Structural and thermoelectric properties of Pb₄In_{2.6}Bi_{3.4}Se₁₃

W. Wong-Ng (D,^{1,a)} J. Guo,² Y. Yan,² and J. A. Kaduk (D³

¹Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA ²State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China

³Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA

(Received 16 March 2021; accepted 18 May 2021)

Quaternary selenide, $Pb_4In_{2.6}Bi_{3.4}Se_{1.3}$ (x = 2.4 member of the $Pb_4(In_xBi_{6-x}Se_{1.3} \text{ solid solution})$, was synthesized by a solid-state technique, and its structure was determined using powder X-ray diffraction (XRD). $Pb_4In_{26}Bi_{34}Se_{13}$ crystallizes in the orthorhombic space group *Pbam* (No. 55) with Z=4. Lattice parameters and calculated density were determined to be a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å³, and $D_x = 7.490$ g cm⁻³. The structure consists of Z-shaped ribbon units and corner-shared infinite one-dimensional $[InSe_4]_{\infty}$ chains running parallel to the c-axis. The chains and ribbons are further connected by Pb atoms to form a three-dimensional network. Pb atoms are situated in the center of bicapped trigonal prisms. The compound exhibits a semiconductor feature. The Seebeck coefficient of $Pb_4In_{2,6}Bi_{3,4}Se_{13}$ was found to be $-180 \ \mu V \ K^{-1}$ at 295 K and $-380 \ \mu V \ K^{-1}$ at 600 K. Combining the values of Seebeck coefficient, electrical conductivity, and thermal conductivity yield a figure of merit, ZT, of about 0.175 at 700 K. The powder XRD pattern of Pb₄In_{2.6}Bi_{3.4}Se₁₃ was also determined. © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data. [doi:10.1017/S0885715621000385]

Key words: Pb₄In_{2.6}Bi_{3.4}Se₁₃, thermoelectric material, thermoelectric property measurements, crystal structure, powder X-ray diffraction pattern

I. INTRODUCTION

Materials that are capable of converting thermal energy into electricity and vice versa are known as thermoelectric materials. These materials can harvest thermal energy generated from natural heat sources (solar, geothermal, and human body) and from waste heat suppliers (industrial sector and motor vehicles). However, the relatively low efficiency of most of these materials has limited their widespread applications. Efficiency of the thermoelectric materials in general depends on the dimensionless figure-of-merit, ZT, which is defined as $ZT = \alpha^2 \sigma / \kappa$, where T is the absolute temperature, α is the Seebeck coefficient or thermal power, σ is the electrical conductivity, and κ is the thermal conductivity ($\kappa = \kappa_e + \kappa_{ph}$) which is the sum of the contributions from the electronic component and the phonon component (Rowe, 1995). Therefore, a high Seebeck coefficient and high electrical conductivity combined with low thermal conductivity are necessary to achieve high ZT. However, due to the interdependence of these parameters, optimizing ZT is a formidable challenge. For example, since both electrons and phonons contribute to the thermal conductivity of a material, lowering the electrical contribution, $\kappa_{\rm e}$, will reduce σ as well.

One of the most popular approaches to search for compounds with high ZT values is to search for semiconducting multi-component chalcogenides, followed by incorporating metal ions into the infinite metal-chalcogen frameworks (Kanatzidis et al., 1996; Chung et al., 2000; Choi et al., 2001; Hsu et al., 2004; Wang et al., 2009). These ions act as rattlers in their local cavities, which create low-frequency vibration modes that scatter acoustic phonons and reduce the thermal conductivity. The most studied heavy-element materials include ternary and higher antimony chalcogenides (Takeuchi et al., 1974; Nuffield, 1975; Matzat, 1979; Edenharter, 1980; Berlepsch et al., 2001; Olsen et al., 2007). For example, Pb₄Sb₆S₁₃ exhibits a complicated structure with large unit cells and a band gap that is expected to appear between fully occupied S p-states and the empty Pb and Sb p-states (Derakhshan et al., 2006; Wang et al., 2009). According to these authors, replacing S atoms by Se atoms would shrink the band gap by elevating the occupied *p*-states. At the same time, the ZT value benefits from lowered phonon contribution to the thermal conductivity caused by the heavier chalcogen Se as compared to S.

In this report, we will discuss the synthesis, crystal structure, as well as temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity of the substituted ternary selenide Pb₄Sb₆Se₁₃ in which the Sb site is substituted by the mixed Bi/In site, resulting in a formula of Pb₄(In_xBi_{6-x})Se₁₃. The Seebeck coefficient and electrical conductivity of two members of $Pb_4(In_xBi_{6-x})Se_{13}$ (x = 2.1 and 2.8) have been studied at a relatively low temperature (up to 300 K) (Wang et al., 2009). Furthermore, no thermal conductivity data and hence ZT values were available. In our work, the Seebeck coefficient and electrical conductivity measurements were performed for $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ (x = 2.6 member) up to 700 °C. We also measured the temperature-dependent thermal conductivity so we were able to estimate the ZT value. The ICDD PDF database (Gates-Rector and Blanton,

^{a)}Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Figure 1. Backscattered electron image of a sample cut from $Pb_4In_{2,6}Bi_{3,4}Se_{13}$ showing the homogeneity of the sample.

2019) has the powder diffraction patterns for only the solid solution members $Pb_4In_{2.1}Bi_{3.9}Se_{13}$ and $Pb_4In_{2.8}Bi_{3.2}Se_{13}$. The powder X-ray diffraction (XRD) pattern for $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ was, therefore, prepared and described in this report.

II. EXPERIMENTAL SECTION

A. Synthesis

To prepare Pb₄In_{2.6}Bi_{3.4}Se₁₃, stoichiometric quantities of high-purity elements (Pb/In/Bi/Se = 4:2.6:3.4:13) were first loaded into evacuated fused-silica tubes, followed by heat treatment from 300 to 1023 K; the latter temperature was maintained for 10 h before natural cooling to about 300 K. After subsequent melting, annealing (773 K, 48 h) and plasma activated sintering (PAS) treatments (763 K, 8 kN), we obtained the final dense ingot. The resulting ingot was ground into fine powders and examined on a PANalytical X'PERT PRO diffractometer (40 kV, 40 mA, 5–80° 2 θ with a scanning rate of 10° min⁻¹) equipped with an X'celeator line detector and Cu radiation with λ of 1.54056 Å. (The purpose of identifying the equipment in this article is to specify the experimental procedure. Such an identification does not imply recommendation or endorsement by the National Institute of Standards and Technology.) A backscattered electron (BSE) image of the resulting sample is shown in Figure 1, indicating a homogeneous sample.

B. X-ray Rietveld refinements and reference patterns

The Pb₄In_{2.6}Bi_{3.4}Se₁₃ phase was mounted as ethanol slurries on a zero-background cell. The XRD powder patterns of the former samples were measured on a Bruker D2 Phaser diffractometer (30 kV, 10 mA, 5–130° 2 θ in 0.024° steps, 1 s step⁻¹) equipped with a LynxEye position-sensitive detector. Cu radiation with λ of 1.54056 Å.

