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A B S T R A C T

For positioning systems utilizing linear guides and trucks with recirculating balls, a method is presented that
uses the measured total error motions and the measured phase of ball loops within trucks to determine the
influence of each ball loop on the error motions. The influence of ball recirculation on the error motions is
estimated a priori via a least-squares solution based on data collected from a multitude of motion tests in
which varying phases were measured by sensors integrated into the trucks. This method enables real-time
estimation of performance degradations and identification of their sources.

Published by Elsevier Ltd on behalf of CIRP.
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Fig. 1. Schematic of the method to determine and monitor influence of bearing ball
recirculation in ball loops of four moving trucks (Truck 1 to Truck 4) on geometric error
motions of a linear positioning system.
1. Introduction

Most modern machine tools and linear positioning systems use
linear motion guideways, consisting of a rail and multiple carriages
(trucks) with recirculating (looping) rolling elements, for precision
motion. Manufacturing relies on linear positioning systems [1], and
achieving high-precision and robust production requires accurate
knowledge of error motions as well as sources of emerging faults.
Thus, methods that enable higher precision and condition-based
maintenance via the monitoring of error motions could impact vari-
ous manufacturing applications.

The geometric accuracy and structural health of linear motion sys-
tems are affected by the interaction between the guideways and the
moving elements in the trucks. At any given position of a truck, a sub-
set of recirculating balls in a ball loop contacts a section of a guide-
way. As the truck moves back and forth to the same position, the
subset of recirculating balls contacting the guideway changes,
because the entire ball loop has shifted relative to the truck due to
micromechanics. This ball loop shift can be thought of as a phase
change. The combination of guideway/active balls (in contact with
the guideway) at any axis position influences the error motions [2]
due to local imperfections of both the guideways and the active balls,
and the use of multiple trucks increases the apparent non-repeatabil-
ity of the error motions. Furthermore, error motions change with
machine usage, since abrasion and adhesion between rolling ele-
ments causes material fatigue, pitting, cracking, and wear. If not
properly mitigated, these faults will grow to affect the quality of parts
produced, leading to parts becoming out of tolerance and/or machine
failure [3].

To enable increased accuracy and proactive maintenance, manufac-
turers need automated methods for diagnosing machine tool linear
axes without halting production. A new method is proposed to identify
the contributions of each truck to the overall error motion, which pro-
vides information that can be used to diagnose the condition of linear
axis components [4,5] needed for intelligent sensor-based systems of
manufacturing processes [6]. This paper introduces a sensor-based
method and demonstrates its experimental validation.
2. Method

The new method utilizes the phases of recirculating ball loops,
measured by in-situ sensors, to estimate the effect of recirculation on
error motions in real time. Fig. 1 shows a schematic of the new
method applied to a system with two rails and four trucks. As the lin-
ear axis moves back and forth to the same axis position (x), the balls
inside the trucks recirculate and the phase of each loop changes,
which is represented in the figure by the changing positions of the
black balls between two states (blue and red). Also, the change of
balls in contact with the rails at the same position causes a given
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error motion, EðxÞ, to change its state from the “blue” state to the
“red” state in the error plot in Fig. 1.

This method considers an error motion, as a function of nominal
position, to be the summation of the influences of the interactions of
each ball loop with the guideway rails. By decomposing the error
function into aperiodic (fixed-phase) and periodic (phase-shifting)
components, the position-based error function can be expressed in
terms of the phases of the ball loops. Fig. 1 shows that the error
motion for the jth state, EjðxÞ, is assumed to be the sum of the fixed-
phase component, EðxÞ, due to the average interaction of all balls and
guideways, and the phase-shifting components, Tijðx; ’ijÞ, for each ith

ball loop and jth state due to recirculation:

Ej xð Þ ¼ E xð Þ þ
XNBL

i¼1
Tij x;’ij
� � ð1Þ

where NBL is the total number of ball loops interacting with guideway
rails in the linear positioning system. Each phase-shifting component
is a periodic function TiðxÞ with period Li that is shifted in space with
phase ’ij due to recirculation; that is,

