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Abstract—We summarize a few key spectrum sensing mea-
surement challenges and recent advances. Laboratory tests of
sensing are complicated by their inseparable and often imbedded
role in modern hardware. Results are difficult to calibrate
because physical parameters are often specified with ad-hoc or
unclear definitions. The scope of testing is increased dramatically
by sensors that demand more complex signal classification in
addition to binary occupancy detection. Tests of spectrum sharing
are encumbered even further by a lack of accepted, testable
parameters for assessing the contribution of spectrum sensing to
spectrum sharing between systems. The measurement needs and
approaches we discuss here cross the domains of guided-wave
and radiated physical measurements, network measurements,
and commercial and government spectrum use.

I. INTRODUCTION

Spectrum sensing is one of the feedback mechanisms used
to arbitrate channel access for radio media shared by multiple
users or technologies. It is the real-time in-situ detection or
classification of radiated transmissions from other users, as
illustrated in Fig. 1. Transmitting devices, in turn, use this
sensing information to make dynamic transmission decisions
that support coexistence in the channel.

Sensing may also be used in conjunction with an access
database, which authorizes only transmissions in locations,
times, or frequencies with low risk of interference to incum-
bent users. Television transmissions, for example, are pro-
tected from transmissions in the whitespace with geographic
databasing. While most coexistence in the spectrum commons
at 2.4 GHz, 5 GHz, and 6 GHz is based on sensing, as in
Fig. 2(a), databases are required by national regulators in some
frequencies. The citizens broadband radio service (CBRS), in
contrast, depends on centrally coordinated spectrum access
to protect incumbent users, which are mostly military naval
radars. Transmit grants are awarded to users Fig. 2(b) with
a centralized decision and databasing system that is informed
by a distributed network of sensors. A more detailed survey
of these and other schemes was published recently in [1].

Measurements of spectrum sensors and sensing environ-
ments support system-level specification, design, tuning, and
final validation. Spectrum sharing feasibility studies require
occupancy measurement campaigns [2]. Algorithm design
for detection and classification of incumbent transmissions
requires signal parameters or training waveforms from real-
world radio environments, which are measurable. Network
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Fig. 1. Spectrum sensing nodes detect channel availability based on the
presence (or more detailed classification features) of other users.
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Fig. 2. Occupancy status based on incident radio transmissions (solid
blue arrows) are detected by sensing nodes. These outputs (dotted lines)
serve as feedback for dynamic spectrum access decisions in real-time. In
unlicensed spectrum commons (a), each spectrum user is responsible for
this sensing before transmission. Centrally-coordinated access in CBRS (b)
depends instead on a distributed sensor network to protect incumbents.

protocols may be co-optimized with sensing capability to
maximize the time available for transmission, minimizing
unnecessary sensing time. Operators of decentralized networks
need field tests to troubleshoot interference. After deployment,
stakeholders in shared spectrum allocations need defensible
physical measurements to advocate for their coexistence inter-
ests to standards bodies and regulators.

We begin our survey by discussing the key measurements
and experiments needed to support spectrum sensing, and
challenges in making these generally applicable. Then, we
consider two application examples: the uncoordinated spec-
trum commons near 2.4 GHz, 5 GHz, and soon 6 GHz, and
the coordinated and tiered CBRS near 3.5 GHz in the United
States. These complementary sharing schemes demonstrate
test cases for more general test and measurement needs.

II. METROLOGY FOR SENSOR PERFORMANCE

The purpose of this field is to connect sensing performance
parameters to “ground truth” physical conditions that are
traceable to standards in national metrology institutes. First,
we summarize some operation and performance parameters for
both binary detection and signal classification sensing. Then,
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Fig. 3. ROC curves shown for a hypothetical sensor. Each represents the
false alarm and missed detection tradeoff for a specific combination of sensing
algorithm, hardware impairments, and radio environment.

we consider the physical measurements needed to characterize
this performance, and propose a few key research areas that
could lead to sensor traceability.

A. Binary Detection Performance

Binary detection deals with an “on/off” status of a signal
of interest (SOI) on the channel being sensed. This limits it
to relatively simple sharing applications. This approach has
been popular for uncoordinated channel access systems such as
wireless local area network (WLAN) and LTE-LAA systems,
and in cognitive radio applications.

There are many popular methods for binary detection,
such as energy detection (ED), entropy detection, covariance
matrix-based detection, eigenvalue-based detection, and gen-
eralized likelihood ratio tests [3], [4]. Each detector’s perfor-
mance is concerned by two types of errors: missed detection
(i.e., false negative) and false alarm (i.e., false positive).
Selecting thresholds in these algorithms configures tradeoffs
between these errors.