The Rietveld refinement technique (Rietveld, 1969) with software suite GSAS II (Finger *et al.*, 1994; Toby and von Dreele, 2013) was used to determine the structure of the $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ phase. A reference pattern was obtained with a Rietveld pattern decomposition technique. Using this technique, the reported peak positions were derived from the extracted integrated intensities, and positions calculated from the lattice parameters. When peaks are not resolved at the resolution function, the intensities are summed, and an intensity-weighted *d*-spacing is reported.

C. Thermoelectric property measurements

The temperature-dependent electrical conductivity and Seebeck coefficient of samples were measured simultaneously using a commercial equipment (ZEM-3, UlvacRiko, Inc.) under 0.5 atm He atmosphere in the temperature range of 300–550 K. The thermal conductivity (κ) of the samples was calculated from the relationship $\kappa = DC_pd_e$, where *D* is the thermal diffusivity obtained by the laser flash method (LFA-457, Netzch, German), C_p is the specific heat measured by a differential scanning calorimeter (DSC Q20, TA Instrument, USA), and d_e is the density measured by the Archimedes method.

III. RESULTS AND DISCUSSION

Figure 2 shows the plots of Rietveld refinements for $Pb_4In_{2.6}Bi_{3.4}Se_{13}$, where observed (crosses), calculated (solid line), and difference XRD patterns (bottom) are shown. The

Figure 2. Rietveld refinement pattern for $Pb_4In_{2,6}Bi_{3,4}Se_{13}$, where observed (crosses, blue), calculated (solid line, Green), background (red), and difference XRD patterns (bottom) are shown. The tick marks indicate the calculated peak positions, and the difference pattern is plotted on the same scale as other patterns.

TABLE I. Refinement parameters	for	Pb ₄ In ₂	.6Bi3.	$_4$ Se $_{13}$
--------------------------------	-----	---------------------------------	--------	-----------------

Composition	Pb ₄ In _{2.6} Bi _{3.4} Se ₁₃
R _p	0.04916
R _{wp}	0.06855
Refined # of parameters	72
Goodness of fit	2.556
Microstrain, "generalized" model parameters:	S400(1321.644), S040(139.951), S004(684224.77), S220(638.808), S202(25507.854), S002 (12976.743), G/L mix(1.00)
Background "Chebyschev" function:	$1078(8), 203(14), -602(24), 4.8(4) \times 10^2, 665(26), -5.6(4) \times 10^2$

tick marks indicate the calculated peak positions, and the difference pattern is plotted on the same scale as other patterns. **Table I** gives various refinement *R* values and the goodnessof-fit value. The atomic coordinates and displacement parameters of Pb₄In_{2.6}Bi_{3.4}Se₁₃ are given in Table II (a total of 24 crystallographic inequivalent sites, 11 for cations and 13 for anions). Table III summarizes the selected bond distances concerning the mixed (Bi/In)Se₆ and InSe₆ distorted octahedra, InSe₄ tetrahedra, and PbSe₈ bicapped trigonal prisms.

A. Structure of Pb₄In_{2.6}Bi_{2.4}Se₁₃

Pb₄In_{2.6}Bi_{3.4}Se₁₃ (black color) crystallizes in the space group *Pbam* (No. 189), Z=4. Lattice parameters and calculated density D_x are: a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å³, and $D_x = 7.490$ g cm⁻³.

Since the atomic radius for Bi (1.60 Å) is greater than that of In (1.55 Å) (Slater, 1964; Shannon, 1976), one expects the unit cell volume of the members in the Pb₄(In_xBi_{6-x}Se₁₃) solid solution series to follow a trend as a function of x. The unit cell volume of Pb₄In_{2.6}Bi_{3.4}Se₁₃ (2515.0(11) Å³) was found to be between that of $Pb_4In_{2.1}Bi_{3.9}Se_{13}$ (2535.8(9) Å³) and that of $Pb_4In_{2.8}Bi_{3.2}Se_{13}$ (2497.1(9) Å³) (Figure 3).

Figure 4 provides the crystal structure for Pb₄In_{2.6}Bi_{3.4}Se₁₃. The detailed crystal structure and electronic structure have been described by Wang *et al.* (2009). In summary, the complex structure features infinite chains of Z-shaped ribbon units (dark gray color) and tetrahedrons [InSe₄] (green color) that share two vertices along the *c*-axis. The tetrahedral angles Se–In–Se in [InSe₄] were found to be somewhat distorted from the ideal tetrahedral angles, namely: Se19–In17–Se19 of 107.4(16)°, In17–Se19–In17 of 107.4(16)°, and Se19–In17–Se30 of 116.3(13)°. The In–Se distances in these tetrahedra range from 2.53(5) to 2.70(6) Å, which are statistically in agreement with those found in compounds Pb₄(In_xBi_{1-x}Se₁₃) with x = 2.0, 2.1, and 2.8 (2.56–2.61 Å).

The Bi/In mixed sites (M) form both corner-shared and edged-sharing octahedra (Table III and Figure 4, M5, M7, M9, M11, M13, and M15). These octahedra form two groups of symmetry independent Z-shaped ribbons which run along the *c*-axis. One group consists of M5, M11, and M15, and the other one consists of M7, M9, and M13. Similar to $Pb_4In_{2.1}Bi_{3.9}Se_{13}$ and $Pb_4In_{2.8}Bi_{3.2}Se_{13}$, those distorted

TABLE II. Atomic coordinates for Pb₄In_{2.6}Bi_{3.4}Se₁₃.

Atom	x	у	Z	Occ	Disp Para	Multiplicity
Pb1	0.6280 (8)	0.7512 (7)	0.50000	1.000	0.034 (3)	4
Pb2	0.1809 (7)	0.0704 (6)	0.50000	1.000	0.034 (3)	4
Pb3	0.1676 (8)	0.2255 (6)	0.50000	1.000	0.034 (3)	4
Pb4	0.4680 (9)	0.8491 (6)	0.50000	1.000	0.034 (3)	4
M5	0.8853 (8)	0.0850 (6)	0.50000	0.79/0.21	0.019 (3)	4
M7	0.6563 (8)	0.0242 (7)	0.50000	0.83/0.17	0.019 (3)	4
M9	0.6451 (8)	0.8907 (7)	0.00000	0.70/0.30	0.019 (3)	4
M11	0.0250 (10)	0.1560 (6)	0.00000	0.47/0.53	0.019 (3)	4
M13	0.50000	0.00000	0.00000	0.60/0.40	0.019 (3)	2
M15	0.00000	0.00000	0.00000	0.77/0.23	0.019 (3)	2
In17	0.7284 (12)	0.1607 (10)	0.00000	1.000	0.019 (3)	4
Se18	0.0258 (18)	0.2280 (13)	0.50000	1.000	0.018 (3)	4
Se19	0.7507 (20)	0.1084 (15)	0.50000	1.000	0.018 (3)	4
Se20	0.5585 (19)	0.8177 (16)	0.00000	1.000	0.018 (3)	4
Se21	0.8786 (18)	0.0112 (15)	0.00000	1.000	0.018 (3)	4
Se22	0.5847 (18)	0.0735 (15)	0.00000	1.000	0.018 (3)	4
Se23	0.5653 (18)	0.9457 (14)	0.50000	1.000	0.018 (3)	4
Se24	0.1447 (14)	0.1423 (14)	0.00000	1.000	0.018 (3)	4
Se25	0.3828 (20)	0.7993 (15)	0.00000	1.000	0.018 (3)	4
Se26	0.0144 (16)	0.0759 (15)	0.50000	1.000	0.018 (3)	4
Se27	0.7288 (20)	0.9786 (17)	0.00000	1.000	0.018 (3)	4
Se28	0.8953 (18)	0.1617 (16)	0.00000	1.000	0.018 (3)	4
Se29	0.7115 (15)	0.8458 (17)	0.50000	1.000	0.018 (3)	4
Se30	0.7279 (15)	0.7458 (13)	0.00000	1.000	0.018 (3)	4

"Disp Para" represents displacement parameter and "Occ" stands for occupancy. M5 stands for mixed site of (Bi5/In6); M7 stands for (Bi7/In8); M9 stands for (Bi9/In10); M11 stands for (Bi11/In12); M13 stands for (In13/Bi14); and M15 stands for (In15/Bi16).