Tij x;’ij
� � ¼ Ti x� ’ij

2p
Li

� �
ð2Þ

The method assumes that the influences of each ball loop on an
error motion is periodic with the same period and phase as the ball
loop itself. The phase of TiðxÞ for Tijðx; ’ijÞ is associated with the loca-
tion each specific ball contacts the rail, which requires tracking of the
ball movements. This was accomplished by replacing a few of the
original balls with marker balls (see Fig. 2b) and observing the loca-
tions of these markers through a machined slot during motion with
proximity sensors (see Fig. 2a). Fig. 3 shows the proximity signal
peaks (denoted A through E) corresponding to the selected arrange-
ment of the markers within the ball loop (Fig. 2b) and the distances
between these peaks, as ratios (a, b, g, d, and e) of the signal period, Li.
Six marker balls were used which balances the need for minimizing
their influence on the motion accuracy while enabling visual identifi-
cation of every unique ball through a slot (see Fig. 2). For industrial
implementation, sensor-integrated trucks with only one marker ball
could be used without any slot.
Fig. 2. (a) View of truck with integrated inductive proximity sensor, and (b) example
ball loop pattern with marker balls (dark filled circles) and a numbering scheme of
original balls (see Section 4).

Fig. 3. Diagram of the distances between example proximity signal peak centers as a
function of the ball loop signal period, Li .

Fig. 4. Diagram with theoretical and experimental signal peak centers.
Due to spaces between the balls and the friction characteristics,
the period and the phase are not constant. The method uses the mea-
sured periods and phases of the periodic ball-loop signals, deter-
mined from the proximity data, to solve for the error functions (EðxÞ
and every TiðxÞ) that comprise the right-hand side of Eq. (1). Any
measured error motion on the left-hand side of Eq. (1) is decomposed
into average aperiodic and recirculation-induced periodic compo-
nents as described in Section 3.

2.1. Ball loop period and phase

The signal period Li and phase ’ij of each error function TiðxÞ of Eq.
(2) are determined for each jth state before solving for all error func-
tions (EðxÞ and every TiðxÞ). The ratios (a, b, g , d, and e) are known
based on the marker ball locations within the ball loop. Towards this
end, Fig. 4 shows a diagram comparing the theoretical distances and
experimental distances between the peak centers for the ith ball loop
and jth state. The differences between the theoretical and experimen-
tal peak-to-peak distances are minimized in a least-squares approach
to yield

Lij ¼ rTr
� ��1

rTd
� � ð3Þ

where r is the vector of sequential theoretical peak-to-peak ratios,
e.g., ½g; d; e; a; b; g� in Fig. 3, and d is the vector of sequential experi-
mental peak-to-peak distances, ½d1; d2; ⋯ dn�1�, for the ðn� 1Þ dis-
tances corresponding to the n peaks. Once Lij is known from Eq. (3),
the signal period Li for the ith ball loop is set as the mean of its Lij val-
ues. Since, at any given state, the starting point for period calculation
can be arbitrary, we assign it a variable y0 (see Fig. 4) and calculate it
by minimizing the sum of the squares of the residuals between the
vector of theoretical locations, y ¼ ½y1; y2; ⋯ yn�, and the vector of
experimental locations, x ¼ ½x1; x2; ⋯ xn�, for the n peaks. The least-
squares solution for y0 is the solution of

mean yð Þ ¼ mean xð Þ ð4Þ
where mean(v) is the arithmetic mean of a general vector v. Finally,
the phase, ’ij, of the ball loop is defined as

’ij ¼ wrap 2p yA; ij=Li
� � ð5Þ

where yA; ij is the theoretical position of an index marker (Peak A in
Fig. 4) for the ith ball loop and jth state that is closest to the origin
(x ¼ 0), and wrap() is the function that wraps the phase to within
[0, 2p].
3. Problem Formulation and Least-Squares Solution

All error functions (EðxÞ and every TiðxÞ) are determined at specific
locations and interpolated to locations in between. Each type of error
motion (e.g., straightness and angular error motions) is measured
with a relevant instrument (e.g., laser interferometer) at k ¼ 1; 2; . . .

N equally-spaced locations, xk 2 ½xmin; xmax�, where Dx is the nominal
distance between adjacent positions. To reduce the number of solv-
able variables, the variables representing a signal are placed at posi-
tions with an interval spacing of nDx, where n is a positive integer.
Next, Eqs. (1) and (2) are approximated in matrix form as

Ej ¼ Eþ
XNBL

i¼1
Pi;j Li; ’ij

� �
Ti ð6Þ

where Ej is the vector of measured errors, E is the aperiodic error
vector with a length of t0 ¼ 1þ ceil

�
ðxmax � xminÞ=nDx

�
, Ti is the vec-

tor of periodic errors with a length of ti ¼ 1þ ceilðLi=nDxÞ, in which
ceil() is the ceiling function, and Pi;jðLi;’ijÞ is a matrix that accounts
for linear interpolation, the periodicity of TiðxÞ, and phase shifts.
Lastly, the mean of every Ti is set to zero for a unique solution. Thus,



Table 1
Mean and standard deviation (std) of the distribution of estimated
ball loop period for all motions.

