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Abstract 23 

Atom probe tomography (APT) provides three-dimensional compositional mapping with 24 

sub-nanometre resolution. The sensitivity of APT is in the range of part-per-million for all 25 

elements, including light elements such hydrogen, carbon, or lithium, enabling unique 26 

insights into the composition of performance-enhancing or lifetime-limiting microstructural 27 

features and making APT ideally suited to complement electron-based or X-Ray-based 28 

microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging 29 

from its inception as an evolution of field-ion microscopy to the most recent developments 30 

in specimen preparation, including for nanomaterials. We touch on data reconstruction, 31 

analysis, and various applications including in the geosciences and the burgeoning biological 32 

sciences. We review the underpinnings of APT performance and discuss both strengths and 33 

limitations of APT, including how the community can improve on current shortcomings. 34 

Finally, we look forward to true atomic-scale tomography with the ability to measure the 35 

isotopic identity and spatial coordinates of every atom in an ever wider range of materials 36 

through new specimen preparation routes, novel laser pulsing and detector technologies, 37 

and full interoperability with complementary microscopy techniques. 38 

 [H1] Introduction  39 

APT provides three-dimensional compositional mapping of materials with sub-nanometre 40 

spatial resolution1, and, in principle, no lower or upper limits of elemental mass2. The mass 41 
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resolution is generally sufficient to distinguish each isotope of each of the detected 42 

elements. This information is used to infer how the distribution of certain elements affects 43 

the properties of a material, to guide the design of new materials, or better predict when a 44 

material will fail over time in service. It can also reveal the material’s history or that of the 45 

geological region where it was found. Typical bulk materials have complex, hierarchical 46 

structures on multiple scales, as depicted in Error! Reference source not found.a. This 47 

applies to human-made and natural solid materials – including engineering alloys, 48 

semiconductor devices and minerals. In crystalline solids, atoms are organised on a lattice 49 

that can be populated by solutes [G] substituting for solvent atoms on the lattice or located 50 

in between lattice atoms, i.e. interstitially. The crystal contains atomic and microstructural 51 

imperfections [G] including lattice defects such as vacancies [G], dislocations [G], stacking 52 

faults [G] and twins [G], and grain boundaries [G], as well as secondary phases and phase 53 

boundaries [G], or voids, for example. Multiple stable and metastable phases may also be 54 

present in the material. In addition, a material has an interface with its operating 55 

environment, where a range of interactions can modify composition [G]  and microstructure 56 

resulting in, for example, cracks or oxidation. Other materials can be amorphous with 57 

different defects. Some devices are fabricated with well-defined structures, such as thin 58 

films with stacks of layers of an expected composition and numerous interfaces.  59 

APT stems from field-ion microscopy (FIM)3,4, and before it, from field-electron emission 60 

microscopy (FEEM)5. The elegance of the FIM and FEEM techniques lies in their simplicity: a 61 

high voltage applied to a needle-shaped specimen generates an intense electrostatic field – 62 

the same effect underpinning the lightning-rod effect6. The needle is positioned in front of 63 

an ion detector, which can be a phosphorescent screen or a particle detector. A negative 64 

electrostatic field can cause the emission of electrons. Reverting the polarity [G] enables 65 

two distinct phenomena, field ionisation [G], whereby atoms near the specimen’s surface 66 

can be ionised, and field evaporation [G], whereby atoms that constitute the surface of the 67 

specimen can get ionised and desorbed. The specimen itself acts as a projection optic [G], 68 

with no additional lenses. The charged particles are projected nearly radially during the 69 

early stages of the flight, and their trajectory is defined only by electrostatics7. The tip-70 

shaped specimen has an end radius typically below 100 nm, which makes the projection 71 

highly divergent and provides a magnification in the range of 106. Interatomic distances, 72 

typically 10-10 m, hence become 10-4 m, which is discernible by the human eye. FIM provided 73 

the first direct images of surface atoms in the 1950s8. The atom probe combined this 74 

imaging with a time-of-flight mass spectrometer [G] 2 to provide analytical capabilities. The 75 

name ‘atom probe’ was seemingly coined as a counterpart to another materials analysis 76 

technique, the electron-probe microanalyser, which uses X-Rays to provide micron-scale 77 

compositional mapping. However, ‘atom probe’ is misleading; the ions that allow us to 78 

probe the material are the primary beam produced by and from the specimen, whereas 79 

other techniques typically have an external primary illuminating source, for instance light or 80 

electrons in the most common microscopy techniques. Early atom probes allowed for depth 81 

profiling9. Step-changes in the design10,11 led to ‘three-dimensional’ or ‘tomographic’ atom 82 

probe, with the implementation of a position-sensitive detector12,13. Thorough historical 83 

perspectives are available on the development of the technique14,15.  84 

Not all microstructural features can be analysed by APT. Primarily a compositional mapping 85 

tool, crystallographic lattice features such as vacancies and structural defects such as 86 

dislocations, faults, and boundaries cannot be readily imaged. However, chemical 87 
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segregation leading to compositional heterogeneity at these structural defects often reveals 88 

their presence16–20. The strengths of APT complement other microscopy and microanalysis 89 

techniques. Among a wide arsenal that allows for nanoscale imaging and analysis, Error! 90 

Reference source not found.b maps some that are commonly used with APT, along with the 91 

typical imaged/analysed feature size and compositional sensitivity. In Figure 1b, between 92 

scanning and scanning transmission electron microscopy (SEM and (S)TEM) with energy-93 

dispersive X-ray and electron-energy loss spectroscopy (EDS and EELS), and secondary-ion 94 

mass spectrometry (SIMS), APT occupies a unique space in terms of combining a high 95 

sensitivity in the range of 10s of parts-per-million and feature size in the range of below 1 96 

nm. APT is also inherently three-dimensional which is not the case for the other techniques 97 

in Figure 1b.  98 

The higher throughput and wider applicability in APT instrument design, as well as 99 

improvements in specimen preparation and transfer techniques, has led to an international 100 

expansion of APT, with a hundred equipped groups in 2020, at shared facilities across the 101 

world21 and at internationally-leading materials companies. In this Primer, we cover the 102 

fundamentals of the technique, specimen preparation and data processing, show examples 103 

of applications, and discuss reproducibility issues and the intrinsic limitations of the 104 

technique. We finish by discussing prospective new technique developments and the 105 

research frontier of the burgeoning cryo-APT for the fields of soft-matter and liquids. 106 

 [H1] Experimentation 107 

This section describes the general aspects of atom probe experimentation. It covers the 108 

setup contained in the ultra-high vacuum chamber, some of the practical aspects of the 109 

fundamental scientific principles enabling the technique, and the preparation of specimens 110 

suitable for atom probe analysis. 111 

 [H2] Atom probe design 112 

There are a number of common traits in the design of modern atom probes (Error! 113 

Reference source not found.a). Here, we describe some generalities as review articles and 114 

textbooks are available for more details14,15,22,23. The analysis takes place in an ultra-high 115 

vacuum chamber, with pressures in the range of 10-8 Pa to 10-9 Pa. The specimen is 116 

mounted on a stage that is cooled to cryogenic temperatures in the range of 20 K – 80 K, 117 

typically by a combination of a cold finger at the end of a closed-circuit helium-based cryo-118 

cooler combined with a resistive heater that regulates the temperature. The stage holds the 119 

specimen in front of a counter-electrode located from a few tens of microns to a few 120 

millimetres away and is connected to a direct-current high-voltage power supply commonly 121 

of up to 15 kV. In the most frequently found commercial design (the Local Electrode Atom 122 

Probe or LEAP22,24), the stage can move in three-dimensions to facilitate specimen 123 

alignment in front of a micro-electrode with an aperture diameter of ~40 µm. Prototypes 124 

using a similar assembly had previously been designed25,26, but the high throughput of the 125 

LEAP instrument, which allows for loading multiple specimens at once to analyse them 126 

successively, significantly facilitated the spread of the technique. Note that commercial 127 

equipment is identified here to adequately specify the experimental conditions and does 128 

not imply any endorsement by the National Institute of Standards and Technology that it is 129 

the best for the purpose. 130 
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The field evaporation and subsequent measurement of the time-of-flight of each ion is 131 

triggered by pulsing either the high voltage (to vary the electric field), or by laser pulses (to 132 

vary the temperature). In the former case, negative high-voltage pulses lasting a few 133 

nanoseconds27,28 and with an amplitude of 10 %–25 % of the applied DC voltage are 134 

transmitted onto the counter-electrode. In the latter case, a pulsed-laser beam is focused 135 

towards the specimen apex. While early designs of atom probes used nanosecond pulsed-136 

laser 29,30, state-of-the-art instruments use pulses in the pico- to femtosecond times range31–
137 

33 with wavelengths typically in the near-ultraviolet (UV) (near 350 nm). Research 138 

instruments can also be equipped with laser sources with a variable wavelength34,35.  139 

Beyond the counter-electrode on the path of the ions, ion-optical devices are sometimes 140 

used36,37, with the most popular so far being the reflectron [G] 38–40. A reflectron is the 141 

equivalent to an electrostatic mirror that bends the ion trajectories, as shown in Error! 142 

Reference source not found.b. It offers the possibility to extend the time-of-flight of the 143 

ions and hence the relative precision of the measurement and the mass resolution41.  144 

Finally, 10 cm–50 cm away from the specimen is the single-particle delay-line detector, 145 

which combines an assembly of microchannel plates (MCPs) and an anode. The MCPs 146 

convert the impact of a single ion into hundreds of thousands of electrons42. The anode 147 

collects the electrons, and on state-of-the-art atom probes, contains three delay-lines [G] 148 
43,44. The electronic signals detected at each end of each delay-line are processed to 149 

calculate the impact position. In cases where multiple ions strike the detector nearly 150 

simultaneously, the signals from the third line are used to help disambiguate the signals on 151 

the other lines to maximise the accuracy of the positioning information recorded43. The 152 

processing of the signals, their recording, and the association of an impact position to a 153 

time-of-flight for each detected ion are done digitally, either during the acquisition or during 154 

post processing of the data.  155 

[H2] Field evaporation  156 

[H3] Metals 157 

APT is underpinned by the fact that an intense electrostatic field can cause the desorption 158 

and ionisation of atoms from the surface of a material in a field evaporation process45,46. 159 

This requires that a critical field, termed the evaporation field, is reached. Field evaporated 160 

ions are accelerated by the electric field away from the specimen’s surface. Field 161 

evaporation is primarily a thermally assisted process47, even though there have been 162 

reports of field evaporation via an ion tunnelling process48. The prevalent theory states that 163 

the departing ion is singly-charged and, during the early stages of the flight, is further 164 

ionised as one or more electrons tunnel back into the specimen49 (Error! Reference source 165 

not found.c). The probability of these post-ionisation events is directly related to the 166 

successive ionisation energies of each atom and the strength of the electric field. The ratio 167 

of the charge states of the various species present in the specimen can therefore be used as 168 

a proxy to estimate the intensity of the electric field50–53.  169 

[H3] Non-conductors 170 

The mechanisms discussed above have been established in the study of metals. Several 171 

differences appear in semiconductors and insulators (see BOX 1 and Figure 2d). One 172 

difference is a high fraction of multiple events where more than one ion is detected after a 173 

single high-voltage or laser pulse, with these multiple events having two origins. First, 174 
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following the field evaporation of a surface atom, the charges at the surface rearrange to 175 

maintain the screening of the electrostatic field, as recently imaged by FIM54, which can lead 176 

to the rapid field evaporation of neighbouring atoms. This seems to occur more for 177 

materials that are less electroconductive, which may be due to differences in carrier density 178 

or mobility. For some semiconductor materials, for instance thermoelectrics, the proportion 179 

of multiple events was extraordinary high55,56 suggesting that materials properties play a 180 

crucial role in how the bonds break during APT experiments. Second, the high fraction of 181 

molecular ions [G] increases the likelihood of dissociation.  182 

Advanced analyses of the APT data containing a high proportion of molecular ions and/or 183 

multiple events can provide information about which species are most susceptible to 184 

simultaneous evaporation and information about dissociation pathways57,58. These issues 185 

affect, for instance, carbides59, leading to known issues in the quantification of carbon in 186 

steels60. These analytical problems arise as a result of the functional properties of the 187 

surface such as band gap, low effective mass of electrons, or the high anharmonicity of 188 

chemical bonds (equivalent to a high Grüneisen parameter) in part modified by the intense 189 

electrostatic field.  190 

While many details of the physics of the field evaporation of insulators and semiconductors 191 

remain elusive, there are indications61,62 of similarities with processes in metals. Although 192 

maybe not quantitatively transferable, the dependencies of the charge states of the emitted 193 

ions as a function of the electric field30,63,64 and the relative stability of molecular ions65 194 

appear to follow the same trend. 195 

There are numerous reports of the influence of the field evaporation conditions on the 196 

resulting analytical performance of APT64,66–70, and in BOX 2 we provide some guidelines to 197 

help optimise data quality. 198 

  199 
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 200 

 [H2] Specimen preparation 201 

 [H3] From bulk materials 202 

The preparation of specimens suitable for APT can be seen as a (dark) art. Field ion 203 

evaporation requires electrostatic fields on the order of ~ 10 V/nm in order to selectively 204 

and sequentially remove surface atoms. To achieve the fields required, atom probe 205 

specimens are formed in the shape of a sharp needle, with an apex radius in the range of ~ 206 