Downloaded from https://www.cambridge.org/core. 10 Sep 2021 at 19:13:30, subject to the Cambridge Core terms of use.

TABLE III. Interatomic distances for Pb₄In_{2.6}Bi_{3.4}Se₁₃.

Contacts		Distance	(Å)	Contac	ets	Distance (Å)		
Pb1	-Se20	3.16 (4)	×2	Pb1	-Se28	3.25 (3)	×2	
Pb1	-Se29	3.19 (5)		Pb1	-Se30	3.03 (3)	$\times 2$	
Pb1	-Se18	3.47 (5)		Pb2	-Se26	3.69 (4)		
Pb2	-Se21	3.32 (3)	×2	Pb2	-Se24	2.97 (3)	$\times 2$	
Pb2	-Se27	3.18 (3)	×2	Pb2	-Se29	3.31 (5)		
Pb3	-Se18	3.14 (4)		Pb3	-Se24	3.12 (3)	$\times 2$	
Pb3	-Se25	3.10 (3)	×2	Pb3	-Se29	3.32 (4)		
Pb3	-Se30	3.20 (2)	×2	Pb4	-Se18	3.33 (4)		
Pb4	-Se20	3.01 (4)	×2	Pb4	-Se22	3.19 (4)	$\times 2$	
Pb4	-Se25	3.12 (4)	×2	Pb4	-Se23	3.42 (4)		
M5	-Se19	3.05 (4)		M5	-Se21	2.90 (3)	$\times 2$	
M5	-Se26	2.87 (4)		M5	-Se28	2.96 (3)	$\times 2$	
M7	-Se19	3.12 (5)		M7	-Se22	2.94 (3)	$\times 2$	
M7	-Se23	2.95 (4)		M7	-Se27	2.90 (3)	$\times 2$	
M9	-Se20	2.77 (5)		M9	-Se23	3.11 (3)	$\times 2$	
M9	-Se27	3.04 (5)	×2	M9	-Se29	2.82 (2)	$\times 2$	
M11	-Se18	2.86 (3)	×2	M11	-Se24	2.68 (3)		
M11	-Se26	3.03 (3)	×2	M11	-Se28	2.88 (4)		
M13	-Se22	2.76 (4)	×2	M13	-Se23	2.93 (3)	×4	
M15	-Se21	2.71 (4)	×2	M15	-Se26	2.95 (3)	×4	
In17	-Se19	2.57 (3)	×2	In17	-Se25	2.70 (6)		
In17	-Se30	2.53 (5)						

M5 stands for the mixed site of (Bi5/In6); M7 stands for (Bi7/In8); M9 stands for (Bi9/In10); M11 stands for (Bi11/In12); M13 stands for (In13/Bi14); M15 stands for (In15/Bi16).

octahedra (with Bi much greater than 50% occupancy in the Bi/In sites) were found to have three longer M–Se bonds vs. three shorter M–Se bonds, likely due to the presence of the $6s^2$ lone-pair electrons of the Bi³⁺ cations.

The four Pb sites (orange color in Figure 4) all have the bicapped trigonal prism coordination environment and they connect the $InSe_4$ tetrahedral units and the (Bi/In)Se₆ octahedral units to form a three-dimensional network. These Pb–Se distances have a wide range of values from 2.97(3) to 3.69(3) Å.

B. Thermoelectric properties

Figure 5 gives the electrical conductivity and Seebeck coefficient for Pb₄In_{2.6}Bi_{3.4}Se₁₃ as a function of temperature (f(T)), and Figure 6 shows the thermal conductivity and ZT for Pb₄In_{2.6}Bi_{3.4}Se₁₃ as f(T). The negative value of α implies the materials to be n-type semiconductors. It is seen that as

Figure 3. Volume of $Pb_4(In_xBi_{6-x}Se_{13})$ solid solution vs. a function of (6-*x*) (or the Bi content).

Figure 4. Crystal structure of $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ showing Z-shaped ribbons (M5 stands for Bi5/In6, M7 stands for Bi7/In8, M9 stands for Bi9/In10, M11 stands for Bi11/In12, M13 stands for Bi13/In14, and M15 stands for Bi15/In16). Pb atoms are shown as orange spheres and the [InSe₄]_∞ tetrahedral chains (green).

Figure 5. Electrical conductivity and Seebeck coefficient for $Pb_4In_{2,6}Bi_{3,4}Se_{1,3}$ as f(T).

Figure 6. Thermal conductivity and ZT for $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ as f(T).

