that can find them. Text preprocessing can also
affect analysis results54 and due to the large lexical and gram-
matical variations in maintenance text, the use of common,
out-of-the-box NLP preprocessing techniques may not work
well for this domain. This means that the apparent importance
of certain maintenance-related issues could be systematically
diminished or exaggerated because of the mismatch between
the assumptions behind commonly-used NLP techniques and
the requirements of maintenance.

With its emphasis on iterative, human-in-the-loop style analy-
ses, TLP naturally fosters human understanding throughout the
pipeline. By adapting NLP to the domain under investigation,
we see increased opportunity for simpler and more understand-
able analyses. Tailoring earlier stages of the pipeline to the
domain, such as preprocessing and parsing, allows important
semantics earlier into the analysis to simplify the algorithms
used later. For example, instead of using an opaque deep neu-
ral network to classify messy text data, a simpler, interpretable
classifier can be used on the preprocessed and normalized text
that facilitates understanding the rationale behind analyses,
justifying the resulting actions, and finding hidden biases.

9 SUMMARY

NLP has made significant progress in recent years towards
achieving human-level performance on a variety of natural
language tasks. Despite this, engineers and technical analysts
seeking to use state-of-the-art NLP for real-world tasks face
concerns that it may not live up to expectations, require more
annotated training data than is available, be too complex to
understand the rationale behind its analyses, require excessive
computational resources, and inject biases into the final results.
We have proposed a human-centered, iterative approach to

NLP, technical language processing (TLP) to address these

issues for engineering domains. By focusing on the needs
of engineering text analysis and not being driven to achieve
human-level language performance, TLP practitioners are free
to choose the most practical techniques to address the challenge
at hand while achieving a thoughtful balance between raw ana-
lytical performance and the available resources. In place of the
aesthetic of stringing together complex algorithmic black boxes
and hoping for the desired outcome, TLP encourages human
intervention to inject domain knowledge and meaning at each
stage of the analysis as detailed in our previous paper21. This
can help mitigate the accumulation of systemic technical bias in
the final analysis. By adapting NLP to focus on the challenges
of engineering text, TLP can bring the promise of text analysis
to industry.
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