100 nm. An analytical model (F=V/kr) relating the surface electrostatic field (F) to the end 207 

radius (r) and applied voltage (V) through a field-reduction/field-factor (k) has been derived 208 

from simple electrostatics6 and typical k values range from 2–871,72. A modest applied high 209 

voltage, on the order of 103 V, can be used achieve the necessary electrostatic field. 210 

Historically, before the advent of focused ion beam (FIB) milling systems, metallic specimens 211 

were prepared from a wire or a small match-stick-shaped blank and turned into a needle by 212 

electrochemical polishing with various alkaline or acidic solutions73,74, or, specifically.for 213 

noble metals, molten salts73. The blank is moved through a thin layer of the solution in order 214 

to progressively reduce the cross-section. At the point of rupture, the end radius or tip apex 215 

was often below 100 nm. Targeting specific microstructural features, however, was 216 

challenging and could only be achieved via successive observations by TEM followed by 217 

pulsed electropolishing, for example75,76.  218 

Instrumental to routine targeted preparation was the development of liquid-metal ion 219 

sources77 and the development of dual-beam SEM/FIB systems, which are now used to 220 

prepare multiple site-specific atom probe specimens in a single session78. The SEM is used to 221 

identify a region of interest and the FIB is used to is prepare the specimen itself. The current 222 

established protocol is briefly outlined in Error! Reference source not found.a and discussed 223 

as follows: first, a 15 µm –20 µm long cantilever is cut with the FIB from the material 224 

sample’s surface; second, using the in-situ gas-injection system, the micromanipulator is 225 

attached to the wedge, which is cut free and lifted out; third, the wedge is attached on a 226 

support, most often a microtip coupon [G] 79 or a TEM half grid, and sliced; fourth, each slice 227 

is then turned into a needle-shaped APT specimen through a series of sequentially smaller 228 

annular milling routines in the FIB. The final end apex radius is approximately 100 nm 229 

depending on the material of interest. While FIBs typically use a liquid metal gallium source, 230 

plasma-based sources have been used with increased success20,80–82. Alternative and 231 

variations around this principle have been proposed and are thoroughly reviewed in 83,84. 232 

For site-specific sample preparation, microstructural features of interest are identified by 233 

using, for instance, back-scattered imaging, electron-backscattered diffraction, electron-234 

channelling contrast imaging, or EDS in the SEM85. Additional information can be gathered 235 

by inspecting the APT specimen by TEM86 using an appropriately-sized TEM grid as a 236 

support87, as outlined in Error! Reference source not found.b. In this case, a feature is 237 

identified by SEM and marked by electron-beam or ion-beam deposition inside the SEM/FIB. 238 

The marked region is extracted, and a slice is attached to a partly electropolished half-grid88. 239 

The slices are sharpened and the feature of interest positioned within 200 nm of the apex. 240 

The final specimens are subjected to low acceleration voltage (2 kV – 5 kV) milling to 241 

remove the regions of the materials damaged by the energetic incoming ions.  242 

 243 
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  244 

[H3] From nanostructures 245 

APT analyses of nanostructures such as nanoparticles or nanowires require dedicated 246 

specimen preparation approaches89. Direct deposition of nanoparticles onto pre-sharpened 247 

specimens in vacuum90 or electrophoresis in solution91,92 have led to successful analysis. The 248 

second approach is illustrated Error! Reference source not found.a where the specimen is 249 

inserted into a drop of solution containing nanoparticles, and, by applying voltage pulses, 250 

negatively charged nanoparticles are attracted to the positively-charged needle. The 251 

number of deposited layers is controlled by adjusting the concentration, pulse amplitude or 252 

duration. TEM shows one to two layers of nanoparticles deposited on the support needle in 253 

Error! Reference source not found.b. This method is suitable for 1 nm – 60 nm 254 

nanoparticles and is limited by the size of the support needle. Error! Reference source not 255 

found.c exemplifies successful APT analyses of 8 nm – 10 nm silver atoms (in grey) forming 256 

the core of nanoparticles and palladium (in yellow) forming a shell, with two different sets 257 

of nanoparticles imaged with various core-shell thicknesses. A range of other 258 

nanostructures have been successfully analysed following this preparation approach 91,93–95. 259 

The main drawback is a low yield and poor data quality because the particles are only 260 

loosely bonded to the support needle and complete nanoparticles can simply detach. A 261 

similar method based on the use of a pre-sharpened metallic needle has enabled the 262 

analysis of a variety of materials ranging from metallic multilayers96,97 to polymer films98 or 263 

self-assembled monolayers99,100. 264 

Flat-top Si microtips, individual needles, or TEM half-grids have been used as supports with, 265 

for instance, a single nanoparticle or nanowire placed on the surface by using a 266 

micromanipulator or a microgripper to grab individual101,102 or agglomerated 267 

nanoparticles103 ( Figure 4d). Nanowires have been grown104,105 and particles deposited by 268 

inert gas condensation directly on coupons or flat substrates with a geometry suitable for 269 

APT (Error! Reference source not found.e)106,107. Subsequent deposition of a protective 270 

metal film such as chromium or platinum can help ensure adhesion during preparation and 271 

analysis101,108 and prevent damage from the gallium-ion beam. The methods in Figure 4a-e 272 

enable the analysis of complete nanoparticles.  However, agglomerated particles can 273 

simultaneously evaporate, causing problems with the APT data reconstruction and 274 

interpretation, and they are not amenable to all particle sizes or composition. So far, the 275 

community has not established clear guidelines regarding which approach to use to obtain 276 

optimal results for a specific sample nature and geometry.  277 

An alternative approach is to embed spatially separated nanoparticles in a metal or oxide 278 

matrix and then prepare the specimen by traditional FIB lift-out. In Error! Reference source 279 

not found.f, a drop of a diluted solution containing nanoparticles is deposited on a flat 280 

substrate, subsequently coated with a metal film, and finally lifted-out by FIB. Here the 281 

wedge is rotated by 90° to prepare the APT specimen with the particle/substrate interface 282 

aligned along the specimen’s main axis109. This method has enabled analysis of silica-283 

supported (SBA-15) particles and carbon nanotubes110–114. However, sputter or electron-284 

beam assisted deposition often leads to a non-conformal coating that may leave voids at the 285 

interface between nanoparticles and substrate, which lowers the specimen survival rate and 286 

can lead to severe trajectory aberrations in the reconstructed data115. Larson et al.115 used 287 

atomic layer deposition (ALD) to produce a void-free and highly conformal film to sandwich 288 

nanoparticles (Error! Reference source not found.g) followed by lift-out and sharpening 289 
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(Error! Reference source not found.h). Kim et al.116 used electrodeposition to embed the 290 

nanoparticles in a metallic matrix (Error! Reference source not found.i): Error! Reference 291 

source not found.j shows a TEM image in which palladium nanoparticles were successfully 292 

embedded in a Ni matrix and no voids were observed, and Error! Reference source not 293 

found.k shows the corresponding APT dataset. This approach is versatile and has enabled 294 

the analysis of nanosheets117, nanowires and nanorods118 as well as nanoparticles. However, 295 

it may not be as advantageous for surface sensitive nanoparticles as the techniques in 296 

Figure 4f and g: the solution used for the electrodeposition can then react with the surface 297 

and modify the nanoparticles.  298 

 [H2] Recent developments in instrument design  299 

Most atom probes in operation worldwide are commercial instruments. CAMECA currently 300 

leads the market with the LEAP and, to a lesser extent, the EIKOS series. A start-up company 301 

(INSPICO) has recently started commercially manufacturing instruments. Some groups 302 

develop their own instruments for a bespoke setup or to pioneer the implementation of 303 

new capabilities such as detectors or extreme vacuum levels, for instance. Since its 304 

introduction in 2015, the current leading commercial instrument is the LEAP 5000 series. It 305 

combines the local electrode [G] concept with micron-size laser spot size, with 10 ps laser 306 

pulses in the near-UV (355 nm) to minimize thermal tailing effects, as already demonstrated 307 

in the earlier LEAP 4000 generation instrument. The current detection efficiency, defined as 308 

the fraction of field evaporated ions that are detected and counted, reaches 80 %. The 309 

voltage pulsing repetition rate reaches 500 kHz and in laser mode 1 MHz, promising faster 310 

measurements. In reality, the evaporation behaviour of the material and the geometry of 311 

the specimen dictate the optimal conditions and hence acquisition time.  312 

 APT specimens are small, with a high surface-to-volume ratio, and materials can be reactive 313 

so their transport through air can modify their composition and change their survivability 314 

during the analysis. Worldwide, there are increased efforts regarding sample preparation, 315 

transport, processing and handling in protective atmospheres or under cryogenic 316 

conditions. This was in part inspired by approaches developed in the biological sciences 317 

where sample environment can be crucial. These new workflows are particularly critical for, 318 

for example, liquid materials or air sensitive samples likely to react with oxygen, and involve 319 

cryogenic-vacuum-transfer solutions. Custom-designed or commercial (Leica, Quorum, 320 

Ferrovac) enclosed controlled environmental transport systems, termed ‘suitcases’, have 321 

been adapted or developed to enable controlled specimen transfer into the atom probe119–
322 

121 from the FIB. These suitcases can reach high or ultra-high vacuum conditions and can 323 

typically be cooled down to liquid nitrogen temperature. These cryogenic capabilities have 324 

enabled the analysis of hydrogen/deuterium-charged specimens120,122,123, frozen 325 

liquids124,125, and hydrated porous specimens126. There are also reports of the importance of 326 

using cryogenic cooling during the final stages of specimen preparation127–129 or for full lift-327 

outs126,130 to avoid introduction of spurious species and limit damage, or maintain sample 328 

hydration. These approaches fit within the effort to facilitate correlative microscopy (BOX 329 

3), which combines specific techniques to deliver a more complete set of information on a 330 

material, and thereby enable scientists to derive well-founded conclusions. 331 

 332 
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 [H1] Results 333 

  334 

Following specimen preparation and setting up the experiment in order to perform an APT 335 

analysis, the collected data needs to be extracted and processed. The raw data consists of a 336 

sequence of 2D detector-space coordinates, and the corresponding time-of-flight of every 337 

ion is measured over the course of the experiment. This section goes step-by-step into the 338 

data 'reconstruction' process to transform the raw data into a real-space point cloud 339 

representation of the specimen, within which both the 3D position and the chemical 340 

identity of every detected ion has been determined. The processing of the data is similar on 341 

commercial and bespoke instruments.  342 

 343 

[H2] Mass spectrometry 344 

The first step in the data processing workflow is to assign a chemical identity to each ion. 345 

Time-of-flight can be converted to mass-to-charge-state ratio through a simple equation 346 

relating the kinetic energy of the ion ½ mv2 to its potential energy neV, where m is the mass, 347 

v is the ion velocity, n is the unit charge of the ion, e is the elementary charge of an electron, 348 

and V the applied acceleration voltage. At a given acceleration voltage, an ion’s kinetic 349 

energy is related to its mass (a heavy ion travels more slowly than a lighter ion) and its 350 

charge (a doubly charged ion acquires twice the energy of a singly-charge ion). A couple of 351 

calibration and correction steps for the difference in flight length as a function of detector 352 

coordinates are commonly applied131. A histogram, better known as a mass spectrum, is 353 

generated; an example for a steel sample is shown in  a–b. Each peak or series of peaks is 354 

related to the detection of specific types of ions. Each peak in the mass spectrum, and 355 

therefore every detected ion contributing to this peak, is assigned a chemical identity. This 356 

process is known as ‘ranging’ [G] . The boundaries (lower and higher mass-to-charge values 357 

of each individual mass peak) are defined to associate a range of mass-to-charge to a single 358 

element or a combination of elements and the discrete counts in the peak are then 359 

calculated through integration132. Ranging allows for measuring the composition, and each 360 

ion that has been identified is assigned a certain volume to contribute to the three-361 

dimensional reconstruction.  362 

The resolution is such that individual isotope peaks are routinely resolvable. The ability to 363 

resolve different isotopes and to locate them individually within the microstructure also 364 

enables some unique insights into a variety of investigations, such as the age and history of 365 

ancient geological materials133 or the role of irradiation-induced transmutation in the 366 

microstructural degradation of components in nuclear reactors134,135.  367 

Typically, ions are detected in the 1+ or 2+ charge states, but higher charge states can also be 368 

observed depending on the element and the intensity of the electric field49. Molecular ions 369 

are also commonly detected. For example, in the mass spectrum resulting from the analysis 370 

of a steel shown in  a, 12C2
2+ and 56Fe14N+ are observed. In most cases, all isotopes are 371 

expected to be detected in their natural abundances. However, rare exceptions may exist 372 

for elements that have undergone biotic fractionation or elements subject to nuclear 373 

reactions. Detection of higher charge states and complex ions complicates the ranging 374 

process as it increases the likelihood of peak overlap, because the detection of two or more 375 

distinct types of ion with the same mass-to-charge-state ratio will contribute to the same 376 
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peak in the mass spectrum. For example, in   a (inset), the peak at 14 Da could potentially be 377 

assigned to 14N+ or 28Si2+. If this peak were to incorporate only silicon, then we would also 378 

expect to see adjacent peaks at 14.5 Da and 15 Da corresponding to 29Si2+ and 30Si2+, and 379 

expect that the ratio of the peak heights to one another would match the ratio of their 380 

respective natural isotopic abundances. Such isotopic fingerprints provide confidence that 381 

peak identities have been correctly assigned during the ranging process. Furthermore, the 382 

existence of adjacent peaks due to the detection of isotopes provides a route for estimating 383 

the relative contributions of different ionic species to the same overlapping peak136. 384 