d	20	Ι	h	k	l	d	20	Ι	h	k	l
7.1307	12.40	10	3	1	0	7.0549	12.54	16	2	3	0
6.8634	12.89	5	0	4	Ő	6.5030	13.61	20	3	2	0
5.8342	15.17	24	2	4	0	5.7467	15.41	17	3	3	0
5.5381	15.99	59	4	0	0	5.4288	16.31	7	4	1	0
5.3295	16.62	21	1	5	0	5.0272	17.63	102	3	4	0
4.7380	18.71	20	4	3	0	4.5756	19.38	1	0	6	0
4.4810	19.80	3	1	6	0	4.4061	20.14	12	3	5	0
4.3739	20.29	4	5	1	0	4.3100	20.59	65	4	4	0
4.2290	20.99	164	2	6	0	4.2163	21.05	133	5	2	0
4.1354	21.47	64	0	0	1	3.9596	22.44	6	0	2	1
3.8992	22.79	240	4	5	0	3.8894	22.85	29	3	6	0
3.8742	22.94	21	2	0	1	3.8619	23.01	65	1	7	0
3.8362	23.17	2	2	1	1	3.7286	23.85	61	2	2	1
3.7223	23.89	22	5	4	0	3.7151	23.93	10	1	3	1
3.6970	24.05	188	2	7	0	3.6921	24.08	162	6	0	0
3.6591	24.30	345	6	1	0	3.5774	24.87	111	3	1	1
3.5677	24.94	21	2	3	1	3.5654	24.95	15	6	2	0
3.5421	25.12	54	0	4	1	3.5274	25.23	398	4	6	0
3.4977	25.44	168	1	4	1	3.4896	25.51	185	3	2	1
3.4637	25.70	90	3	7	0	3.4480	25.82	3	5	5	0
3.4317	25.94	43	0	8	0	3.4239	26.00	60	6	3	0
3.3913	26.26	47	1	8	0	3.3/38	26.40	18	2	4	1
3.3566	26.53	343	3	3	1	3.3136	26.88	57	4	0	1
3.2897	27.08	20	4	l r	1	3.2780	27.18	14	2	8	0
3.2672	21.21	127	1	2	1	3.2515	27.41	64 46	6	4	0
3.2210	27.07	2	4	2 4	1	3.2007	27.85	40	4	6	0
3.1957	27.91	80 1	2	4	1	3.1629	28.01	51	5 7	0	0
3.1055	28.17	131	4	3	1	3.1430	28.57	2	3	1	0
3.0837	28.03	409	7	2	0	3.0680	28.00	723	0	6	1
3.0638	20.55	2	6	5	0	3.0390	29.00	190	1	6	1
3 0219	29.12	5	1	9	0	3 0154	29.60	151	3	5	1
2 9909	29.85	54	7	3	0	2 9840	29.00	727	4	4	1
2.9567	30.20	33	2	6	1	2.9409	30.37	1	2	9	0
2.9367	30.41	326	5	7	0	2.8739	31.09	2	7	4	Ő
2.8705	31.13	85	5	3	1	2.8370	31.51	670	4	5	1
2.8332	31.55	116	3	6	1	2.8225	31.67	999	1	7	1
2.8193	31.71	9	3	9	0	2.7691	32.30	138	8	0	0
2.7666	32.33	211	5	4	1	2.7562	32.46	47	2	7	1
2.7551	32.47	239	8	1	0	2.7542	32.48	149	6	0	1
2.7454	32.59	39	0	10	0	2.7418	32.63	10	7	5	0
2.7404	32.65	174	6	1	1	2.7245	32.85	8	1	10	0
2.7131	32.99	82	5	8	0	2.7003	33.15	58	6	2	1
2.6883	33.30	92	6	7	0	2.6837	33.36	8	4	6	1
2.6719	33.51	24	4	9	0	2.6554	33.73	88	3	7	1
2.6483	33.82	34	5	5	1	2.6409	33.92	15	0	8	1
2.6373	33.96	62	6	3	1	2.6223	34.17	10	1	8	1
2.6028	34.43	34	7	6	0	2.5733	34.84	7	3	10	0
2.5679	34.91	6	8	4	0	2.5560	35.08	186	6	4	1
2.5311	35.44	20	4	7	1	2.5223	35.56	8	5	6	1
2.5136	35.69	55	6	8	0	2.5125	35.71	3	5	9	0
2.5027	35.85	14	7	l	1	2.4866	36.09	26	3	8	1
2.4724	36.31	4	8	3	0	2.4/21	36.31	8		2	1
2.4629	36.45	2	/	/	0	2.4618	36.47	216	6	5	1
2.4597	36.50	29 150	4	10	0	2.4516	30.03	3/	9	1 11	0
2.4399	30.81	130	1	2	1	2.4340	30.89	1	2	0	1
2.4233	37.07	11 21	/ 5	כ ד	1	2.3901	37.30	19	2 1	9 Q	1
2.3944 2 3760	37.33	21	5	2	1	2.3037	37.11	20	4 8	0 6	1
2.3709	38.02	20	7	5 11	0	2.3090	38 10	2 302	0 7	1	1
2.3044	38.11	21	5	6	1	2.3000	38 55	1	5	+ 10	0
2.3295	38.62	2	3	9	1	2.3357	38.67	125	5 7	8	0
2.3169	38.84	3	9	4	0	2.3009	39.12	69	8	0	1
2.2928	39.26	182	8	1	1	2.2878	39.35	154	0	12	0
2.2872	39.36	63	0	10	1	2.2852	39.40	101	7	5	1
	-										

TABLE IV. X-ray powder pattern for Pb₄In_{2.6}Bi_{3.4}Se₁₃, *Pbam* (No. 189), a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å³, $D_x = 7.49$ g cm⁻³.

Continued

Downloaded from https://www.cambridge.org/core. 10 Sep 2021 at 19:13:30, subject to the Cambridge Core terms of use.