The ED detector, which is the most widely used, indicates
the presence of SOIs when averaged waveform energy exceeds
a minimum threshold. Detection sensitivity can be improved
by increasing the observation window time. But it may expe-
rience a limit known as the “SNR wall,” which is caused by
a bounded noise uncertainty variance [3]. Missed detections
occur frequently if SOI power falls below the threshold; false
alarms result from other undesired signals.

A popular approach to evaluating binary detection perfor-
mance is the use of receiver operating characteristic (ROC)
curves. The idea is to illustrate tradeoffs between the compet-
ing objectives of minimizing both missed detections and false
alarms [5], as shown in Fig. 3, swept along a range of tuning
parameters. As an example, for ED detectors, it is common
that the ED energy threshold is this tuning parameter. Often,
as shown here, several curves are compared on the same plot,
in order to compare different combinations of algorithms and
signal impairments.

The metrology approach to producing trustworthy ROC
curves from experimental data requires propagation of mea-
surement uncertainties from physical parameters into the ROC
domain. Uncertainties around the curve produce an ROC
region, which has been proposed in geo-sensing applications
[6]. The area enclosed by the ROC region may in many cases

be a small fraction of the total probability space. Yet, the
interval may still be significant — particularly in applications
with strict incumbent protection requirements, for which the
probability of missed detection must be very close to 0.

B. Classification Performance

More complex spectrum sharing applications involve mul-
tiple SOIs from users of more than one system and radio
access technology (RAT), and mixed across time, frequency,
space, and coding. This requires classification of these fea-
tures in received signals, and details such as the number of
carriers, and the modulation scheme, among other properties.
The information can then be used to help map the radio
environment and to properly schedule network transmission.
To achieve this, multiple-signal separation and classification
are required. Signal separation can utilize signal processing
in spatial and code domains, such as multiple-input multiple-
output (MIMO), beamforming, and spreading codes. After
signals are separated, feature-based [7], likelihood ratio-based
[8], or deep learning based [9] methods can be used to identify
the RAT or modulation format of each SOI.

Feature-based classification assigns properties that may lie
in time, frequency, space and code domains. For example,
spatial feature patterns include antenna array response, MIMO,
beamforming, and direction of arrival. Code features include
frequency- and time-domain spread codes, and preamble and
pilot patterns in orthogonal or non-orthogonal multicarrier
multiple access modulation schemes. Cyclostationary signal
processing is a common way to extract and identify these
signal features.

An ROC curve could be plotted for each of the classifier’s
SOIs. It is common to summarize this information instead,
with a confusion matrix, as in e.g., [10]. Each row and column
of this matrix represents one of the N SOIs supported by the
classifier, and takes the form


SOI1 SOI2 ··· SOIN

SOI1 P1,1 P1,2 · · · P1,N

SOI2 P2,1 P2,2 · · · P2,N

...
...

...
. . .

SOIN PN,1 PN,2 PN,N

.
Each Pk,l represents the probability that a classifier outputs
SOIl given an actual input of SOIk. Thus, each 1 − Pk,k

is the missed detection probability for SOIk, while for each
k 6= l, Pk,l is a conditional probability of false alarm. The
corresponding (unrealizable) performance ideal for a classifier
is therefore described by a confusion matrix equal to the
identity matrix IN .

Each (k, l)th entry in the confusion matrix can be regarded
as an ROC curve that has been simplified to a single point
by fixing tuning parameters to constants. The number of
measurements must therefore scale up to accommodate the
N×N matrix entries comprising Pk,l, instead of the 2 required
for an ROC curve.
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C. Physical Parameters
Laboratory measurements of ROC or sensitivity must sam-

ple across a large space of input conditions (such as in
Fig. 3), and connect ROC curves and confusion matrices
to traceable physical quantities and fundamental SI units.
The measurement values can also be provided with estimated
uncertainties in order to propagate statistical errors to high-
level network parameters like latency and throughput.

1) SI-traceable noise measurement: Basic power quantity
measurements of weak signals, interference, and noise can be
traced to fundamental physical standards for noise standards
through calibration. This process, in turn, can be traced further
to the Kelvin, which is one of the seven fundamental units.

Spectrum regulators have assigned many spectrum alloca-
tions with bandwidths on the order of only a few percent,
so noise calibrations must be performed at fine resolution.
Today, however, noise calibrations are limited to a small
handful of frequency points, thanks to unwieldy analog filters
in the legacy equipment. To address this problem, a digital
radiometer is under development that can provide noise or
spectrum power measurements traceable to NIST thermal
noise standards [11]. Noise diodes can then be calibrated as
transfer standards at fine frequency resolution to further extend
traceability to deployable sensors.