Additional discussion on these aspects can be found in Box 5. 385 

  386 

 [H2] Three-dimensional reconstruction 387 

APT, like FIM, is a point projection microscope, wherein the specimen acts the projection 388 

optic, with no additional lenses. The typical configuration of the atom probe is depicted in  389 

c: ions are emitted by the specimen with a radius R of less than 100 nm, and fly over a 390 

distance L to the detector with a diameter of 80 mm–200 mm. The trajectory of the 391 

evaporated ions towards the detector is determined by the electric field generated by the 392 

specimen and is therefore influenced by the electrostatic environment, which includes both 393 

the surrounding instrumentation and the shape of the specimen itself. Although initially 394 

near-radial, the ions’ trajectories are curved towards the centre of the detector and the 395 

projected image is subject to what is known as image compression [G]. Importantly, 396 

provided that they fly in a field-free tube, the trajectory of the ions is not dependent on the 397 

ion’s mass, its charge nor the specific value of the voltage7. The resulting magnification onto 398 

the detector is of the order of 106. Multiple projection models have been shown to reflect 399 

well the imaged emitter’s surface onto the detector, including a quasi-stereographic and 400 

azimuthal equidistant projections 137–139.  d shows the results from projection models used 401 

to describe the ion projection in APT. Ultimately, the interest of using a projection law is 402 

that it is not necessary to calculate the trajectory of each ion from the detector back to the 403 

specimen, and one can then use one of these projection laws as an approximation to relate 404 

a set of detector coordinates (XD
i,YD

i) to a unique position at the specimen’s surface. Even 405 

though it is not the most accurate137,139, the most commonly implemented projection is 406 

quasi-stereographic [G], and the image compression factor ξ is experiment-dependent with 407 

a value generally between 1 and 272,140,141. 408 

Assuming a projection model, the generation of the three-dimensional atom-by-atom 409 

images is a two-step process. First, based on their impact coordinates, each ion striking the 410 

detector (XD
i,YD

i) is 'de-magnified' by using a reverse-projection model to position them back 411 

to their original real-space location within the specimen (xi,yi,zi)141,142. The key assumption of 412 

the current implementations of the reverse-projection approach is that the geometry of the 413 

atom probe specimen always takes the form of a perfect hemispherical cap on a truncated 414 

cone and that the radius of this cap is known at every point in the experiment. As material is 415 

removed from the specimen during the experiment, the tip becomes increasingly blunt. The 416 

implication is that the magnification is not constant throughout the analysis and that the 417 

accurate reverse-projection of each ion from detector space to real space requires an 418 

instantaneous estimate of the end-form radius of the specimen at the moment of every 419 

detection event. This is usually achieved either monitoring the evolution of the voltage 420 

applied throughout the experiment given that ܴ௜ = ௏೔ி௞ , or by using an assumed specimen 421 
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shape to derive an estimate of the contribution of each ion to the blunting of the tip141,143. 422 

Either of these approaches involves several parameters, such as the strength of the field F 423 

and the geometric field factor k, or the shank angle of the specimen.  424 

The second step is the calculation of the depth coordinate. The conventional algorithm 425 

assumes that the first detected ion is evaporated from a hemispherical surface, ܴ௜ୀଵ, and 426 

that the depth of this emitting surface moves down by an increment ∆௭௜ୀଵ that is 427 

proportional to the volume occupied by an individual atom within the material’s 428 

lattice141,142. The need to assign a realistic volume is why the ions must each be identified 429 

through ranging prior to reconstructing the point cloud. Indeed, a volume is assigned to 430 

each detected and ranged atom, and that volume is considered proportionally larger to 431 

account for the limited detection efficiency. The depth increment represents the thickness 432 

of the volume of the preceding detected atom if spread across the entire surface of the 433 

specimen that is within the field of view of the detector. In general, for the ith detected ion, 434 

this increment is additive, incorporating contributions from every previously detected ion in 435 

the sequence. Finally, the z-coordinate of an ion is the cumulative sum of these increments 436 

added to the z-position from the reverse-projection. This is summarised in  Error! Reference 437 

source not found.e.  438 

Calibration, or incorporation of physical data about the specimen obtained through a 439 

correlative or complementary technique, plays an important role in ensuring the accuracy of 440 

subsequent spatial measurements made within the APT reconstruction (BOX 4). This is 441 

especially important since there is not necessarily a unique set of reconstruction parameters 442 

leading to a specific reconstruction. An example of a reconstruction is shown in Error! 443 

Reference source not found.aError! Reference source not found., where elemental 444 

identity, in this case aluminium, zirconium, magnesium, and copper were first assigned 445 

through ranging of the mass spectrum. The point cloud was then built and calibrated based 446 

on the known spacing of the (002) planes in one of the grains. 447 

 448 

[H2] Data visualisation and analysis 449 

Visualisation of APT reconstructions can offer immediate and striking insights into the 450 

microstructure of a complex material. For example, the points pertaining to atoms of 451 

different species can be selectively displayed to reveal their respective spatial distribution, 452 

as in Error! Reference source not found.Error! Reference source not found.b where 453 

chromium partitioning to the ߛ phase and aluminium to ߛʹ can be seen visually. Following 454 

the reconstruction process, some of the most unique and powerful analyses that can be 455 

undertaken have roots in the fundamental nature of the 3D atom-by-atom APT 456 

reconstructions. For example, changes in chemical composition can be characterised along a 457 

specific direction within a region of interest in order to calculate a one-dimensional 458 

composition profile, for example to quantify segregation at a microstructural feature of 459 

interest such as a grain boundary, as seen in Error! Reference source not found.c. More 460 

advanced APT data analysis can be broadly divided into two classes based upon either 461 

voxelization [G] of the data or the interrogation of inter-atomic distances.  462 

[H3] Voxel-based methods 463 

Voxel-based methods segment the dataset into an array of cubes of equal volume or 464 

number of atoms. The content of each voxel is then inspected, enabling a wide variety of 465 
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visualisation and analysis. Possibly the most commonly-used voxel-based analysis is the 466 

isosurface [G] that link together an array of adjacent voxels based on a threshold criterion. 467 

Two examples are displayed in Error! Reference source not found.Error! Reference source 468 

not found.b for aluminium and boron. The threshold can either be a molar fraction or a 469 

number density of a chosen element (or elements)144. A molar fraction threshold leads to an 470 

iso-concentration [G] or composition surface encompassing regions within the point cloud 471 

that contain over a certain molar ratio expressed in atomic %, while an element number 472 

density threshold is an isodensity surface expressed in at.nm-3. The type of isosurface and 473 

the value of the threshold are selected by the user based on what they wish to visualise. 474 

Features revealed by isoconcentration or isodensity surfaces may not be similar. In 475 

particular, variations in point density are typically associated with local magnifications (see 476 

below) and hence with microstructural features that do not necessarily show compositional 477 

variations, for example grain boundaries145,146. With careful adjustment of the threshold, 478 

the user can define the interface between contiguous microstructural regions, for example a 479 

second phase precipitate and the surrounding matrix, or two adjacent layers in a multi-layer 480 

device. This provides a means to both isolate regions of the data for more targeted analysis, 481 

as shown in the inset of Error! Reference source not found.Error! Reference source not 482 

found.d, and characterize the chemistry at and in the vicinity of the interface. Statistical 483 

measurements, such as voxel-concentration frequency distributions, can also identify and, 484 

to some extent quantify, subtle chemical inhomogeneity within the microstructure147–149.  485 

The compositional evolution of interfaces delineated by isosurfaces can be derived from a 486 

profile calculated in the form of a proximity histogram, better known as a proxigram150,151, 487 

which represents chemical concentration as a function of the distance normal to the 488 

isosurface. The proxigram in Error! Reference source not found.Error! Reference source 489 

not found.d provides similar information to that of a 1D composition profile but facilitates 490 

the analysis of curved and/or enclosed interfaces. This approach is not without issues152, but 491 

it readily enables an average measurement across a number of disconnected surfaces such 492 

as a population of second phase precipitates. Concentration profiles can be further 493 

extended to actually quantify the elemental excess number of atoms segregated to a 494 

surface153,154. Voxelization also provides a means to create a 2D map or 3D visualisation of 495 

how concentration and density fluctuate throughout the reconstruction. To this end, fixed 496 

voxel size can be advantageously replaced by a local meshing on which the composition or 497 

excess can be efficiently mapped155,156, revealing and quantifying patterns in the segregation 498 

that can be associated to grain boundary curvature157, faceting19, or to the presence of 499 

linear defects at low-angle grain boundaries for instance158. 500 

[H3] Interatomic-distance-based methods 501 

Other approaches involve the direct measurement of interatomic distances and enable the 502 

interrogation of the local neighbourhood surrounding each atom. The simplest of such 503 

analyses is a nearest neighbour analysis159,160. By examining the distribution of distances 504 

separating a solute atom from its 1st, 2nd , 3rd, or nth nearest solute neighbour, in comparison 505 

to the same measurement undertaken on a complementary randomised system, the 506 

presence of subtle fluctuations such as the very onset of nanoscale clustering effects161 507 

(Error! Reference source not found.Error! Reference source not found.e) and interactions 508 

at longer distances can be used to deduce the matrix composition162,163. Radial or pair 509 

distribution functions164–166 revealing specific interactions between solutes can also be 510 
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extracted from integrating the average three-dimensional neighbourhood of each selected 511 

solute atom within the reconstruction. 512 

A unique feature of APT is to characterise solute clusters identified based on inter-atomic 513 

distance. The most widely used approach is known as the ‘maximum separation’ 514 

algorithm167,168. This assumes that the distance separating two nearest neighbour solutes 515 

within a cluster is less than between two nearest neighbour solute atoms within the matrix. 516 

Hence, a maximum distance, dmax, can be assigned such that any pair of solute atoms within 517 

this separation are considered to be clustered together. Further, if one of these pairs is also 518 

clustered to another solute, then all three can be defined as being in the same cluster. In 519 

this way, a larger distinct network of linked solutes can be built that ultimately defines a 520 

population of clusters. This initially excludes solvent atoms from the cluster definition. 521 

However, in a second stage these can be incorporated into the analysis in processes known 522 

as 'enveloping' and 'erosion'168,169. Once clusters have been identified, a variety of 523 

measurements can be applied to characterize each one individually in terms of size, shape, 524 

composition, structure, etc170,171. As such, statistical analyses can be generated to describe a 525 

population of clusters and identify correlations between physical characteristics. Typically, a 526 

comparison to a randomly-labelled dataset is needed to differentiate non-random clustering 527 

from the clusters that might be expected even if the solute was randomly distributed. Other 528 

algorithms have been developed161,172, underpinned by different cluster definitions based 529 

on concentration173, higher-order nearest neighbour distances159,160,174, Gaussian mixture 530 

models175, and more1,176,177. These methods were authoritatively reviewed previously161,172. 531 

Ultimately, results from applying either of these approaches must be considered very 532 

carefully, in particular when claiming quantitativeness and reproductibility178. Objectively 533 

defining the extent of a nanoscale cluster of atoms within a reconstruction remains a 534 

challenge, whichever approach is used. In particular, even though the APT reconstruction 535 

can be highly accurate, it is nevertheless both imperfect and incomplete. The inherent 536 

premise upon which the approach is based is not amenable to certain situations; for 537 

example, delineating the clusters from the matrix becomes difficult if the solute 538 

concentrations are relatively close to that of the matrix. The difference in the evaporation 539 

field between the solutes and the matrix, and the dependence of this critical field on the 540 

local neighbourhood, also introduce aberrations in the trajectories that break 541 

neighbourhood relationships. For example, two nearest neighbours at the specimen surface 542 

are unlikely to be so in the reconstructed data if they are both high-field solutes179. Finally, 543 

the main source of error is likely the parameter selection, which has the potential to 544 

considerably affect the resulting analysis180. Protocols exist, but none are universally 545 

applicable nor adopted as a community standard. Selecting parameters by defining a 546 

heuristic69,170,181,182, including using statistical methods175, has been proposed but the 547 

outcome of applying cluster-finding algorithms remains highly dependent on user input and 548 

expertise level178,180. Alternative approaches using radial-distribution functions to extract 549 

the typical characteristics of a population of solute clusters or precipitates183 have also been 550 

proposed, with the option to select parameters.  551 

[H3] Structural analysis 552 

For some alloys, the APT reconstruction can retain elements of the crystallography from the 553 

original sample184, as illustrated in Error! Reference source not found.a. This partial 554 

information appears as sets of atomic planes in certain regions of the data, most often 555 

associated to the projection of low-Miller indices lattice planes parallel to the local tangent 556 
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to the reconstructed emitting surface. Means to extract quantitative information from this 557 

crystallographic information have been developed based on direct Fourier Transforms185, 558 