TABLE IV. Continued

- -	d	28	I	h	k	1	d	20	I	h	k	1
2.275 39.5.1 20 1 12 0 2.2754 39.59 2 4 1 0 2.3021 39.858 7.8 1 10 1 2.2539 39.67 107 6 7 1 2.3040 40.11 18 9 5 0 2.2342 40.02 71 2 0 1 1 2.2404 40.12 11 6 7 1 1 2.2404 40.12 18 2 10 0 2.2342 40.03 3 0 0 2.2352 40.04 39 0 0 0 2.2342 40.04 39 0 0 0 2.2342 40.04 13 18 9 6 0 0 2.2342 40.04 10 1	u 2 0757	20	56	1	10	1	2 2754	20 57	1	1	11	1
12.132 39.38 18 1 10 1 2.1002 39.97 10.7 6 7 1 2.2461 39.82 32 8 7 0 2.2549 39.97 10.7 6 7 1 2.2405 40.21 18 2 12 0 2.2549 40.05 12 4 9 1 2.2314 40.39 91 8 3 1 2.2152 40.70 13 10 0 0 2.1952 41.06 65 7 9 0 2.1870 41.55 14 10 2 0 2.1954 41.49 18 5 11 0 2.1477 41.63 17 6 8 1 1 1 2.1954 41.89 17 7 7 8 5 1 2.109 42.07 78 1 1 1 2.1975 43.54 9 1 <td>2.2757</td> <td>39.57</td> <td>56</td> <td>1</td> <td>12</td> <td>0</td> <td>2.2754</td> <td>39.57</td> <td>2</td> <td>4</td> <td>11</td> <td>0</td>	2.2757	39.57	56	1	12	0	2.2754	39.57	2	4	11	0
2.2460 40.11 18 9 0 2.2403 40.11 18 9 5 0 2.2403 40.123 11 2 40 0 1 2.2405 40.212 18 2 12 0 2.2400 40.23 71 2 10 1 2.2014 40.33 5 10 1 0 2.2025 40.944 39 7 6 1 2.1642 41.06 65 7 9 0 2.1870 41.23 11 8 4 1 2.1755 41.49 18 5 11 0 2.1670 44.83 11 11 1 2.1250 41.89 197 8 8 0 2.1480 42.03 77 6 8 1 1 12 12 11 1 1 12 12 11 1 12 12 11 11 12 12 10	2.2752	39.58	/8	1	10	1	2.2692	39.69	62	8	2	1
2.2403 40.11 18 9 5 0 2.2472 40.13 12 4 9 1	2.2021	39.82 40.11	18	0	5	0	2.2339	39.97 40.15	107	0	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2400	40.11	10	2	12	0	2.2442	40.13	12	4	9	1
-2.200 40.83 5 0 1 2.202 40.94 39 7 6 1 2.1962 41.06 65 7 9 0 2.1870 41.25 14 10 2 0 2.1948 41.29 44 3 10 1 2.1870 41.63 13 9 6 0 2.1745 41.49 18 5 11 0 2.1677 41.63 13 9 6 0 2.1473 42.05 6 5 9 1 2.1284 42.47 78 1 11 1 2.121 42.57 7 8 5 1 2.1064 42.74 29 4 0 1 1 1.10 2.102 43.08 161 2 11 11 1 1 1 0 2.007 43.74 49 7 0 0 2.026 44.08 2.3 11 1	2.2403	40.22	10 01	2	12	1	2.2400	40.23	13	10	0	0
2.1002 10.5 10.5 10.5 10.5 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 11.8 11.0 10.7 11.0 10.7 11.0 10.7 <	2.2314	40.39	5	10	1	0	2.2132	40.70	30	7	6	1
2.168 41.29 44 3 10 2.1610 41.25 11 10 2.1610 41.33 11 8 4 1 2.1745 41.49 18 5 11 0 2.1677 41.63 13 9 6 0 2.1473 42.05 6 5 9 1 2.1420 42.477 7 8 1 11 1 2.1473 4.257 27 8 5 1 2.1160 42.70 1.48 7 7 1 2.1084 42.251 40 9 1 1 2.1082 42.86 2 10 4 0 2.1023 42.99 112 1 13 0 2.0081 43.38 10 1 0 10 0 2 0.073 43.51 46 7 10 0 2 0.073 43.51 46 7 10 0 2 0.073 <td< td=""><td>2.2001</td><td>41.06</td><td>65</td><td>7</td><td>0</td><td>0</td><td>2.2020</td><td>41.25</td><td>14</td><td>10</td><td>2</td><td>0</td></td<>	2.2001	41.06	65	7	0	0	2.2020	41.25	14	10	2	0
1.125 1.12 0 2.1677 41.63 13 9 6 0 2.1550 41.89 197 8 8 0 2.1473 42.03 13 9 6 0 2.1520 41.257 27 8 5 1 2.1469 42.477 78 1 1 1 2.121 42.273 8 4 12 0 2.1140 42.74 29 10 4 0 1 2.103 42.99 112 1 3 0 2.0738 43.61 46 7 10 0 2.0677 43.74 941 0 0 2 2.0677 43.74 11 1 10 0 2.0676 44.08 2 3 11 1 1 10 2.0676 44.08 2 3 11 1 10 2.0676 44.08 2 3 11 1 10 2.0676 <td< td=""><td>2.1702</td><td>41.00</td><td>44</td><td>3</td><td>10</td><td>1</td><td>2.1876</td><td>41.35</td><td>14</td><td>8</td><td>4</td><td>1</td></td<>	2.1702	41.00	44	3	10	1	2.1876	41.35	14	8	4	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1745	41 49	18	5	11	0	2.1677	41.63	13	9	6	0
2.1473 42.05 6 5 9 1 2.1269 42.47 78 1 1 1 2.121 42.57 27 8 5 1 2.1160 42.70 188 7 7 1 2.128 42.73 8 4 12 0 2.1140 42.74 29 4 0 0 2.1084 42.85 40 9 1 1 2.1082 42.86 2 10 4 0 2.0074 43.24 412 9 2 1 2.0088 43.08 16 6 11 0 2.0677 43.74 941 0 0 2 2.0677 43.74 9 7 10 0 2.0668 43.90 43 9 3 1 2.0556 44.01 10 2.033 44.454 5 10 1 2.0428 44.24 53 5 12 0	2.1550	41.89	197	8	8	0	2.1480	42.03	77	6	8	1
12121 42.57 27 8 5 1 2.1140 42.70 148 7 7 1 2.1145 42.73 8 4 12 0 2.1140 42.74 29 4 10 1 2.1084 42.83 40 9 1 1 2.1082 42.86 2 10 4 0 2.1023 42.99 112 1 13 0 2.0981 43.08 161 2 11 0 2.0747 43.74 941 0 0 2 2.0576 44.01 170 8 6 1 2.0563 44.04 287 10 5 0 2.0526 44.08 20 9 4 1 2.0304 44.54 4 5 10 1 2.0304 44.59 63 3 13 0 2.0285 45.10 6.3 11 1 0 2.0134	2.1473	42.05	6	5	9	1	2.1269	42.47	78	1	11	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1221	42.57	27	8	5	1	2.1160	42.70	148	7	7	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.1145	42.73	8	4	12	0	2.1140	42.74	29	4	10	1
2.1023 42.99 112 1 13 0 2.0914 43.08 161 2 11 1 2.0904 43.24 412 9 2 1 2.0848 43.37 4 9 7 0 2.0774 43.54 941 0 0 2 2.0677 43.74 112 6 11 0 2.0677 43.74 941 0 0 2 2.0677 43.74 112 6 1 0 2.0563 44.04 287 10 5 0 2.0526 44.07 14 6 9 1 2.0360 44.46 1 1 2 2 2.0324 44.53 5 12 0 2.0354 44.66 514 7 8 1 2.0314 44.50 20 9 4 1 1 1 2.0276 44.66 514 7 8 1 2 1 1936 45.46 3 1 1 1 1 1	2.1088	42.85	40	9	1	1	2.1082	42.86	2	10	4	0
20904 43.24 412 9 2 1 20848 43.37 4 9 7 0 0 20745 43.59 98 2 13 0 20738 43.61 46 7 10 0 20667 43.74 941 0 0 2 20677 43.74 112 6 11 0 20608 43.90 43 9 3 1 2.0556 44.01 170 8 6 1 1 2.0504 44.04 103 8 9 0 2.0424 44.27 14 6 9 1 1 2 0 2.0304 44.54 53 5 12 0 0 2.0324 44.54 4.53 54 1 1 1 0 2.0304 44.80 20 9 4 1 </td <td>2.1023</td> <td>42.99</td> <td>112</td> <td>1</td> <td>13</td> <td>0</td> <td>2.0981</td> <td>43.08</td> <td>161</td> <td>2</td> <td>11</td> <td>1</td>	2.1023	42.99	112	1	13	0	2.0981	43.08	161	2	11	1
2.0743 43.59 98 2 13 0 2.0778 43.74 46 7 10 0 2.0677 43.74 941 0 0 2 2.0677 43.74 112 6 11 0 2.0544 44.04 287 10 5 0 2.0526 44.04 2 3 11 1 2.054 44.44 103 8 9 0 2.0422 44.27 14 6 9 1 2.0503 44.45 1 1 2 2 2.0328 44.54 53 5 12 0 2.0324 44.54 4 5 10 1 2.0328 44.80 20 9 4 1 2.0324 44.54 5 10 1 2.0324 44.50 13 0 1.0213 44.80 20 9 5 1 1.9938 45.46 14 4 11 1 1 1.9936 45.02 1 3 2 2 <	2.0904	43.24	412	9	2	1	2.0848	43.37	4	9	7	0
20677 43.74 941 0 0 2 2.0677 43.74 112 6 11 0 1 2.0608 43.90 43 9 3 1 2.0556 44.01 170 8 6 1 2.0534 44.04 103 8 9 0 2.0422 44.27 14 6 9 1 2.0350 44.46 1 1 2 2 2.0328 44.54 53 5 12 0 2.0354 44.46 5 10 1 2.0304 44.89 63 3 13 0 2.0276 44.66 514 7 8 1 2.0213 44.80 20 9 8 0 1.9938 45.40 321 1 12 1 1.9936 45.46 14 4 11 1 1.9925 45.49 19 11 2 0 1.9946 45.68 1 8 7 1 1.9925 45.49 10 1	2.0745	43.59	98	2	13	0	2.0738	43.61	46	7	10	0
20608 43.90 43 9 3 1 20556 44.01 170 8 6 1 2.0503 44.14 103 8 9 0 2.0424 44.27 14 6 9 1 2.0503 44.46 1 1 2 2 2.0328 44.54 53 5 12 0 2.0324 44.54 4 5 10 1 2.0328 44.54 53 5 12 0 2.0276 44.66 514 7 8 1 2.0213 44.80 20 9 4 1 2.0085 45.10 63 11 1 0 2.0001 45.30 14 9 8 0 1.9938 45.46 321 1 12 1 1.9936 45.46 14 4 11 1 1 1.9137 45.68 14 4 11 1 1.9137 45.68 14 4 1 1 1.9145 46.02 1 3 2	2.0677	43.74	941	0	0	2	2.0677	43.74	112	6	11	0
2.0544 44,04 287 10 5 0 2.0526 44,08 2 3 11 1 2.0503 44,14 103 8 9 0 2.0422 44.27 14 6 9 1 2.0350 44.46 1 1 2 2 2.0328 44.54 53 5 12 0 2.0324 44.54 4 5 10 1 2.0304 44.59 63 3 13 0 2.0276 44.66 514 7 8 1 2.0301 45.30 14 9 8 0 19938 45.46 321 1 12 0 1.9936 45.46 14 4 11 1 19925 45.49 19 11 2 0 1.9846 45.04 1 3 2 1 19732 45.49 1 4 1 1.9557 46.02 1 7 11 0 19732 46.55 19 8 10	2.0608	43.90	43	9	3	1	2.0556	44.01	170	8	6	1
2.0503 44.14 103 8 9 0 2.0442 44.27 14 6 9 1 2.0360 44.464 1 1 2 2 2.0324 44.54 53 5 12 0 2.0276 44.66 514 7 8 1 2.0213 44.80 20 9 4 1 2.0276 44.66 514 7 8 1 2.0213 44.80 20 9 4 1 1.9938 45.46 321 1 12 1 1.9936 45.46 14 4 11 1 1.9938 45.69 1 2 3 2 1.9737 45.94 5 9 5 1 1.9732 45.96 1 4 13 0 1.9705 46.02 1 7 11 0 1.9610 46.26 13 0 1.44 0 1.9597 46.29 1 7 10 0 1 1.9444 46.55 19<	2.0544	44.04	287	10	5	0	2.0526	44.08	2	3	11	1