Truck 1 Truck 2 Truck 3 Truck 4

mean(Lij) (mm) 269.12 265.38 264.05 267.81
std(Lij) (mm) 1.52 1.13 0.99 0.77

Fig. 6. Change in phase of the ball loops for Condition 0.
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four rows are added to Eq. (6) for all error motion states
(j ¼ 1;2; . . .R) to yield the final system of equations as

E1

E2

..

.

ER

0
0
0
0

2
66666666666664

3
77777777777775

¼

P0 P1;1 P2;1 P3;1 P4;1
P0 P1;2 P2;2 P3;2 P4;2

..

. ..
. ..

. ..
. ..

.

P0 P1;R P2;R P3;R P4;R
V0 I1 V2 V3 V4

V0 V1 I2 V3 V4
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2
66666666666664

3
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E

T1

T2

T3

T4

2
666664

3
777775

ð7Þ

where Vi is a matrix of zeros and Ii is a matrix of ones, both with a
size of 1£ ti. The least-squares solution of Eq. (7) yields E and every
Ti and can be applied for the two straightness and three angular error
motions. Eq. (6) applies for constant ball-loop periods and captures
lower frequencies via linear interpolation.

4. Experimental Setup

Each of the four trucks is instrumented with an inductive proxim-
ity sensor (see Fig. 2a) to monitor the outer loop containing 32 balls
of 4 mm diameter with the pattern of Fig. 2b. At any given time, about
13 balls in each loop contact the guideway. Hence, about 104 balls (13
balls per loop£ 2 loops per truck£ 4 trucks) are in contact with the
two rails at any time. However, a preload was applied within the sys-
tem such that the net forces between the outer ball loops and the
rails dominate over the forces for the inner ball loops. Therefore, this
study only concerns the four outer ball loops that significantly influ-
ence the error motions; therefore, NBL ¼ 4 in Eq. (1).

In this experiment, the balls are incrementally replaced with mar-
ginally larger balls to illustrate how the method can monitor the
bearing-ball influences on error motions for diagnostic purposes.
First, with the original set of balls (Condition 0), pitch error motion
data is collected using a laser-based measuring instrument and the
four proximity sensors as the axis moves back and forth over its
entire range of travel (0.35 m) for a total of 90 runs (R ¼ 90). In prac-
tice, this type of data collection would be performed once, or as
desired, for updating the phase-based error model, Eq. (7), for health
monitoring purposes.

To change the condition, two balls in Truck 2, labeled “1” in
Fig. 2b, were replaced with balls with diameters about 12 µm larger,
and 90 runs of data were collected for that condition (Condition 1).
Next, two more balls labeled “2” in Fig. 2b were replaced in the same
manner and 90 runs of data were collected for that condition (Condi-
tion 2). This process of replacing balls with subsequent data collec-
tion was repeated (Conditions 3 to 13) according to Fig. 2b until each
original ball in Truck 2 was replaced (Condition 13).

For each motion between each end of the axis travel, the time-
sampled proximity data were processed as functions of position.
Fig. 5 shows an example of proximity data, binarized as either 0 of 1
via simple thresholding. The binary data will be analysed to yield the
signal period and phase for each outer ball loop signal for every state.
The signal periods and phases are used to solve for all error functions
(EðxÞ and every TiðxÞ).
Fig. 5. Example of binarized proximity data for a single axis travel.

Fig. 7. (a) Fixed-phase error function (black curve), EðxÞ, with measured pitch error
motion for each jth state (green curves) and (b) periodic error functions for pitch error
motion for Condition 0.
The ball loop period, Lij, for each state is calculated according to
Eq. (3). The period Lij corresponds mainly to the numbers of balls per
loop. Due to the kinematics of rolling, the signal period for the binary
proximity data, as well as every error function TiðxÞ, should be
approximately 256 mm, which is twice the physical ball loop length
of 128 mm (= 32£ 4 mm). A gap exists within each ball loop, to allow
for motion of balls within the truck, and was measured to be between
2 mm and 5 mm in length, which increases the signal period by
roughly 4 mm to 10 mm.