3D-Hough Transforms186,187 and techniques based on radial-distribution functions165 559 

including the spatial distribution maps (SDMs)188–190.  560 

The Fourier transform is akin to performing diffraction from the three-dimensional 561 

distribution of atoms in the reconstructed volume. It makes use of a voxelised reciprocal 562 

space and calculates the contribution of all points in the real space to this particular location 563 

in the reciprocal space. The presence of sets of planes results in loci of high intensity in the 564 

reciprocal space at a distance to the central spot inversely proportional to the distance in 565 

the real space. This approach enables multiple sets of planes to be characterised at once, 566 

and the angle between sets of planes can be directly estimated as they are maintained 567 

through application of the Fourier transform. The 3D Hough transform provides a similar set 568 

of information but is more computationally intensive, as the computation is done 569 

completely in real space and looks for planar features positioned at all possible polar and 570 

azimuthal angles.  571 

A SDM is built by using a sphere, typically 2 nm in diameter, located on a first atom within 572 

the input point cloud and all atoms within this sphere are copied into an output. The sphere 573 

is then moved onto the next atom in the input data and these new neighbouring atoms are 574 

copied into the output. This procedure is reproduced for all atoms in the input data, and the 575 

output hence depicts the average three-dimensional atomic neighbourhood around each 576 

atom within the input dataset. If the dimensionality of the data was reduced to 1, then this 577 

would result in a radial distribution function. SDMs are displayed either as a histogram of 578 

atomic offsets in z along a specific direction (z-SDM) or as a two-dimensional map showing 579 

the average density of atoms within the plane of the reference atoms (xy-SDM). The peak-580 

to-peak distance in the z-SDM indicates inter-planar spacing and measures the inter-atomic 581 

separation along the direction perpendicular to the planes. Being computationally 582 

expensive, SDMs are usually only used in regions of the data where planes are resolvable188–
583 

190. If angles between a set of a planes and a reference plane can be deduced from another 584 

SDM implementation190,191, it is typically not performed because of the computational cost.  585 

The term atom probe crystallography was coined to refer to the use of this type of 586 

structural information to provide additional information on the analysed material 158,184. The 587 

main applications of these approaches, in particular the Fourier transform and SDMs, has 588 

been to facilitate the calibration of tomographic reconstruction192 and assess the spatial 589 

resolution of APT 193,194. The high computational cost and mostly manual operations to 590 

extract information and interpret the data may explain why it is not more widely used 591 

despite great potential191.  592 

[H1] Applications 593 

3D compositional data provided by atom probe is highly complementary to, for instance, 594 

the high spatial resolution 2D images obtained from TEM. Atomic maps provide valuable 595 

information about the common microstructural features in engineering materials, most of 596 

which involve variations in the local composition and can often be examined within the size 597 

scale of a typical atom probe dataset volume. These microstructural features include 598 

precipitates or clusters, solid solutions and/or ordered structures, grain/phase boundaries, 599 

dislocations, and point defects/vacancies. Numerous reviews detail the applications of APT 600 
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to characterise for example aluminium-alloys161,195, nickel-based superalloys196–198, 601 

intermetallics199, steel200,201, high-entropy alloys202, nuclear materials203–205, and, beyond 602 

metallurgical systems, thermoelectrics206, semiconducting devices for microelectronics 207–
603 

209 or light-emission210, and geological materials211,212. Here we give some details of what 604 

information APT provides in these various contexts.  605 

[H2] Solid solutions 606 

With access to a large enough 3D dataset, the statistical approaches discussed above 607 

provide information on the arrangement of solutes atoms in a solid solution. These insights 608 

enable the study of interactions between atoms from a single species or from one species to 609 

one or more species. In solid solutions that are not at an equilibrium state, it is common to 610 

observe certain species being preferentially located at shorter distance to one another 611 

compared to a random distribution, as illustrated in Figure 6Error! Reference source not 612 

found.e. There are many examples of the use of APT to study the early stage of 613 

decomposition of a solid solution in metals166,195,213–216 or dopant distributions in 614 

semiconductors160,217,218, sometimes in conjunction with SIMS219. Short-range order can be 615 

detected in principle, but depending on the solute concentration, the results may be 616 

obfuscated by the effect of the combination of detector efficiency and the spatial resolution 617 

within the APT data1,220. 618 

[H2] Precipitation  619 

Precipitation of a secondary phase from a metastable solid solution is a common strategy to 620 

modify properties of materials. APT is commonly used to provide the composition of 621 

precipitates, as shown in Error! Reference source not found.a and bError! Reference source 622 

not found.. APT can also be used to study compositional gradients in the vicinity of grain 623 

boundaries or interphase interfaces, as in Error! Reference source not found.Error! 624 

Reference source not found.c for instance, which can help to understand their growth or 625 

migration behaviour. Differences in the field evaporation properties between the matrix 626 

and precipitate can affect the measured size and composition221 and should be considered 627 

when interpreting data. Gradients can originate from coarse binning of data or from data 628 

voxelisation144,152 and again, great care should be taken during data interpretation. The 629 

study of precipitation has been at the core of APT research for decades and many of the 630 

aforementioned review articles are focused on this subject.  631 

[H2] Grain boundaries and interfaces 632 

Grain boundaries and interfaces are important factors in relating a material’s properties to 633 

its microstructure. Their precise influence often depends on their composition, which in 634 

turn, depends on their crystallographic nature18. It is common for certain elements to 635 

segregate to grain boundaries and interfaces, typically driven by the minimisation of the 636 

system’s free energy. This segregation can be beneficial or detrimental, depending on the 637 

desired set of physical properties. For instance, grain boundaries affect electronic transport 638 

and therefore underpin the performance of multi-crystalline photovoltaic materials222–224, 639 

and several studies have focused on using APT in correlation with electron-beam induced 640 

current225,226. This is also the case across interfaces in thin films for instance, finding 641 

applications in microelectronics and memory227–232, light emitting233–235 devices, 642 

photovoltaics236–238 or magnetic reading/recording96,239,240, and thermoelectrics206,241–243, 643 

amongst others.  644 
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The inherently three-dimensional nature of APT data offers a unique opportunity for 645 

measuring segregation at grain boundaries and interfaces. Targeted analysis provides 646 

quantitative information about the extent of segregation either in the form of an atomic 647 

fraction or an interfacial excess [G]244. This is exemplified in panels Error! Reference source 648 

not found.a–b of BOX 3 on correlative microscopy in a solar cell material, where grain 649 

boundary segregation of sodium passivates the existing detrimental charge defects. It is also 650 

displayed in panels c–d of BOX 3, which shows an intermetallic phase where the formation 651 

of the twin boundary locally changes the composition, thereby modifying the magnetic 652 

domain structure and underpinning promising magnetic properties 245. In Error! Reference 653 

source not found.Error! Reference source not found.c, boron appears almost completely 654 

segregated at the grain boundary, and it is typically added to Ni-based superalloys to 655 

strengthen grain boundaries.  656 

It is possible to map the extent of segregation across certain surfaces155 in two-dimensions 657 

and relate it to the grain boundary type246. Segregation mapping reveals that, while special 658 

boundaries such as twins tend to have lower segregation levels than high angle boundaries, 659 

the segregation behaviour at high angle boundaries is highly spatially variable even across a 660 

single boundary155. Grain boundaries have a distinct structure and composition and can 661 

undergo phase-like transitions, called complexion transitions, that occur under conditions 662 

distinct from phase transformations247. Taking advantage of these processes to tailor alloy 663 

properties is the focus of much contemporary research201. APT, combined with TEM, has 664 

been used to identify complexions such as segregation-induced faceting transitions19,248,249 665 

and spinodal-like fluctuations250.  666 

[H2] Dislocations, stacking faults and twins 667 

Dislocations are linear defects that accommodate strain in crystalline materials. It is 668 

common for dislocations to be surrounded by an excess of certain solute species known as a 669 

Cottrell atmosphere. The solute can affect the mobility of dislocations and have an effect on 670 

the mechanical behaviour. APT provided the first direct observations of Cottrell 671 

atmospheres, first for carbon in steel251 and later in many other systems such as boron in 672 

FeAl 252, and arsenic in Si253. A dislocation with segregation is shown in panel Error! 673 

Reference source not found.f of BOX 3. Dislocations can also form loops with segregation at 674 

specific edges or facets254,255 for instance. The three-dimensional nature of the data allows 675 

the mapping of segregation along the dislocation line256,257, sometimes referred to as the 676 

'line excess'. It has been found that this segregation varies along the line of a defect258, 677 

presumably due to the different local crystallographic environment. Atom probe has also be 678 

used to demonstrate the existence of linear complexions–chemically and structurally 679 

distinct regions located inside a linear defect259, and to study other structural defects such 680 

as stacking faults260–263, anti-phase boundaries264,265 or (nano-)twins266–268, and twin 681 

boundaries269–271.  682 

[H2] Microstructural degradation processes 683 

An important application of APT has been to understand the microstructural evolution 684 

leading to the degradation of a material’s properties that limit their service lifetime, such as 685 

for materials used for nuclear power generation. Handling radioactive materials can be 686 

challenging. To shield the user from the source of radiation, dedicated facilities such as 687 

‘hot’-FIBs and atom probes are available in the UK (Oxford), France (Rouen, CEA Saclay), the 688 

USA (Idaho National Laboratory), and Japan (CRIEPI), amongst others. Studies on nuclear 689 
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materials include the formation of secondary phases in materials already in service or in 690 

candidate materials203,272–274, welds in engineering parts275,276, and the oxidation and 691 

corrosion of pipes and fuel cladding 277–281. Research in the area of fuel and waste is also 692 

burgeoning282,283. In these systems, a significant challenge is the detection of very light 693 

elements, including helium284 and hydrogen. 694 

Beyond just nuclear materials, spatially-resolved characterization of hydrogen has been a 695 

long-standing frontier in microscopy and microanalysis. Hydrogen is known to embrittle and 696 

cause catastrophic failure in many materials, but is also a strong focus for clean energy 697 

storage and carbon-emission-free mobility. However, its distribution within material 698 

structures is difficult to determine. While hydrogen is readily detected in APT, it is 699 

challenging to establish whether it originates from the specimen itself or is residual 700 

hydrogen from within the vacuum chamber. Isotopic labelling has been proposed as an 701 

approach to circumvent this issue. Samples are charged with deuterium, which serves as a 702 

marker for hydrogen. This approach has successfully detected hydrogen trapping285,286, 703 

although quantification is not straightforward287 and will depend on the analysis 704 

conditions288,289. In order to minimise diffusion of hydrogen out of the specimen, it is also 705 

necessary to keep the sample cold between charging and analysis. The study of hydrogen by 706 

APT has been facilitated in the past few years by developments in specimen transfer under 707 

cryogenic conditions. APT has shown that hydrogen can be trapped at grain boundaries, 708 

phase boundaries, and dislocations120,122,123,290, and there have been several studies 709 

reporting the analysis of hydrides and their growth mechanisms291–293.  710 

[H2] Geology  711 

While early applications of APT to geological materials were studies of metallic 712 

meteorites294 and metamorphic magnetite crystals 295, the technique rose to prominence 713 

with its application in geochronology133,296. Today, a large proportion of the published work 714 

using APT on geological materials falls within geochronology, extra-terrestrial materials and 715 

economic geology, but the technique is rapidly spreading into a broad range of minerals of 716 

interest in chemical geology, petrology, mineralogy, and economic geology, as recently 717 

reviewed in detail211,297. 718 

In geochronology, APT is used to investigate the nanoscale distribution of radiogenic 719 

isotopes, such as uranium and lead, in accessory minerals (for example zircon, monazite, 720 

titanite, baddeleyite) 133,298,299. The reliability of accessory minerals as geochronometers 721 

relies on the assumption that trace elements diffuse negligible distances through the crystal 722 

lattice. Geochronology studies reveal that deformational and metamorphic events can allow 723 

the diffusion of radiogenic isotopes, leading to local changes in the isotopic ratios. The 724 

diffused atoms form nanoscale clusters212,300,301, and the characterisation of these clusters 725 

has the potential to be used to resolve the timing of the cluster-forming geological events. 726 

These studies have improved our understanding of the mechanisms for parent-daughter 727 

isotopic mobility and yielded important information about the formation and evolution of 728 

the Earth’s crust302.  729 

APT has also been used to study extra-terrestrial and terrestrial proxy materials such as 730 

accessory minerals from lunar soil samples and meteorites (for example ilmenite, zircon, 731 

baddeleyite, nanodiamonds, and refractory metal nuggets) to resolve the timing of 732 

planetary events, and better understand formation of planetary crusts 294,303,304. These 733 

works have allowed determination of the timing of lunar transient thermal episodes305; 734 
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characterization of the composition and texture of space weathering products306; 735 

constraining the processes driving the migration of early solar system materials in the 736 

protoplanetary disk307; and determination of the astrophysical origins of meteorites308.  737 

In the field of economic geology, APT has mostly been applied to ore minerals such as pyrite 738 

and arsenopyrite to investigate the mechanisms of precious- and base-metal incorporation 739 

and mobility309,310. The characterization of metal occurrences within their host minerals 740 

provides key information for understanding the fluid-rock interactions and crystal growth 741 

kinetics311 that lead to the formation of viable economic deposits. Recent studies that have 742 

used APT for the study of ore minerals have made significant advances towards 743 

understanding the paragenesis of ore deposits including Carlin-type gold312, orogenic 744 

gold309, porphyry Cu-Au313, and platinum-group-alloy deposits314. 745 

Other interdisciplinary studies include investigations on the interaction between trace 746 

elements, fluids and crystal defects and their effect on mineral physical properties315, 747 

characterization of the composition and structure of minerals to understand fundamental 748 

processes associated to phase formation in, for example, feldspar304,316, vapor-phase 749 

mineral deposition, glass corrosion, and magma unmixing317,318. Studies also include 750 

assessment of the mechanisms for dissolution/precipitation on mineral surfaces319,320, 751 

element diffusion during deformation, metamorphism and metasomatism used to shed light 752 

on interface reactions, and mineral intergrowth and exsolution processes316,321–326. These 753 

insights can only be gained through APT, with its high elemental sensitivity combined with 754 

three-dimensional imaging at sub-nanometre spatial resolution.  755 

[H2] Beyond bulk materials 756 

In addition to understanding the structure of the bulk of materials, understanding surfaces 757 

is also of great interest especially, for example, for chemical conversion systems such as 758 

catalysts and electrocatalysts that are involved in renewable energy generation. Most 759 

devices use nanoparticles to increase their surface-to-volume ratio and maximise their 760 

activity. To optimise the catalytic performance of these nanostructured materials, one must 761 

have a detailed understanding of atomic-scale microstructure on surfaces, near-surfaces, 762 

and where internal defects and interfaces intersect the surface. APT and related techniques 763 

have long been used in surface science and catalysis based on the hypothesis that the near-764 

spherical cap at the end of the needle-shaped specimen is akin to an individual 765 

nanoparticle327–330. Upon adapting the specimen preparation strategies to protect 766 

catalytically-active surfaces from ion- or electron-beam damage, APT can potentially provide 767 

the distribution of elements within microporous and nanoporous materials such as 768 

zeolites331,332, metallic-organic frameworks333, and nanoporous metals334,335. APT has also 769 

been used to study the intermediate species formed at the surface of thin-film catalysts at 770 

different stages of the oxygen evolution reaction336–338. 771 

[H2] Biological and organic materials 772 

The study of organic matter with atom probe is considered an emerging application area. 773 