2.0360 44.64 1 1 1 2 2 2.0328 44.54 53 5 12 0 2.0324 44.56 514 7 8 1 2.0213 44.80 20 9 4 1 2.0085 45.10 63 11 1 0 2.0001 45.30 14 9 8 0 1.9938 45.46 321 1 12 1 1.9936 45.46 14 4 11 1 1.9925 45.49 19 11 2 0 1.9846 45.68 1 8 7 1 1.9843 45.69 1 4 13 0 1.9705 46.20 1 3 0 1 1.9068 46.11 19 11 3 0 1 1.9166 46.51 10 1 1.9577 46.47 7 10 0 1 1.9139 46.55 19 8 10 1.913937 46.65 4 2 4 2 1.91494 46.	2.0503	44.14	103	8	9	0	2.0442	44.27	14	6	9	1
2.0324 44.54 4 5 10 1 2.0304 44.59 63 3 13 0 2.0276 44.66 514 7 8 1 2.0213 44.80 20 9 4 1 2.0085 45.10 63 11 1 0 2.0001 45.30 14 9 8 0 1.9938 45.46 321 1 12 1 1.9936 45.68 14 4 4 11 1 1.9925 45.49 19 11 2 0 1.9846 45.68 14 4 4 11 1 1 1.9936 45.68 14 4 11 1 1.9326 46.02 1 3 2 2 1 1.9136 10 1 1 1.9456 46.59 10 1 1 1.9436 46.56 4 2 4 2 1 1.9446 46.66 54 7 9 1 1 1.9446 46.56 4 2 4 <td< td=""><td>2.0360</td><td>44.46</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2.0328</td><td>44.54</td><td>53</td><td>5</td><td>12</td><td>0</td></td<>	2.0360	44.46	1	1	2	2	2.0328	44.54	53	5	12	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0324	44.54	4	5	10	1	2.0304	44.59	63	3	13	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0276	44.66	514	7	8	1	2.0213	44.80	20	9	4	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.0085	45.10	63	11	1	0	2.0001	45.30	14	9	8	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9938	45.46	321	1	12	1	1.9936	45.46	14	4	11	1
19843 45.69 1 2 3 2 1.9737 45.94 5 9 5 1 1.9732 45.96 1 4 13 0 1.9705 46.02 1 3 2 2 1.9700 46.04 4 2 12 1 1.9668 46.01 19 11 3 0 1 1.9513 46.45 10 1 14 0 1.9597 46.29 1 7 10 0 1 1.9496 46.55 19 8 10 0 1.9489 46.56 4 2 4 2 1.9478 46.59 110 10 1 1.9397 46.80 54 7 9 1 1.9371 46.86 10 4 0 1.9321 46.99 9 10 2 1 1.9310 47.02 49 2 14 0 1.9288 47.08 83 10 7 0 1.9277 47.11 4 1	1.9925	45.49	19	11	2	0	1.9846	45.68	1	8	7	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9843	45.69	1	2	3	2	1.9737	45.94	5	9	5	1
19700 46.04 4 2 12 1 1.9668 46.11 19 11 3 0 1.9610 46.26 13 0 14 0 1.9597 46.29 1 7 11 0 0 1 1.9533 46.45 10 1 1 44 0 1.9597 46.29 1 7 10 0 1 1.9496 46.55 19 8 10 0 1.9489 46.56 4 2 4 2 4 2 1.9478 46.59 110 10 1 1 1.9496 46.65 2 3 3 2 1.9478 46.68 70 6 10 1 1.9496 46.65 2 3 3 2 1.9444 46.68 70 6 10 1 1.9496 46.96 9 10 2 1 1.9371 46.86 10 4 0 2 1.9333 46.96 9 10 2 1 1.9324 46.98 3 11 4 0 1.9321 46.99 15 3 12 1 1.9310 47.02 49 2 14 0 1.9288 47.08 83 10 7 0 1.9277 47.11 4 1 5 2 1.9247 47.18 13 5 11 1 1 1.9199 47.31 56 9 6 1 1.9156 47.42 1 9 9 0 0 1.9123 47.51 17 3 4 2 1.9111 47.54 1 8 8 1 1 0 1.9977 47.58 9 10 3 1 1.8953 47.96 16 3 144 0 1.8951 47.96 16 3 144 0 1.8951 47.96 16 3 144 0 1.8951 47.96 16 3 144 0 1.8719 48.60 2 3 5 2 2 1.8643 48.81 11 4 4 4 2 1 13 1 1.8719 48.60 2 3 5 2 2 1.8643 48.81 11 4 4 4 2 1 1.8719 48.60 2 3 5 2 2 1.8643 48.81 11 4 4 2 2 1.8576 49.00 25 10 8 0 1.8576 49.00 26 5 2 2 2 2 1.8541 49.09 7 2 13 1M 1.8541 49.09 27 7 1 2 0M 1.8539 49.10 28 8 11 0 1.8494 49.23 49 6 11 1 1 1.8339 49.95 1 1 1 0 1.8494 49.23 49 6 11 1 1 1 1.8339 49.95 1 1 8 9 1 1 1 1 1 1.8339 49.95 1 1 8 9 1 1 1 1 1 1 1 1 1	1.9732	45.96	1	4	13	0	1.9705	46.02	1	3	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9700	46.04	4	2	12	1	1.9668	46.11	19	11	3	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9610	46.26	13	0	14	0	1.9597	46.29	1	7	11	0
1.9496 46.55 19 8 10 0 1.9489 46.56 4 2 4 2 4 2 1.9478 46.59 110 10 1 1 1.9456 46.65 2 3 3 2 1.9444 46.68 70 6 10 1 1.9397 46.80 54 7 9 1 1.9371 46.86 10 4 0 2 1.9333 46.96 9 10 2 1 1.9324 46.98 3 11 4 0 1.9228 47.08 83 10 7 0 1.9277 47.11 4 1 5 2 1.9247 47.18 13 5 11 1 1.9190 47.31 56 9 6 1 1.9156 47.42 1 9 9 0 1.9123 47.51 17 3 4 2 1.9111 47.54 1 8 8 1 1.9097 47.58 9 10 3 1 1.8953 47.96 16 3 14 0 1.8782 48.43 161 10 4 1 1.8874 48.54 5 1 13 1 1.8782 48.43 36 9 7 1 1.8612 48.90 25 10 8 0 1.876 49.00 38 2 6 2 1.8565 <td< td=""><td>1.9533</td><td>46.45</td><td>10</td><td>1</td><td>14</td><td>0</td><td>1.9527</td><td>46.47</td><td>7</td><td>10</td><td>0</td><td>1</td></td<>	1.9533	46.45	10	1	14	0	1.9527	46.47	7	10	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9496	46.55	19	8	10	0	1.9489	46.56	4	2	4	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9478	46.59	110	10	1	1	1.9456	46.65	2	3	3	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9444	46.68	70	6	10	1	1.9397	46.80	54	/	9	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9371	46.86	10	4	0	2	1.9333	46.96	9	10	2	1
1.9310 47.02 49 2 14 0 1.9288 47.08 85 10 7 0 1.9277 47.11 4 1 5 2 1.9247 47.18 13 5 11 1 1.9199 47.31 56 9 6 1 1.9156 47.42 1 9 9 0 1.9123 47.51 17 3 4 2 1.9111 47.54 1 8 8 1 1.9097 47.58 9 10 3 1 1.8953 47.96 16 3 14 0 1.8951 47.97 1 4 3 2 1.8827 48.30 146 4 12 1 1.8782 48.43 161 10 4 1 1.8740 48.54 5 1 13 1 1.8719 48.60 2 3 5 2 1.8643 48.81 11 4 4 2 1.8516 49.00 38 2 6 2 1.8565 49.03 26 5 2 2 1.8541 49.09 7 2 13 $1M$ 1.8541 49.09 27 7 12 $0M$ 1.8539 49.10 28 8 11 0 1.8494 49.23 49 6 111 1 1.8331 49.25 20 4 14 0 1.8494 49.23	1.9324	46.98	3	11	4	0	1.9321	46.99	15	3 10	12	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9510	47.02	49	2 1	14 5	0	1.9266	47.08	05 12	10	/	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9277	47.11	4	1	5	2 1	1.9247	47.10	15	5	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9199	47.51	17	3	4	2	1.9150	47.42	1	9	9	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9125	47.51	0	10	4	1	1.9111	47.04	16	3	0 14	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.9097	47.58	9 1	10	3	2	1.8955	47.30	146	1	14	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8782	48.43	161	10	4	1	1.8827	48.50	5		12	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8719	48.60	2	3	5	2	1.8643	48.81	11	4	4	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8616	48.88	3	9	7	1	1.8612	48.90	25	10	8	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8576	49.00	38	2	6	2	1.8565	49.03	26	5	2	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8541	49.09	7	2	13	1M	1.8541	49.09	27	7	12	- 0M
1.8485 49.25 20 4 14 0 1.8419 49.44 53 12 1 0 1.8398 49.50 1 10 5 1 1.8369 49.59 11 8 9 1 1.8331 49.70 18 6 13 0 1.8296 49.80 49 12 2 0 1.8268 49.88 57 4 5 2 1.8258 49.91 8 3 6 2 1.8243 49.95 23 5 12 1 1.8229 49.99 17 1 7 2 1.8226 50.00 32 3 13 1 5 5 12 1 1.8229 49.99 17 1 7 2	1.8539	49.10	28	8	11	0	1.8494	49.23	49	6	11	1
1.839849.50110511.836949.59118911.833149.701861301.829649.804912201.826849.88574521.825849.9183621.824349.952351211.822949.99171721.822650.0032313133333	1.8485	49.25	20	4	14	0	1.8419	49.44	53	12	1	0
1.8331 49.70 18 6 13 0 1.8296 49.80 49 12 2 0 1.8268 49.88 57 4 5 2 1.8258 49.91 8 3 6 2 1.8243 49.95 23 5 12 1 1.8229 49.99 17 1 7 2 1.8226 50.00 32 3 13 1 1 1 7 2	1.8398	49.50	1	10	5	1	1.8369	49.59	11	8	9	1
1.8268 49.88 57 4 5 2 1.8258 49.91 8 3 6 2 1.8243 49.95 23 5 12 1 1.8229 49.99 17 1 7 2 1.8226 50.00 32 3 13 1 1 1 7 2	1.8331	49.70	18	6	13	0	1.8296	49.80	49	12	2	0
1.8243 49.95 23 5 12 1 1.8229 49.99 17 1 7 2 1.8226 50.00 32 3 13 1 1 7 2	1.8268	49.88	57	4	5	2	1.8258	49.91	8	3	6	2
1.8226 50.00 32 3 13 1	1.8243	49.95	23	5	12	1	1.8229	49.99	17	1	7	2
	1.8226	50.00	32	3	13	1						