The digital radiometer provides the start of a path to-
ward quantifying uncertainties caused by spectral growth
in spectrum sensing measurements. Much of the postulated
traceability path is relatively straightforward, but the practical
implementation needs to be systematic. For example, the
uncertainty propagation needs to be tracked rigorously to
ensure an unbroken traceability path. Making spectrum sensors
become traceable to common fundamental standards helps
to ensure the performant sensor networks, and improves the
integrity of spectrum sharing and coexistence measurements.

2) Sensor receiver measurements: The physical core of a
spectrum sensor node is a receiver. For this purpose, software-
defined radios (SDRs) are popular choices, particularly in
prototyping and research. Their appeal is in their low cost,
flexibility, and reduced need for hardware engineering.

The benefits of SDRs create a temptation to neglect their
physical limitations. Unlike test equipment, for example, sig-
nificant shielding needs to be added to the SDRs, as well as
preselect filters. Without these, bench-top laboratory measure-
ments of ROCs or confusion matrices fail to capture false
positives in the field caused by electromagnetic interference
(EMI) and out-of-band interferers. Some non-idealities can be
corrected by in-situ corrections with digital signal processing,
although calibration measurements would be required. New
"blind" techniques can perform noise figure measurements
even if a sensor provides only processed or non-physical data
[12].

3) Radiated sensing measurements: These receive less at-
tention, but the knowledge of sensor antenna pattern and
directivity can further give insights into absolute gain levels
and orientation dependence for link-layer analysis. Wireless
standards have quietly (and with no clear definition) started

to characterize incident field strength in terms of the power
response of an isotropic probe antenna. We proposed a more
complete definition [13] for this parameter, which refer to as
equivalent isotropic incident power (EIIP). Tests for sensor
response to EIIP require a calibrated transmit antenna and
calibrated levels of transmit power. These tests are especially
necessary when antennas are integrated into the sensor and
inseparable from the receiver. Calibration techniques and other
test methods are so far not standardized, and performed ad-hoc
according to the judgment of the tester.

4) Ensemble measurement requirements: Together, the
measurements require a plethora of measurement abilities;
scattering parameter measurement, electronic noise measure-
ment, power, and antenna pattern and gain, among others.
Further, the hardware reconfigurability of SDR-based sensors
adds the complexity through a potentially large parameter
space of device configurations. For example, automatic gain
control can significantly impact the characteristics of the
receiver. Calibration challenges for the SDRs scale up with
the number of software-configurable radio parameters in the
sensor.

III. CHARACTERIZATION OF EMISSIONS

A key challenge in developing spectrum sensing algorithms
is characterizing emissions in the band of interest. Although
it is possible to carry out early-stage algorithm development
with simulated data, there are often many aspects of real-world
systems that are not easy to model, e.g., out-of-band emissions
from real radio frequency (RF) hardware, complex power
control and scheduling dynamics, and wireless propagation
under realistic conditions.

Empirical characterizations of device emissions can be
done either with field or laboratory-based measurements. Field
measurements are particularly well suited to capturing realistic
variations in aggregate emissions or propagation conditions.
However, field measurement campaigns generally suffer from
the drawbacks associated with passive observational studies,
e.g., uncontrolled emission prevalence, uncontrolled emitter
settings, and unknown ground truth information. These draw-
backs limit the generalizability of conclusions from field
studies. Furthermore, due to the significant costs associated
with calibrated RF measurement in the field, many field mea-
surement campaigns instead rely on device-reported data. The
accuracy of device-reported data is generally unknown since
almost all commercial emitters are uncalibrated. Thus, when
planning a field-based emissions measurement, the limitations
of observational studies and the required level of measurement
accuracy should be considered.

Although it is difficult for laboratory measurements to fully
reflect realistic variations in field deployments, and it can
be challenging to set-up well-controlled test automation and
data collection, laboratory-based emission characterizations
have several advantages compared to field observations. First,
equipment calibrations tend to more easily yield quantifi-
able uncertainties in laboratory settings. Second, carefully
controlled laboratory conditions and settings help to enable
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rigorous statistical inference (i.e., the cause of an observed
effect can be determined). Third, application of principles of
statistical experimental design [14] helps to test a wider range
of conditions more quickly compared to field work. Because
modern communication systems have many potential configu-
ration settings for the user equipment and network (e.g., power
control type, scheduling algorithm), and because there are a
wide range of relevant use-cases (e.g., due to different network
loading and propagation environments), there are thousands
of potential scenarios. One way to address the challenge of a
large number of potential settings is through factor screening
experimental designs, e.g., the long-term evolution (LTE)
uplink emissions factor screening study in [15].