The most significant contributions to date have been in the study of biominerals, which are 774 

solid, mostly inorganic and readily amenable to atom probe analysis, as first demonstrated 775 

by Gordon and Joester339. Subsequently, atom probe data has revealed the nanoscale 776 

distribution of important elements such as magnesium and fluorine in dental enamel340,341, 777 

and has added to the understanding of the nanoscale structure of the shells of marine 778 

organisms342,343, and various studies on apatite, bone344,345, or biogenic carbonates346,347. 779 
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Soft materials can be much more challenging to examine as they can be unstable in the high 780 

vacuum environments encountered in atom probes and in FIB systems. There have been 781 

several reports of the analysis of carbon-based molecules348–350, polymers98, and self-782 

assembled monolayers formed directly on metallic specimens99,100,351,352. Although 783 

interesting results were obtained pertaining to the field evaporation behaviour of organics, 784 

much more is required to understand the intricacies of the analysis of organics by APT353–355.  785 

Soft biological materials are normally hydrated, but dried proteins have been deposited and 786 

imaged by FIM and analysed by APT including DNA356, ferritin357–359, and amyloid fibrils360. 787 

Different approaches to maintain the proteins in their pristine, hydrated state include 788 

freeze-drying361, fixing in resin359,362, and freezing125,130. Freeze-drying removes the water 789 

and greatly modifies the original structure. Fixing can be an alternative but can alter the 790 

sample on a molecular level and disrupt the distribution of ionic species. In an approach 791 

similar to fixation, Sundell et al.363 examined an antibody protein by using a sol-gel method 792 

to embed individual proteins in an amorphous solid silica matrix, followed by a standard FIB 793 

lift-out. The hydration shell around the molecule was completely replaced with silica and 794 

the shape of the features in the 3D reconstructions showed good agreement with the 795 

crystal structure in the protein databank. Cryogenic developments for APT specimen 796 

preparation and transfer, recently reviewed by McCarroll et al.364, have the potential for 797 

cryogenic preservation. However, more developments are needed to maintain the 798 

hydration shell around proteins and determine more specifically what APT can bring to the 799 

biological sciences.  800 

[H1] Reproducibility and Data Deposition 801 

[H2] Standards and community-led protocols 802 

Although APT is fast-growing, it remains a rather immature field compared to other analysis 803 

techniques. Like many relatively small communities that grew from isolated groups, defining 804 

a common vocabulary across APT researchers is sometimes arduous, and using standard 805 

protocols even harder. Nomenclature for the technique itself in published works over the 806 

past two years only includes 3D-AP, 3-DAP, 3D-APT, TAP, LEAP, or AP microscopy, which 807 

makes it confusing to outsiders and often confuses the technique with the instrument. This 808 

does not happen with TEM, SEM, or SIMS. Historically, each group had its own software 809 

toolbox. While sharing good practice was not prioritised, recently created geology-focused 810 

groups365 have published the first article on how to appropriately report APT in scientific 811 

publications.  812 

The evolution of the commercial landscape and the fast spread of the LEAP has accelerated 813 

the change towards more homogeneity with common tools and an, albeit imperfect, 814 

terminology. For example, a commercial software is now used by most across the 815 

community. In addition, there was a reckoning of the importance of creating active sub-816 

groups within the International Field Emission Society (IFES) to build a common structure 817 

across research groups, thus the situation is evolving as we write. For instance, although 818 

newly developed tools often are primarily used within individual groups, there are 819 

continuous efforts to share tools that are very often open-source and document their usage 820 

and application136,366–371 – a list is available here. This is in part related to the efforts of the 821 

APT Technical Committee372. Another example, although in existence for over a decade, is a 822 

standards committee to establish a common vocabulary and a first term compliant has been 823 

submitted to ISO. For those involved, defining one term represents over 150 emails 824 
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exchanged over nearly two years, giving an indication of how titanic the task will be in the 825 

coming years. These efforts will make round robin experiments [G] more common. 826 

Currently there are only a few examples178,373 facilitating exchange of good practice and 827 

comparison of results on common grounds and accelerating progress. 828 

There are also critical questions that arise from performing experimental sciences that the 829 

APT community has not yet fully addressed. APT is a destructive technique, so we have to 830 

assume that the specimen was representative of the material, and when comparing across 831 

multiple specimens from different locations in the same sample we must assume that they 832 

are similar. There is a need to improve on the statistical analyses of the data and ensure 833 

comparability. Experimental setups and data outputs are not yet standardized, even though 834 

there are efforts in this direction coordinated by the Technical Committee of the IFES, which 835 

proposed the use of an HDF5-based file structure. 836 

While there are currently no minimum reporting requirements when conducting and 837 

reporting on APT measurements, some forays have been made in this direction by Blum et 838 

al. for geological materials analysed by APT 365, and this part of the community is pushing to 839 

establish this as standard practice. It should be emphasised that generalising this practice 840 

would be extremely beneficial to the community as a whole, especially considering the 841 

variability in the processed data demonstrated by a recent interlaboratory experiment on a 842 

reference zircon 373. No public or standard location or repository currently exists for APT 843 

data, even though there were early efforts by groups in, for example, Sydney369 and 844 

Colorado374.  845 

These are critical issues that are yet unaddressed and on which the community needs to 846 

progress. For example, virtual workshops or dedicated symposia at targeted scientific 847 

meetings could encourage the adoption of standard procedures and practices. 848 

 [H1] Limitations and optimizations  849 

[H2] Spatial resolution and performance 850 

APT is often presented as a microscopy technique, so naturally the question arises as to its 851 

actual spatial resolution. For a conventional microscopy technique, the Rayleigh criterion 852 

[G] is commonly used, and it corresponds to when the diffraction-limited image of two 853 

point-sources can no longer be separated. In APT, an equivalent is not, strictly speaking, 854 

accessible: the reconstructed position of the ion is subject to error but is not diffraction-855 

limited. Over the years, several criteria have been reported based on a statistical analysis of 856 

the reconstructed atomic planes, either in real or reciprocal space188,193,194,375. These studies 857 

were performed on pure materials, with depth resolutions reported down to 20 pm376 for 858 

aluminium or 60 pm193 for tungsten, and lateral resolutions in the range of 200 pm, with 859 

variations associated to the materials193,194,377 and set of atomic planes considered, as well 860 

as the experimental conditions194,378.  861 

None of these investigations inform on the smallest feature size that can be confidently 862 

analysed, which is more intimately related to the imaging process. The magnification in APT 863 

is associated with the distribution of the electrostatic field at scales ranging from the 864 

mesoscale to the near-atomic scale, and some aberrations are inherent to the physics of the 865 

field evaporation process.  866 



 21

On the mesoscale, the magnification is related to the specimen itself7 and several projection 867 

laws can describe the projection rather well137–139. However, the parameters associated to 868 

the projection differ from specimen to specimen379, evolve over the course of an 869 

experiment380, and ultimately also depend on the analysis conditions381. This is unlike most 870 

other microscopy techniques. In addition, since the magnification is related to the local 871 

curvature, and the field evaporation probability is dependent on the local atomic 872 

neighbourhood, inhomogeneities in the specimen’s composition in the near-surface region 873 

lead to the development of local curvatures and changes in magnification. This is apparent 874 

in experimental detector maps shown in Error! Reference source not found.a, in which 875 

dense regions correspond to precipitates sitting at a grain boundary and within each grain, 876 

as delineated by white circles and ellipses. Error! Reference source not found.b explains 877 

schematically why the image of a precipitate on the detector can be larger or smaller 878 

depending on its evaporation field relative to the surrounding matrix, which leads to 879 

compression or divergence of the ion trajectories.  880 

At the near-atomic scale, the distribution of the electrostatic field in the vicinity of the 881 

surface is highly dependent on the neighbourhood of the departing partly-charged atom or 882 

ion382, which has been studied extensively by electrostatic simulations383 and density-883 

functional theory-based calculations384,385. Gradients of electrostatic field can also modify 884 

the path followed by the departing particle causing, for instance, short-range rolling motion 885 

of atoms on their neighbours before desorbing, making the ion start its flight from a close-886 

by position to where the atom initially was inside the material.  887 

 888 

These effects combine to blur the atomic positions following reconstruction and result in a 889 

limited spatial resolution, which depends on the species considered and on the population 890 

of particles that is being imaged. De Geuser et al. recently reviewed the literature 891 

comparing small-angle scattering (SAS) techniques and APT on a range of precipitate-892 

strengthened alloys1. SAS, using either X-rays or neutrons as a source, in principle has no 893 

limits to the minimum size of particles that can be detected, and the size distribution 894 

extracted from the fitting procedure is not affected by a spatial resolution. The reported 895 

feature size by APT and SAS is plotted in Error! Reference source not found.c, along with, in 896 

grey, the expected size for an effective spatial resolution of 0.25 nm –1.25 nm. The actual 897 

resolution is probably somewhere between these boundaries, but pinpointing to a single 898 

value is problematic as it intrinsically depends on the analysed material system, and 899 

particularly the size and composition of the microstructural features of interest. Ultimately, 900 

the problem does not lie in the APT’s capacity to detect these particles – ions from these are 901 

emitted and detected – but the resolution limit implies that their size and composition can 902 

no longer be directly measured.  903 

Interfaces such as grain boundaries are important microstructural feature analysed by APT. 904 

There have been numerous studies comparing the chemical or compositional width of an 905 

interface with its structural width, which may be different. Structural discontinuity was 906 

shown to introduce trajectory aberrations even without segregation145,146. Correlative 907 

studies with TEM performed directly on an atom probe specimen18, including at high 908 

resolution19, have highlighted that the common assumption of a width of 0.5 nm is close to 909 

the values obtained from experiments only for the structural width of a boundary. Recently, 910 

APT measured segregation of a similar width for a transformation interface analysed along a 911 
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specific set of atomic planes154. Yet typically, the chemical widths of grain boundaries and 912 

interfaces very even along a single boundary386–388, and the limited spatial resolution of APT 913 

can limit the precision of the measurement to 1 nm to 2 nm full-width-half-maximum154.  914 

[H2] Sensitivity and analytical performance 915 

APT is a mass spectrometry technique, which naturally leads to the question of its sensitivity 916 

and the precision of the measured composition. There have been efforts in recent years to 917 

define statistically meaningful metrics to assess APT sensitivity23 but they have not been 918 

adopted across the entire community. Here we will only discuss some aspects affecting the 919 

sensitivity without dwelling on a specific metric, to give a sense of the important parameters 920 

that need to be monitored.  921 

More conventional mass spectrometry techniques, such as inductively-coupled plasma mass 922 

spectrometry or SIMS, typically analyse large volumes of materials of several cubic microns 923 

to cubic millimetres, and hence contain billions and billions of ions. APT volumes are 924 

minuscule in comparison, with ion counts in the tens to hundreds of million ions. This is a 925 

first limitation when looking for trace elements (see additional discussion of limitations to 926 

species detection in BOX 5). When these are agglomerated within the material, their local 927 

concentration can be high enough to be detected. 928 

 [H2] Error estimations 929 

There are numerous reports of imprecisions in the composition, and species-specific losses, 930 

when comparing the overall composition from APT to that obtained from other bulk 931 

techniques60,66. The precision is often assumed to simply be that of the counting statistics – 932 

the larger the measured number of ions N, the more precise the measurement with 933 ߪ௜ = ට஼೔×ሺଵି஼೔ሻே  where Ci is the atomic fraction of element i. When it comes to reporting 934 

local composition for example in a profile, only the counting statistic is typically quoted for 935 

precision. Danoix389 showed that the detection efficiency could be accounted for, but would 936 

not change the error estimation if it is assumed to be the same across all species, which is 937 

an approximation. There are also known dependencies of the measured composition on the 938 

experimental conditions, which can often be traced by changes in the electrostatic 939 

field66,67,390. This can become crucial when considering error estimations, for example when 940 

reporting on the concentration of hydrogen within materials289,391. 941 

As per the spatial precision, there have been reports and discussions on the possible 942 

migration of atoms at the surface prior to field evaporating on a local46,47 scale or at the 943 

mesoscale392,393, as well as high-field solutes being retained on the surface while 944 

neighbouring atoms from multiple lower layers field evaporate394,395. However, data 945 

representation continues to be based on a point cloud that implies an almost infinite 946 

precision of the reconstructed position. Most composition profiles will only display errors on 947 

the composition and not on the measured distance, which is problematic, particularly as 948 

some of the errors can be induced by user selection of grid and delocalisation 949 

parameters144,152. Local changes in the field evaporation properties can also affect the 950 

reported size of the imaged microstructural feature396,397. While there are proposed 951 

protocols to correct the distance or the data reconstruction398, they are scarcely used and 952 

ultimately rely on another set of assumptions, and may therefore not represent a significant 953 

advance after all. Ultimately, the community must accept that APT is extremely valuable 954 
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despite its intrinsic limitations and include these in the discussion of results, including 955 

precision and accuracy. 956 

[H1] Outlook  957 

The outlook for the future of APT is bright, and it may be possible to finally achieve true 958 

atomic-scale tomography399 with the ability to measure the isotopic identity and spatial 959 

coordinates of every atom in a material of interest. This would require that every atom is 960 

unambiguously counted and identified, with accurate and precise spatial reconstruction of 961 

its original location in the specimen with true-atomic resolution. Ideally, such a method 962 

would be applicable to any material that can be fashioned into a suitably-shaped specimen 963 

whether solid or liquid, soft or hard, organic or inorganic. Finally, all this information should 964 

be collected in large, experimentally-relevant volumes. APT would then be close to being a 965 

standard reference technique for measurement of chemical composition since, in the most 966 

fundamental sense, it is simply counting individual atoms. Uniquely, and unlike other 967 

standardized methods used to measure chemical composition, it can provide this 968 

information on highly local, arbitrarily shaped and oriented analysis volumes.  969 