Table 1 lists the mean and standard deviation of the ball loop peri-
ods for all states (every speed, direction, run, and condition). The
means range from 264.1 mm to 269.1 mm, which is a difference of
5 mm and is reasonable given the known gap and preload differences
that affect the micromechanics of rolling. Also, given that the stan-
dard deviations of the ball loop periods are less than 2 mm (see
Table 1) and the error motion data has a spacing of Dx ¼ 1 mm, n is
set to equal 2, which yields a point spacing of 2 mm for E and every
Ti and is small enough to identify details in errors due to relatively
small physical features.
Similarly, the ball loop phase for each state is calculated according
to Eq. (5). Fig. 6 shows an example of the phase of the ball loops for
the initial condition (Condition 0). Over the 90 runs, the phases of the
ball loops changed by typically more than 2p, meaning that each ball
loop performed more than one full loop rotation over time for a fixed
axis location. The trends are nominally linear with unique slopes due
to rolling micromechanics that are difficult to predict but are observ-
able via the truck sensors.
5. Results

Fig. 7 shows the five error functions for the initial pitch error
motion, EBX (Condition 0). The aperiodic component, EðxÞ, has a range
of about 200 µrad, but TiðxÞ has a range of 5 µrad that is about three
times smaller than those for the other periodic components (T2ðxÞ,
T3ðxÞ, and T4ðxÞ). Hence, the new method reveals that Truck 1 has a
potentially low preload.
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The new method also reveals how the error functions change as
the balls in Truck 2 are replaced (Conditions 1 to 13). Fig. 8 shows
how T1ðxÞ, T3ðxÞ, and T4ðxÞ change from their initial values (Condition
0) with high-frequency changes of only about 1 µrad. EðxÞ and T2ðxÞ
also have high-frequency terms but change significantly at low fre-
quencies. Fig. 8c shows that T2ðxÞ changes by more than 20 µrad at
Condition 5, mainly near the locations of the replaced balls. However,
T2ðxÞ then changes back to its initial state at the final state, i.e., DT2ðxÞ
� 0 at Condition 13. Simultaneously, EðxÞ changes increasingly with
ball replacements (see Fig. 8a). The behaviors of EðxÞ and T2ðxÞ are
related; as the balls in Truck 2 are replaced, the truck preloads
change, which changes EðxÞ, but once all the original balls in Truck 2
are replaced (Condition 13), T2ðxÞ returns to its initial values because
the replaced balls are similar to each other, just like the original balls.
Fig. 8. Change in (a) fixed-phase error function and (b)-(e) periodic error functions for
pitch error motion for various conditions.

Fig. 10. The standard deviations of all differences between the modeled error motions
or mean measured error motions and the measured error motions for (a) straightness
error motions or (b) angular error motions.
Conventionally, the mean measured error motion (mean of the
repeated error motion measurements) would be used for error
motion analyses. However, as the Truck 2 condition is changed, the
mean measured pitch error motion becomes a less accurate represen-
tation of the actual error motion. For example, Fig. 9 shows how the
modeled pitch error motion (red curve) from Eqs. (1) and (2) for six
replaced balls (Condition 3) accurately tracks the measured error
motion (green curve) from state to state, in contrast to the mean
measured error motion (blue curve).
Fig. 9. The measured pitch error motions, mean measured pitch error motion, and
modeled pitch error motion for various runs for Condition 3.
Fig. 10 shows that the new method estimates error motions,
based on the model from Eqs. (1) and (2), within a standard error of
less than 2 µm or 5 µrad, independent of condition. Thus, the new
method is able to reduce what would have been perceived as poor
repeatability of the mean measured error motion.
6. Conclusions

A new method is proposed that uses the measured total error
motion data and the measured phase of ball loops within trucks to
determine the influence of each ball loop on the error motions. Each
truck was instrumented with marker balls and sensors to measure
the phases of the ball loops during motion. The method assumes that
the influences of each ball loop on an error motion is periodic with
the same period and phase as the ball loop itself. The new method
solves for the fixed-phase (aperiodic) error component, due to the
average interaction of all balls and guideways, and a phase-shifting
(periodic) error component for every ball loop. The modeled pitch
error motions accurately tracked the measured pitch error motions
as balls were replaced in a truck. Most of the phase-shifting error
components were initially similar in range, and hence their influen-
ces on the pitch error motion were similar, yet the model was able to
isolate the physical changes occurring in only one truck.

Results revealed the potential of the newmethod for health monitor-
ing of linear positioning systems and the influence of bearing balls on
surface finish. Once the contributions of each truck on error motions are
identified, the performance of each truck can be tracked and mainte-
nance can be planned. The periodicities within the assumed model and
the ability to diagnose simultaneous changes in multiple trucks will fur-
ther be investigated in the next phase of this study. The same method
could also be applied to ball screw health monitoring, in which the ball
nut is instrumented with a sensor and amarker ball.
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