The particular peak that has the strongest intensity in the entire pattern is assigned an intensity of 999 and other lines are scaled relative to this value. The symbols "M" refers to peaks containing contributions from two reflections. The *d*-spacing values are calculated values from refined lattice parameters, and "T" represents integrated intensity values.

temperature increases, so are the Seebeck coefficients and electrical conductivity, further confirming the compound to be a semiconductor. There is a maximum of the Seebeck coefficient value at around 600 K, at the same time, the conductivity rapidly increases above 600 K, probably a result of the

bipolar conduction effect (caused by the low carrier concentration). The bipolar effect (the band gap for $Pb_4In_3Bi_3Se_{13}$ was reported to be 0.6 eV (Wang et al., 2009)) is a negative process deteriorating the thermoelectric properties, particularly at high temperatures. The structural and compositional complexity, the rattling effect of alkali metal and Pb²⁺ ions in the cavities, the alloy-type occupancy disorder among the In and Bi atoms in Pb₄In_{2.6}Bi_{3.4}Se_{1.3} all combine to produce a low lattice thermal conductivity value. In Figure 6, one notes the κ values decrease as the temperature increases, ranging from 0.38 W m⁻¹ K⁻¹ down to 0.30 W m⁻¹ K⁻¹, which is a relatively low value in the series of multinary chalcogenides.