We are not there yet, but this lofty goal guides the technique’s progress. Below, we discuss 970 

recent advances in some of these areas including standards, experimental hardware, data 971 

analysis, simulation, reconstruction, sample preparation and handling, and integration of 972 

complementary and correlative analytical techniques. 973 

 [H2] Hardware  974 

Some of the most exciting recent developments in hardware have come in the form of 975 

either combining other instruments with the atom probe itself or integrating an atom probe 976 

into working versions of other analytical tools. These can aid in specimen preparation, 977 

provide additional data to inform reconstruction and analysis, give complementary 978 

measurements, or provide correlative information for multi-modal microscopy studies. For 979 

example, atom probe instruments have recently been successfully integrated with both 980 

SEMs and FIBs400–402. A start-up at the University of Stuttgart403 is developing a modular 981 

instrument directly attached to a FIB enabling direct transfer from electron and ion imaging 982 

to APT analysis. Dedicated chambers are also in development or operation to perform 983 

chemical reactions at the specimen’s surface and probe its response404,405. In a similar vein, 984 

an in-situ micro-photoluminescence bench that can be operated during atom probe analysis 985 

has recently come online406 with the ability to interpret optical data through analysis of 986 

three-dimensional chemical structure. Finally, there are ambitious projects underway to 987 

integrate an atom probe directly into the pole gap of a TEM as a module407,408 or via a 988 

dedicated holder following earlier designs409. 989 

Similarly, there has been great progress with integration of sensitive-atmosphere specimen 990 

preparation and handling capability with atom probe instruments364,410. These include 991 

cryogenic specimen preparation, handling, and transfer119,130,411,412 as well as in-situ 992 

environmental treatment cells404,413 for performing studies related to hydrogen 993 

embrittlement, phase transformations, and catalysis.  994 

There have been recent developments that make use of ionizing radiation to enable new 995 

pulsing paradigms. Ultrafast femtosecond-pulsed extreme ultraviolet radiation414,415 have 996 

been used to trigger alternative field ion emission schemes such as photoexcitation or 997 
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photoionization416, or to enable a more localized heating mechanism with the aim of 998 

eliminating some of the uncertainty associated with the current state-of-the-art near-999 

ultraviolet laser pulsing. Finally, detectors that will not only detect every emitted ion but 1000 

unambiguously identify its isotopic species have recently been experimentally 1001 

demonstrated417,418.  1002 

 1003 

[H2] Revisiting FIM 1004 

FIM, the predecessor to APT, does not suffer from the spatial resolution limitations of APT 1005 

since atoms are imaged prior to departing the sample surface. Indeed, aberrations occur in 1006 

the early stages of the ionic flight. The magnification in FIM can still be affected by local 1007 

variations in curvature, and the contrast in field-ion imaging is not yet fully understood. To 1008 

date, there have been several efforts to revive FIM419 as one more way to complement 1009 

APT404. First, three-dimensional FIM was introduced420,421, and multiple digital image 1010 

processing routines developed to extract atomic positions and build atomically-resolved 1011 

tomograms422–424. New imaging simulations have also been proposed424, aiming in part to 1012 

explain the nature of the observed contrast by using density-functional theory to model the 1013 

image gas ion current based on the local density of state of the surface atoms under intense 1014 

electric field179. To support these insights, FIM was performed within an APT and filtering 1015 

routines deployed on the time-of-flight mass spectrometry data to distinguish the mass-to-1016 

charge ratio of the field evaporated surface atoms from the high background caused by the 1017 

ionisation of the imaging gas179. This first study on analytical-FIM demonstrated a higher 1018 

spatial resolution compared to APT and the ability to image segregation at structural defects 1019 

with atomic resolution. Today, analytical-FIM is in its infancy and will require hardware and 1020 

software developments to make it an established technique425.  1021 

 [H2] Moving the state-of-the-art 1022 

Much work remains to be done in the area of data analysis, simulation, and reconstruction. 1023 

Most fundamentally, a better and more thorough understanding of the field evaporation 1024 

process is required. Great progress has been made in recent years385,426 with regard to 1025 

understanding the fundamental physics of evaporation and bond breaking on surfaces 1026 

under high field (see BOX 7). Modelling and simulations have brought many insights and 1027 

understanding of the origins and influence of aberrations on APT data383,427–429, yet it is 1028 

critical that more is done in the future to advance our understanding of field evaporation 1029 

physics, which in part underpins aberrations.  1030 

In contrast to TEM, there are no current ways to correct trajectory aberrations by 1031 

implementing or improving ion optical devices. The limit originates from the field 1032 

evaporation process and the influence of the atomic neighbourhood on the evaporation 1033 

field – both locally in a random solid solution and on a mesoscale for a particle in a matrix. 1034 

To better understand trajectory aberrations, a full simulation of an atom probe specimen of 1035 

arbitrary composition and relevant size under high applied field with appropriate timescales 1036 

would require linking time-dependent density functional theory with molecular dynamics, 1037 

for example. This will surely become an active area of research as computational resources 1038 

continues to improve in the future.  1039 

Intensive research continues to develop new reconstruction approaches to mitigate, and 1040 

maybe eventually eliminate, the effects of the assumptions and approximations that 1041 
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underpin the state-of-the-art algorithms430. For instance, given its inherent simplicity, the 1042 

point-projection algorithm described above is surprisingly robust. However, its limitations 1043 

are well documented and can be prohibitive for certain analyses. Some of the most 1044 

promising of these algorithms use complementary simulations of how the applied electric 1045 

field evolves with the shape of the specimen to predict the path of the ions to the detector 1046 

and ultimately to guide their reverse-projection back into the reconstructed image431–434. 1047 

Correlative experimental protocols also enable the determination of the actual shape of the 1048 

emitter by using scanning-probe microscopy435 or electron tomography436. Combined with 1049 

shape predictions of specimens, it may be possible to retrieve the necessary information 1050 

from the APT experiment alone381,437. Approaches are also being pursued to derive a 1051 

specimen’s shape from simulations428,431. These new methods demonstrate increasing 1052 

capability and viability and are likely to play a significant role in the future of APT. However, 1053 

for now, the reverse-projection algorithm remains by far the most implemented model and 1054 

imperfect data already provides much needed information.  1055 

Finally, the data streams coming out of future APT experiments will be larger and integrate 1056 

signals from simultaneous microscopies and spectroscopies, providing more information 1057 

than human expertise alone can analyse. The field is poised to benefit from advances in 1058 

artificial intelligence for automated analyses as well as to find features buried in noisy data. 1059 

Forays have already been made across the data processing workflow by using machine 1060 

learning approaches for identification of cluster or phases, patterns in detector maps and 1061 

peaks in mass spectra146,175,438–440. An added benefit will be the improved reproducibility of 1062 

data analyses, which currently suffers from the lack of established standards.  1063 

[H2] Liquids & soft matter  1064 

Liquids are a new frontier for APT application, as controlled field evaporation of water-ice 1065 

formed directly on field emitters had been reported441–444 without solutions. Adineh at al.445 1066 

have proposed an approach to encapsulate liquids on a metal tip by using graphene, 1067 

preventing sublimation. Qiu et al.446 used this encapsulation approach to study a solution 1068 

containing a gold nanoparticle. Their results suggest the robustness of this strategy. The 1069 

recent development of cryogenic FIB sample preparation and cryogenic UHV sample 1070 

transfer offers additional potential for encapsulation in liquid solutions with controlled 1071 

freezing rates. Several groups have analysed specimens from water layers on hydrated 1072 

porous nanostructured materials kept frozen via a complete cold chain through to 1073 

analysis124–126,130, including challenging site-specific specimen preparation by lift-out at cryo-1074 

temperature via redeposition to weld the lifted-out wedge onto the support130.  1075 

Cryogenic FIB sample preparation also helps characterise beam-sensitive, organic-containing 1076 

materials129, which leads to how APT can be applied to biological materials beyond what has 1077 

been achieved so far340,341,361,362,447,448. Only careful fast cryogenic freezing can retain the 1078 

original biological structure in a solid state. When cooled slowly, ice will crystallize and the 1079 

associated volume expansion destroys the delicate structure of biological matter. However, 1080 

when cooled fast enough, water can transform directly to a metastable vitreous ice phase 1081 

that preserves the specimen’s original structure. Further work is required to develop 1082 

workflows that allow the preparation of vitreous biological matter, such as tissue, cell 1083 

components, or solutions containing biological molecules. 1084 
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[H2] Closing remarks 1085 

Going forward, there must be confidence in APT’s ability to provide ground truth data and 1086 

make absolute measurements of specimen shape with a high degree of certainty, and of 1087 

chemical composition down to individual isotopes439. Improvements in the fundamental 1088 

understanding of the field ion emission process are required for both of those aspects, and 1089 

to determine oxidation states for the detected ions320. Modelling and simulation of the 1090 

evaporation process needs to mature to where it can inform reconstruction so that 1091 

experimental errors can be substantially reduced and, more importantly, accurately 1092 

quantified. There must be developments in the areas of handling and analysis of heretofore 1093 

“impossible” materials, which include materials as simple as pure water ice. Forays into 1094 

novel areas must be accompanied by the development of standards to ensure the reliability 1095 

and repeatability of data acquisition and interpretation beyond what is routinely done in the 1096 

field. This is necessary to communicate with industries increasingly applying APT to solve 1097 

technological problems such as by performing failure analysis of memory devices or 1098 

batteries.  1099 

Figure Legends 1100 

Figure 1 – Microstructural features with their typical size and some analytical techniques 1101 

used to analyse them. a Cartoon view of the typical microstructural features of an 1102 

engineering material, from the atomic arrangement of a crystal lattice through to a range of 1103 

crystalline defects, phases, grains, and up to imperfections at the surface. The presence and 1104 

quantification of hydrogen, specifically at these features, is a crucial challenge (modified 1105 

from Dr. Jazmin Duarte, MPIE). b Sensitivity and analysable feature size for some materials 1106 

analysis techniques.  1107 

Figure 2 – Schematics of the atom probe instrumentation and of the field evaporation 1108 

process. Schematic view, not to scale, of the inside of an atom probe ultra-high vaccum 1109 

analysis chamber in a straight-flight-path instrument in a and on a reflectron-fitted 1110 

instrument in b. c-d: Schematic depiction of the field evaporation and post-1111 

ionisation/dissociation processes in the case of c) a metal and d) a less-conducting material. 1112 

Figure 3: FIB-lift-out specimen preparation. a Four-step protocol for FIB lift-out specimen 1113 

preparation, with specimen deposited on a support. b Protocol adapted for in-plane lift-out 1114 

of targeted features to facilitate correlative analysis by transmission electron microscopy.  1115 

Figure 4: Specimen preparation techniques for non-bulk samples. a Electrophoresis of 1116 

nanoparticles on a pre-electropolished platinum-rhenium needle; b transmission-electron 1117 

microscopy images show that two layers of nanoparticles were deposited by increasing the 1118 

pulsed voltage from 5 kV to 7 V for 6s; c APT of Ag(core)-Pd(shell) nanoparticles with 1:1 and 1119 

1:3 ratios92. d Nanoparticle picked up by the micromanipulator, deposited on a Si microtip, 1120 

and protected by electron-beam assisted deposition101. e Inert gas condensation formation 1121 

and deposition of Au-Cu nanoparticles on Si microtips, followed by metal film deposition 1122 

and FIB-milling106. f Diluted nanoparticle solution dropped on SEM stub, then covered by Cr 1123 

film and electron-beam assisted deposited Pt, and a rotated image of the wedge89. g 1124 

Nanoparticles encapsulated using atomic-layer deposition, followed by FIB lift-out. h 1125 

transmission-electron microscopy image of an APT specimen containing Pt nanoparticles 1126 

sandwiched between atomically-deposited layers of ZnO115. i Electrophoresis of 1127 

nanoparticles on a Cu plate, and electrodeposition of Ni (insets are the Cu plate after 1128 
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electrophoresis and electrodeposition, respectively). j transmission-electron microscopy 1129 

image of the APT specimen reveals Pd nanoparticles (dotted circle) were capped in the Ni 1130 

matrix and k corresponding APT analysis450. Parts b, c reprinted from ref 117, Springer Nature Limited. 1131 
Part d adapted from ref 126, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Part e adapted with 1132 
permission from ref 127, ACS. Part f adapted with permission from ref 114, Elsevier. Part h adapted with 1133 
permission from ref 128, Elsevier. Parts j and k adapted with permission from ref 129, Elsevier. 1134 

  1135 

Figure 5 – Ranged mass spectrum and reconstruction protocol. a-b Segments of an APT 1136 

mass spectrum from the analysis of a 17-4PH steel sample. Mass spectrum highlights the 1137 

detection of different charge-states, resolution of elemental isotopes and field evaporation 1138 

of molecular ions. Data courtesy of G. Yeli. c Simplified schematic of the ion projection from 1139 

the specimen to detector in a straight flight path atom probe instrument. The colourmap 1140 

corresponds to typical isopotential estimated from two-dimensional finite element methods 1141 

calculations, used as an illustration. d Comparison between projection models on an 1142 

experimental pure-Al dataset. e Simple schematic of procedure to reconstruct real-space 1143 

depth, i.e. z-coordinate, from top to bottom: the ion detected is assumed to be projected 1144 

from a hemispherical surface, and for each subsequently detected ion an additional 1145 

increment is added to the z-coordinate calculation to account for all preceding ions. Part d 1146 
adapted with permission from ref 176, Cambridge University Press. 1147 

Figure 6: Examples of reconstruction and data visualisation and analysis from engineering 1148 

alloys. a reconstructed point cloud showing the elemental distribution within a 1149 

nanocrystalline Al-alloy containing both precipitates and segregation of solutes to the grain 1150 

boundaries451, with close-ups of a single precipitate and different families of atomic planes. 1151 

b–f reconstruction and analysis from an additively manufactured Ni-based alloy452: b point-1152 

cloud and isoconcentration surfaces highlighting the interfaces between the ߛ and ߛ’ phases 1153 

(in blue) and a grain boundary where B strongly segregates (in orange) c Composition in a 20 1154 

nm-diameter cylinder across the grain-boundary calculated along the red arrow, enabling 1155 

quantification of the B segregation and the ߛ and ߛ’ phase compositions. d Individual 1156 ’ߛ 

precipitate isolated from within the point-cloud, highlighted by the pink ellipse in b; e 1157 

composition profile in the form of a proximity histogram from the isosurface delineating the 1158 

precipitate shown in d; and f first nearest-neighbour distribution for Al showing a deviation 1159 

from the random distribution indicative of the clustering/precipitation tendency readily 1160 

visible from the atom map. 1161 

Figure 7: Spatial resolution of APT in the analysis of precipitates. a Successive detection ion 1162 

maps obtained for 106 detected ions during the analysis of a model 7XXX-series Al-alloy; 1163 

more details on the materials can be found in ref.453. b Schematic view of the compression 1164 

or divergence of trajectories associated to the presence of precipitates, and associated 1165 

imaging error. c Size of precipitates reported by APT vs small-angle scattering, highlighting 1166 

the presence of an effective spatial resolution limit below which microstructural features 1167 

are detected but their size and composition can no longer be directly accurately measured. 1168 
Part c adapted with permission from ref 1, Elsevier. 1169 

Boxes 1170 

[bH1] BOX 1: Field evaporation of non-conductors  1171 
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The main models of the field evaporation process were developed for metals. In a solid, the 1172 

electric field is effectively screened by shifting the positive and negative charges (considered 1173 

collectively) so as to generate an electric field of opposite direction and same magnitude to 1174 

the external field. This is referred to as the Thomas-Fermi screening length, and is typically 1175 

in the range < 0.1 nm in metals, which smaller than an interatomic distance and only atoms 1176 

at the very surface are subjected to the most intense field454,455. For semiconductor 1177 

materials this field penetration depth was found to be much larger than for metals (Error! 1178 

Reference source not found.d). For example, Tsong et al.456 reported one of 1179 

approximatively 2 nm in the near surface layers of silicon. This is because the number 1180 

density of electrons for semiconductors (1016/cm3 454) is much lower than the one for metals 1181 

(1023/cm3 457) and as a result, the screening is weakened. The field penetrates into the 1182 

semiconducting surface causing the electron band structure to bend upwards, an effect 1183 

known as band bending458,459. For insulators, these effects can be even more prominent as 1184 

the penetration is deeper61. In addition, APT using HV pulsing was not typically leading to 1185 

appropriate experimental conditions for analysing semiconducting and insulating materials 1186 
460, which became more routine with the implementation of laser pulsing capabilities. 1187 

However, additional complexities arise from the interaction between the laser pulse and the 1188 

electric field, in particular because the specimen has dimensions that are smaller or 1189 

comparable in size to the illuminating wavelength, which makes its absorption properties 1190 

non trivial34,461,462. Compared to metals, the field evaporation of semi-conductors must 1191 

involve additional factors such as carrier diffusion, carrier recombination, thermal diffusion, 1192 

field screening effect, and band bending462,463. Since the specimen is kept at a low 1193 

temperature, some of these effects may be minimized.  1194 

The combination of a higher field evaporation temperature and a deeper penetration of the 1195 

electrostatic field has consequences on the APT analysis. A deeper penetration of the field 1196 

means that the bond-breaking between surface atoms will not take place exclusively for 1197 

atoms on the topmost surface, but also slightly sub-surface464. A larger population of atoms 1198 

under a high electrostatic field means that not only the most protruding atoms can be field 1199 

evaporated. This prevents controlled sequential removal of atoms, which lowers the spatial 1200 

resolution194. This also facilitates the field evaporation of molecular ions460,465. The 1201 

detection of a high proportion of molecular ions is common in compound semiconductors 1202 

such as chalcogenides466,467, nitrides390, and oxides468, but are less often observed in 1203 

monoatomic semiconductors such as silicon and germanium. Upon emission from the 1204 

surface, these metastable molecular ions can undergo dissociative 1205 

fragmentation64,65,390,468,469 that can cause species-specific losses and degrade the spatial 1206 

resolution 390.  1207 
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 1209 

[bH1] BOX 2: Practical considerations  1210 

The rate at which ions are emitted by the specimen is controlled both by the electric field 1211 

and the temperature via an Arrhenius-type relationship470. To a first approximation, and in 1212 

agreement with experiments47, the electric field required to cause the emission of ions at a 1213 

given rate φ varies linearly with temperature close to the zero-barrier evaporation field. This 1214 

is summarised in the diagram in panel a. The region coloured in blue corresponds to a 1215 

continuous network of curves for increasing evaporation rates φ.  1216 
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For a specific experiment, the user can set the base temperature Tbase, the direct current 1217 

(DC) field, FDC, and the desired rates at which ions are detected, which is directly related to 1218 

the evaporation rate φ. These are the main experimental parameters that can be adjusted 1219 

to control the field evaporation process. Let us assume a thought experiment performed in 1220 

conditions corresponding to the large green circle. The pulsing mechanisms are such that 1221 

either the field is temporarily increased at a constant temperature, or the temperature is 1222 

pulsed at a constant field. Both pulsing modes are now commonly available by using high-1223 

voltage or laser pulses, respectively461,471,472.  1224 

An important difference between the pulsing modes is that the amplitude and duration of 1225 

the thermal pulse depend on the geometry of the specimen and the thermophysical 1226 

properties of the material35,462,471. This can affect the accuracy of the measured mass, i.e. 1227 

the mass peak width: see for instance the blue vs. yellow mass peaks in the cartoon view of 1228 

a typical section of a mass spectrum in panel b. Such differences in width can also be 1229 

observed between an instrument with a straight flight path and one fitted with a reflectron 1230 

(see Error! Reference source not found.). The spatial distribution of the thermal pulse 1231 

across the specimen is also responsible for a change in the specimen’s shape473 that is 1232 

associated to additional compositional inaccuracies474,475.  1233 

 1234 

[bH1] BOX 3: Correlative microscopy  1235 

Common correlative microscopy experimental workflows involve ex-situ experiments, using 1236 

for instance X-rays, electron microscopes, or scanning probe techniques. These often 1237 

analyse a separate but representative sample of the same material, and then combine these 1238 

data together in the interpretation of the material behaviour. Ongoing efforts aim to 1239 

directly perform APT on specimens analysed by other techniques in-situ or nearly in-situ, or 1240 

use such techniques directly on an APT specimen.  1241 

Although limited in resolution, the SEM part of FIB/SEM systems allows easy access, prior to 1242 

the lift-out, to perform backscattered electron (BSE) imaging, electron backscattered 1243 

diffraction (EBSD), or electron-channelling contrast imaging to guide site-specific 1244 

preparation. Transmission-Kikuchi diffraction (TKD) to provide crystal orientation during or 1245 

at the end of the specimen preparation has also become popular223,476–478. High-resolution 1246 

SEM imaging can provide valuable information on the geometry of the final specimen53, and 1247 

more precise information can be gathered by using scanning-TEM. The correlation of TEM 1248 

with APT has long been undertaken75,479,480, often to obtain information on the specimen’s 1249 

outer shape that are beneficial to guide the data reconstruction process. Nowadays, TEM is 1250 

also used to obtain an accurate composition and atomic-scale crystallographic information 1251 

from the same region of interest in the material under investigation. 1252 

The below figure showcases the application of three different electron microscopy 1253 

techniques to APT specimens. Note that the specimens were cleaned using low voltage (2 1254 

kV – 5 kV) ion milling to remove the electron-beam damage and carbon build-up prior to 1255 

performing APT. Panel a shows the image quality (IQ) and colour map from TKD on 1256 

specimens prepared from a grain boundary region in a chalcopyrite, a promising sulphide 1257 

candidate material for solar cell applications3. The two grains are represented by two 1258 

colours with different crystallographic orientations sharing a high-angle grain boundary (GB, 1259 

blue line) with a misorientation of 26.4° about the [110] direction. In panel b, APT reveals 1260 

co-segregation of sodium and carbon along the grain boundary. Nanoscale sodium- and 1261 
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carbon-rich clusters are also imaged. These segregations influence the local optoelectronic 1262 

properties; hence, APT measurements are critical to establish structure-property 1263 

relationships224,226.  1264 

With respect to TEM, panel c shows a dark field transmitted electron micrograph from a 1265 

twinning diffraction spot, that highlights a twinned region in a needle specimen prepared 1266 

from an L10-ordered ferromagnetic MnAl alloy269,270. The corresponding distribution of 1267 

aluminium atoms from APT is in panel d, along with a set of the isosurfaces. A 2D 1268 

compositional map further shows the manganese segregation confined to the twin 1269 

boundary and depletion outside the twinned region. These segregations and twinned 1270 

structure are expected to directly influence the local magnetic domain structure. 1271 

Finally, a brightfield image of a needle specimen from a creep-deformed CoNi-based 1272 

superalloy is displayed in panel e. The dark contrast indicates the presence of stacking 1273 

faults. A high-resolution high angle annular dark field (HAADF) image from the stacking fault 1274 

region reveals a change in atomic structure at the fault with respect to the surrounding 1275 

lattice5. Panel f is the corresponding distribution of cobalt and a confined linear region 1276 

highlighted by an isosurface highlighting segregation of chromium to a partial dislocation261. 1277 

The 2D elemental composition map of Al (at. %) further shows a confined depletion of 1278 

aluminium along a plane that terminates exactly at the partial dislocation. This plane 1279 

corresponds to the SF plane, which is chemically distinct from the associated partial 1280 

dislocation. The compositional profiles along the SF plane indicate an in-plane diffusion 1281 

mechanism.  1282 
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 1284 

[bH1] BOX 4: Calibration 1285 

A number of parameters involved in the reconstruction process, such as the image 1286 

compression factor ξ, are required to further refine the spatial accuracy of the image. In 1287 

many cases, this optimization of reconstruction parameters is grounded by ensuring that 1288 

the reconstruction accurately reflects one or more known physical prominent characteristic 1289 

of the specimen across a range of length-scales. This includes partial crystallographic 1290 

information such as lattice planes that are sometimes available in the reconstructed data142, 1291 

as in Figure 9. It also includes specific microstructural features such as interfaces or 1292 

precipitates, the morphology of which has been previously confirmed by complementary or 1293 

correlative electron microscopy481,482 (see BOX 3), or the overall shape of the specimen 1294 

before and/or after the APT experiment, usually measured by electron microscopy436,483. 1295 

Other approaches, for example atomic force microscopy, have also been used435. Not all of 1296 

these approaches are applicable in every instance, and each has their own strengths and 1297 

limitations. 1298 

[bH1] BOX 5: Limitations to species detection 1299 

There are several factors that can limit the detection of a species. First, there is a certain 1300 

level of background, as shown in red or green in BOX 3 panel b. This background is related 1301 

to the dark current of the MCPs that leads to a few counts per second per square 1302 

centimetre. Additionally, ions can be created at the electrostatic field and not correlated to 1303 

a time pulse, either resulting from field ionisation of residual gas atoms or field emitted 1304 

from the specimen’s surface, as illustrated in BOX 3 panel a and its associated discussion. 1305 
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These uncorrelated counts form a random uniform background in the time-of-flight 1306 

spectrum. Due to the conversion from time-of-flight into mass-to-charge, this appears as a 1307 

decaying signal in the mass spectrum, with the background at lower masses relatively more 1308 

prominent than at higher masses. The level of background depends on the analysis 1309 

conditions such as vacuum level, intensity of the electrostatic field, etc.  1310 