The figure of merit (*ZT*) for the $Pb_4In_{2.6}Bi_{2.4}Se_{13}$ phase was estimated to be 0.175 at about 700 K. For comparison, *ZT* of pure Bi_2Te_3 is 0.5 and the optimized Bi_2Te_3 alloy is about 0.9 (an industrially used material). Although the Seebeck coefficient of $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ is near that of Bi_2Te_3 , the electrical conductivity is too small for practical thermoelectric applications. Therefore, a *ZT* of 0.175, while a respectable value, is rather low as compared to the 0.5–0.9 value of that of Bi_2Te_3 , and $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ is not likely a viable candidate for further optimization efforts.

C. Reference XRD pattern

The reference pattern of Pb₄In_{2.6}Bi_{3.4}Se₁₃ is provided in Table IV. As the compound has a large unit cell, one expects a great number of peaks in the XRD pattern. Therefore, we report the pattern to a limit of $2\theta < 50^{\circ}$. In this pattern, the symbol "M" refers to peaks containing contributions from two reflections. The particular peak that has the strongest intensity in the entire pattern is assigned an intensity of 999 and other lines are scaled relative to this value. In general, the *d*-spacing values are calculated values from refined lattice parameters. The intensity values reported are integrated intensities (rather than peak heights) based on the corresponding profile parameters as reported in Table I. For resolved overlapped peaks, intensity-weighted calculated d-spacing, along with the observed integrated intensity and the hkl indices of both peaks (for "M") are used. For peaks that are not resolved at the instrumental resolution, the intensityweighted average d-spacing and the summed integrated intensity value are used. In the case of a cluster, unconstrained profile fits often reveal the presence of multiple peaks, even when they are closer than the instrumental resolution. In this situation, both *d*-spacing and intensity values are reported independently.

IV. SUMMARY

Quaternary selenides, $Pb_4In_xM_{6-x}Se_{13}$ (M = Bi, x = 2.6), or Pb₄In_{2.6}Bi_{3.4}Se₁₃, was synthesized and characterized. The crystal structure, isostructural with that of Pb₄In₂Bi₄S₁₃, features a three-dimensional framework consisting of Z-shaped ribbon motifs and corner-sharing infinite one-dimensional $[InSe_{4}]$ chains running parallel to the *c*-axis, and connected with Pb atoms to form a three-dimensional network. For $Pb_4In_xM_{6-x}Se_{13}$, In and Bi atoms are distributed over sites M5-M15 with a varied ratio to form a solid solution. Measurements of electrical conductivity show increasing values with increasing temperature for $Pb_4In_xM_{6-x}Se_{13}$. The Seebeck coefficient of Pb₄In_{2.6}Bi_{3.4}Se₁₃ was found to be approximately $-385 \,\mu V \, K^{-1}$ between 550 and 650 K, indicating the compound to be an *n*-type semiconductor. However, the conductivity increases with increasing temperature (Figure 5), indicating that In is not an effective dopant in this system. Although the Seebeck coefficient of $Pb_4In_{2.6}Bi_{3.4}Se_{13}$ is near that of Bi_2Te_3 , the electrical conductivity is too small (*ZT* of 0.175) for industrial thermoelectric applications. The results of transport data with a better dopant in future work may provide a clearer insight into the potential of this material system.

V. DEPOSITED DATA

The supplementary material for this article, which includes the Crystallographic Information Framework (CIF) file containing the results of the Rietveld refinement (including the raw data), was deposited with the ICDD. The data can be requested at info@icdd.com.

FUNDING

This work was performed at the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, and was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

- Berlepsch, P., Armbruster, T., Makovicky, E., Hejny, C., Topa, D., and Graeser, S. (2001). "The crystal structure of (001) twinned xilingolite, Pb₃Bi₂S₆," Can. Mineral. 39, 1653–1663.
- Choi, K. S., Chung, D.-Y., Mrotzek, A., Brazis, P., Kannewurf, C. R., Uher, C., Che, W., Hogan, T., and Kanatzidis, M. G. (2001). "Modular construction of A_{1+x}M_{4-2x}M'_{7+x}Se₁₅ (A=K, Rb; M=Pb,Sn; M'=Bi,Sb): a new class of solid state quaternary termoelectric compounds," Chem. Mater. 13, 756–764.
- Chung, D-Y, Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., and Kanatzidis, M. G. (2000). "CsBi₄Te₆: a highperformance thermoelectric material for low-temperature applications," Science 287, 1024–1027.
- Derakhshan, S., Asson, A., Taylor, N. J., and Kleinke, H. (2006). "Crystal and electronic structures and physical properties of two semiconductors Pb₄Sb₆Se₁₃ and Pb₆Sb₆Se₁₇," Intermetallics 14, 198–207.
- Edenharter, A. (1980). "Die Kristallstruktur von Heteromorphit, Pb₇Sb₈S₁₉," Z. Kristallogr. 151, 193–202.
- Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). "A correction for powder diffraction peak symmetry due to axial divergence," J. Appl. Crystallogr. 27, 892–900.
- Gates-Rector, S. D. and Blanton, T. N. (2019). "The Powder Diffraction File: a quality materials characterization database," Powder Diffr. 34, 352–360.
- Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). "Cubic AgPb_mSbTe_{2+m}: bulk thermoelectric materials with high figure of merit," Science 303, 818–821.
- Kanatzidis, M. G., McCarthy, T. J., Tanzer, T. A., Chen, L.-H., and Iordanidis, L. (1996). "Synthesis and thermoelectric properties of the new ternary bismuth sulfides KBi_{6.33}S₁₀ and K₂Bi₈S₃," Chem. Mater. 8, 1465–1474.
- Matzat, E. (1979). "Cannizzarite," Acta Crystallogr. B Struct. Sci. 35, 133–136.
- Nuffield, E. W. (1975). "The crystal structure of fülöppite, Pb₃Sb₈S₁₅," Acta Crystallogr. B Struct. Sci. 31, 151–157.

Downloaded from https://www.cambridge.org/core. 10 Sep 2021 at 19:13:30, subject to the Cambridge Core terms of use.

- Olsen, L. A., Balic-Zunic, T., Makovicky, E., Ullrich, A., and Miletich, R. (2007). "Hydrostatic compression of galenobismutite (PbBi₂S₄): elastic properties and high-pressure crystal chemistry," Phys. Chem. Miner. 34(7), 467–475.
- Rietveld, H. M. (1969). "A profile refinement method for nuclear and magnetic structures," J. Appl. Crystallogr. 2, 65–71.
- Rowe, D. M. (**1995**). *CRC Handbook of Thermoelectrics* (CRC Press, Boca Raton, FL).
- Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallogr. A 32, 751–767.
- Slater, J. C. (1964). "Atomic radii in crystals," J. Chem. Phys. 41, 3199. Bibcode: 1964JChPh. 41.31995. doi:10.1063/1.1725697.
- Takeuchi, Y., Takagi, J., and Yamanaka, T. (1974). "The crystal structure of PbS• 2Bi₂S₃," Proc. Japan Acad. 50, 317–321.
- Toby, B. H. and Von Dreele, R. B. (2013). "GSAS-II: the genesis of a modern open-source all purpose crystallography software package," J. Appl. Crystallogr. 46(2), 544–549.
- Wang, M. F., Huang, W. H., and Lee, C. S. (2009). "Synthesis and phase width of quaternary selendides $Pb_4In_xBi_{6-x}Se_{13}$ (M=Bi, x=2.1–2.8; Sb, x=2)," Inorg. Chem. 48, 6402–6408.