Second, the number of peaks for a specific element depends on its isotopic distribution, and 1311 

the different charge states in which it is detected, and hence on its ionisation energies and 1312 

on the analysis conditions. The width of the peaks is related to the precision of the 1313 

measurement of the time-of-flight, voltage, and flight distance, but also to the precision of 1314 

the spread in the energy of the ions in voltage pulsing mode, or of delays in the time the ion 1315 

forms during the pulse in laser pulsing mode. The latter effect significantly depends on the 1316 

specimen geometry and thermal conductivity462,471.  1317 

Third, the single-particle detector is imperfect. In principle, it is operated in a mode where 1318 

incoming ions of all energies above a certain threshold (typically 2 keV) will trigger a signal 1319 

of similar amplitude. This enables the detection of light and heavy ions with the same 1320 

efficiency and, since the MCPs have a limited open area (approx. 50 % – 90 %), the 1321 

probability to detect an ion depends only on where it lands on the detector. Yet, these 1322 

settings make it impossible to use the current generation of detectors for assessing charge 1323 

states, which causes overlap between ions of different elements but with the same mass to 1324 

charge ratio: for example, 14N+ and 28Si2+, 27Al+ and 54Fe2+, 14N2
+,28Si+, and 56Fe2+, etc. In the 1325 

measurement of the composition, these overlaps can be deconvoluted based on the relative 1326 

isotopic abundances136, but the specific position of ions of each species with the same mass-1327 

to-charge ratio cannot be determined.  1328 

In addition, if in theory the efficiency is not dependent on the element, some elements are 1329 

more prone to be detected as part of multiple events57. This makes their loss more likely 1330 

due to pile-up effects – two ions with very close times of flight land nearly at the same 1331 

detector position, making it impossible for the second ion to trigger a high-enough signal to 1332 

be detected. This occurrence is in part caused by the response time of the MCPs, but also by 1333 

the processing of the electric signals of the delay-line detector44,484. Additional losses can 1334 

originate from the dissociation of molecular ions that lead to the formation of low-energy 1335 

ions or neutral atoms or molecules. Depending on where the dissociative event occurs along 1336 

the ion flight, the daughter ions may not be accelerated sufficiently to trigger a detectable 1337 

signal390. Daughter ions may not acquire the energy that is necessary to make the time-of-1338 

flight of these ions close enough to other ions from the same species, making it impossible 1339 

to associate them to a specific range. These aspects are typically revealed by using Saxey’s 1340 

approach of a correlation histogram58. Species-specific losses have been well documented in 1341 

the case of C60,485,486, B219,487, N68,390, and O65,468,488 , for instance. 1342 

These aspects make the balancing act between peak height and background level rather 1343 

subtle. A number of statistical criteria can be used to assess whether a detected peak is 1344 

statistically significantly above the level of background, locally in a range of mass-to-charge 1345 

ratios. The best thought-through criteria have been introduced in ref.23,366. Estimates of the 1346 

sensitivity will vary from analysis to analysis, from element to element, but those reported 1347 

in the literature are typically in the range of atomic part-per-million41,366.  1348 

[bH1] BOX 6: Advances in atom probe detectors  1349 
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The demands on an atom probe detector are stringent, and further developments will be 1350 

required to demonstrate fast readout speed, sufficient field of view, and reliable 1351 

discrimination of multiple hits and isobaric overlaps. Different approaches are currently 1352 

under investigations to solve or improve these problems. For example, Bacchi et al.418 used 1353 

secondary electron generation by ions crossing a thin carbon foil of 20 µm489 to generate a 1354 

kinetic energy proportional signal. By carefully monitoring the signal amplitude generated 1355 

by the electron cloud impinging on the subsequent MCP, the system was able to distinguish 1356 

overlapping signals at 32 Da in the case of Zn and O. A second approach by Kelly and Hunt 1357 
490 was to adapt a superconducting detector to the requirements of APT 491,492. The concept 1358 

behind a superconducting detector is rather similar to a delay-line detector 493. The detector 1359 

is cooled such that electrons are coupled in Cooper pairs, which underpin superconductivity 1360 

in solids. The localized heating associated to the impact of the ions emitted by the APT 1361 

specimen can break these pairs and generate electrons that are collected at the end of the 1362 

delay-line. These approaches bear great potential to reach 100 % detection efficiency, even 1363 

if substantial technical obstacles must still be solved to increase the surface area and lower 1364 

dead time, which is the time during which the detector is not operational following the 1365 

detection of one or more ions.  1366 

[bH1] BOX 7: Theory 1367 

Beyond new models for FIM contrast interpretation, new forays are being made in the 1368 

theoretical understanding of the field evaporation process. An aspect of experimental 1369 

sciences that can sometimes get overlooked is their underpinning theoretical aspects. This is 1370 

particularly true in APT. Field evaporation mechanisms were theorised early45,494,495 with 1371 

some advances in the following decades46,470,496,497, but focused almost exclusively on 1372 

metals, when the field has now fast expanded into the analysis of non-conductors. While 1373 

numerical simulations have been conducted to better understand some of the artefacts 1374 

observed in APT383, the simulations are concerned with the ion trajectories rather than the 1375 

field evaporation process itself.  1376 

Ab initio calculations have been proposed as a tool to study field evaporation effects65,498–
1377 

500, and there are current efforts to revive this activity. The initial forays are very promising 1378 

with true modelling of the field evaporation process385, including the small roll-up-type 1379 

motion that had been predicted and confirmed experimentally501. In combination with 1380 

molecular dynamics, ab initio approaches have also been used to estimate the stability of 1381 

molecular ions288,390 and complete energetics during ion flight to identify dissociation 1382 

channels under the influence of the electrostatic field59,65,502,503.  1383 

Much theory remains to be developed, in particular in connection with experimental 1384 

observations. This handshake is crucial to guide the optimisation of the experimental 1385 

conditions in order to maximise data quality. As already mentioned, the ideal APT detector 1386 

would detect all ions, yet as long as low-energy neutrals atoms and molecules originating 1387 

from the dissociations of molecular ions are created there will be species-specific losses that 1388 

make reconstructing 100 % of the data impossible. Better predictions of the stability of field 1389 

evaporated species are necessary, and so are, for instance, insights into surface migrations 1390 

and roll-ups that limit the spatial resolution.   1391 
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 1425 

Glossary (these terms will be defined for the reader after the peer 1426 

review process)  1427 

Solutes: atoms of a species different from the main constituent atoms, which correspond to 1428 

the solvent in a mixture. Solutes, often called dopants in electronic materials, are added to 1429 

modify the material’s properties. 1430 

Microstructural imperfections: irregularity in the arrangement of atoms in a crystal often 1431 

modifying a material’s physical properties. These include lattice defects as well as inclusions 1432 

of isolated or clustered foreign atoms, second phases, or particles forming in a matrix of the 1433 

main constituting element (solvent).  1434 

Vacancies: atom missing on one of the crystal lattice sites forming a point defect.  1435 

Dislocation: linear crystal defect typically associated with the plastic deformation of a 1436 

material. There are two main types of dislocations, edge and screw. A single defect can 1437 

exhibit both characters in different parts along the dislocation line. Mobile (glissile) and 1438 

immobile (sessile) dislocations both exist. In the case of an edge dislocation, the addition of 1439 

an extra half-plane of atoms in the structure results in a compressive stress on one side of 1440 

the dislocation and a tensile stress on the other. Segregation of solute elements to the 1441 

dislocation help reduce the free energy associated to these defects.  1442 

Stacking fault: local change in the stacking sequence of atomic layers in a crystal.  1443 

Twin: two crystals with a defined crystallographic relationship with each other, formed 1444 

typically by a cooperative displacement of atoms along a specific plane referred to as a twin 1445 

boundary, which can be caused by plastic deformation. The organisation of atoms on either 1446 

side of the twin boundary can be such that they are mirror images of each other, or follow a 1447 

specific rational twin law. Twin boundaries are often considered low-energy.  1448 

Grain boundaries: most crystalline materials are made of an ensemble of individual crystals, 1449 

referred to as grains, and the junction of two crystals is called a grain boundary. The local 1450 

discontinuity of the atomic arrangement makes grain boundaries loci of interest for 1451 

microstructure design. Segregation of solutes typically happens to minimise the system’s 1452 

free energy, and grain boundaries assist with heterogeneous nucleation of secondary 1453 

phases, for instance. The grain boundary energy depends on the magnitude of the change in 1454 

orientation between the two grains, as well as the crystallographic plane at the junction of 1455 

the two grains.  1456 

Secondary phases and phase boundaries: solids formed by a mixture of species can adopt 1457 

one or more thermodynamic phases, which can sometimes coexist. The formation of such 1458 

secondary phases can be hindered by the kinetics, often associated to lattice diffusion and 1459 

thermal activation. The discontinuity in the crystal lattice introduced by the presence of this 1460 

second phase forms a phase boundary. The difference in the lattice unit cell can make 1461 

secondary phases only partially or completely incoherent with the host lattice. Often there 1462 

exist a relationship in the crystalline orientation between the matrix and of the secondary 1463 

phase particle. 1464 

Composition: relative quantity of atoms of a species with respect to all atoms of all the 1465 

detected species given in atomic percent (at. %).  1466 
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Polarity: here the polarity is the electrical polarity, which is used to represent the electric 1467 

positive (+) or negative (−) sign of the electrical potential at the ends of an electrical circuit. 1468 

Field ionisation: physical phenomenon whereby atoms or molecules can be ionised because 1469 

of an intense electric field.  1470 

Field evaporation: physical phenomenon whereby atoms constituting a material can be 1471 

removed in the form of ions because of an intense electric field.  1472 

Projection optic: in microscopy, the projection is the transfer of the image of an object onto 1473 

a surface through an optical system that can contain lenses or mirrors, for instance. 1474 

Time-of-flight mass spectrometer: spectrometer that exploits the proportionality of an ion’s 1475 

mass-to-charge ratio with its time-of-flight from a source to a particle detector to deduce 1476 

the nature of atomic or molecular ions. 1477 

Reflectron: electrostatic mirror that can be flat or concave helping to correct spread in time-1478 

of-flight associated to energy deficits by allowing to adjust the ions’ flight distance 1479 

proportionally to their incoming energy.  1480 

Delay-line detector: type of particle detector where the particle impact location on the 1481 

detector’s surface is deduced from the difference in the arrival time of electrical signals at 1482 

the two ends of a line, i.e. a wire. Delay-line detectors typically contain two or three lines to 1483 

obtain the lateral and vertical coordinate of the impact position, the signals form the third 1484 

line are used to disambiguate combinations of signals coming from multiple impacts.  1485 

Molecular ion: as opposed to an atomic ion, a molecular ion contains more than one atom 1486 

and has, overall, lost one or more electrons. Molecular ions are usually metastable, but 1487 

some are sufficiently long-lived to be detected.  1488 

Microtip coupon: support for lift-out specimen preparation, typically made of silicon 1489 

processed by reactive-ion and/or chemical etching.  1490 

Local electrode: conical micro-electrode implemented on the commercial Local Electrode 1491 

Atom Probe (LEAP), positioned approx. 40 microns away from the specimen, and enabling a 1492 

strong localised increase in the electric field at the apex of the specimen. The 1493 

implementation of such micro-electrodes enabled mounting multiple specimens at once 1494 

into the instrument and analyse then in succession.  1495 

Mass peak ranging: definition of the lower and higher mass-to-charge values of each 1496 

individual mass peak in the mass spectrum to associate the mass-to-charge to one element 1497 

or a combination of atoms from one or multiple elements.  1498 

Image compression: an atom-probe specific term, it describes the angular compression 1499 

associated to the ion projection; that is, the ratio of the crystallographic angle to the imaged 1500 

angle.  1501 

Stereographic and quasi-stereographic projection: model of point-projection of a sphere 1502 

onto a plane, which is bijective, and preserves angles but neither distances nor areas. The 1503 

standard projection has the projection point and the projection plane diametrically 1504 

opposed. In a quasi-stereographic projection this is not necessarily the case.  1505 

Voxelisation: in atom probe, this corresponds to the conversion of the three-dimensional 1506 

point cloud into an array or grid of volumetric elements containing a certain number of 1507 

atoms of a certain size. Following voxelisation, the number of atoms of each defined species 1508 
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can be used to calculate a local composition, and is usually subject to a smoothing process 1509 

termed delocalisation.  1510 

Isosurface: three-dimensional surface representing points of a given threshold value of 1511 

composition, concentration, or density within the 3D point cloud. The isosurface is built 1512 

from the grid of voxels and hence subject to the delocalisation. 1513 

Iso-Concentration: a concentration reports a quantity per unit volume expressed in at.nm-3, 1514 

for instance, and is equivalent to a density. Due to trajectory aberrations and reconstruction 1515 

issues, volume estimations from atom probe are typically not precise. 1516 

Interfacial excess: the number of excess atoms of a certain species per unit area of an 1517 

interface. 1518 

Round robin experiments: 1519 

Rayleigh criterion: shortest distance below which the diffraction-limited image of two point-1520 

sources can no longer be separated. 1521 

  1522 

 1523 

  1524 
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 2739 

ToC 2740 

This Primer on atom probe tomography introduces the fundamentals of the technique and its experimental 2741 

setup, describes recent developments in specimen preparation, highlights aspects of data reconstruction and 2742 

analysis, and showcases various applications of atom probe tomography in the materials sciences, geosciences 2743 

and biological sciences.  2744 
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