IV. APPLICATIONS IN UNCOORDINATED SPECTRUM
SENSING FOR UNLICENSED BANDS

To start, we focus on large scale WLAN and cellular coex-
istence in the unlicensed bands. Here, distributed sensing al-
gorithms for WLAN include distributed coordination function
(DCF) and enhanced distributed channel access. Meanwhile,
4G LTE license-assisted access (LAA) and 5G new radio
unlicensed employ listen before talk (LBT) algorithms. All
of these schemes rely heavily on physical channel sensing,
such as energy detection and feature detection.

In this domain, sensing follows a process like that of
Fig. 2(a) to implement opportunistic transmission using a con-
tention backoff mechanism. In carrier-sense multiple access
schemes with collision avoidance, the sensing performed by
each transmitter is known as clear-channel assessment. If this
indicates that the channel has been available for a protocol-
specified delay, the user may transmit in the channel for a
duration specified by the protocol. Thus, sensing performance
in unlicensed bands relates closely to network performance.

Typically, DCF and LBT schemes try to minimize the
chance of transmission collisions by imposing a reasonably
accurate channel sensing. Yet, when cellular and WLAN
share channels, the channel sensing performance may not
map directly to the network characteristics like sum through-
put. Heavy frequency re-use in multi-cell multi-tier access
scenarios may impose tradeoffs between sensing accuracy
and interference tolerance. Over-sensitivity to SOIs blocks
transmission opportunities in both cellular small cell and
WLAN systems without any interference benefit. Tolerating a
moderate collision rate instead can increase the transmission
opportunity of nodes which are far apart, and in turn improve
the network throughput. Recently, [16] studied this problem
in a multi-cell two-tier RAT network. MIMO transmissions
provide benefit of enhanced throughput and more robustness
against interference. Design and optimization of spectrum
sensing schemes for MIMO multi-cell coexistence scenarios
deserve a thorough investigation in the future work.

The close connection between sensing and network per-
formance suggests that careful testing of sensing is an op-
portunity to help ensure robust network performance. Yet,
sensing conformance tests are largely neglected in standards.
Recent WLAN protocols [17] specify energy detection with a

threshold of -62 dBm/20 MHz (defined relative to receiver sen-
sitivity), yet there is no conformance test. Sensing performance
measurements are thus only encapsulated in higher-level tests,
e.g., for coexistence. Cellular standards [18], meanwhile, pro-
vide only a brief 4-line outline of a conformance test for a
missed detection rate below 10% at -72 dBm/10 MHz.

V. APPLICATIONS IN COORDINATED SPECTRUM SENSING
FOR CBRS

Spectrum sharing in CBRS is designed to protect incumbent
users, who operate ship-borne radar, from entrant users, who
generally operate wireless networks. The entrants, known as
CBRS devices (CBSDs), comprise two tiers of users: licensed
priority access users, and general authorized access users who
must vacate spectrum for either incumbent or priority access
usage. Channel access for CBSDs in coastal areas is arbitrated
by geographical area with a database-driven spectrum access
system (SAS). Access decisions, in turn, are driven by real-
time incumbent channel occupancy readings collected by an
environmental sensing capability (ESC) network.

The design and deployment of an ESC network present
competing performance concerns. Most important is to main-
tain a low false-negative rate to protect incumbents from
interference. To support CBSDs, an ESC can maximize chan-
nel availability by minimizing false positives. Careful binary
detector design can help to reduce both, but at the limit of
detector design performance, tradeoffs between rates of false
negatives and false positives are unavoidable.

To mitigate self-interference between the deployed CBSDs
and ESC nodes, the geographic density of CBSDs has been
limited [19]. The SAS must ensure that the aggregate mean
interference level from all CBSDs in the neighborhood (a
40 km or 80 km radius) of each ESC node does not exceed
-109 dBm/MHz. This is important enough that SAS must
account for interference impacts on each ESC node when
granting access to CBSDs.

Physical measurements can support the design, optimiza-
tion, and validation of an ESC network. Measured incum-
bent and CBSD signal parameters are needed to design and
tune sensor nodes to minimize the false positive rate at an
acceptably small false negative rate [20]. This has led to
measurements of spectrum occupancy and incumbent wave-
form characteristics, e.g., [21]–[23]. Spectrum regulation and
network optimization require data on each node’s missed-
detection and false-alarm rates. The first laboratory tests for
false negative rates for incumbent protection tests check for a
99% detection rate (a 1% false-negative rate) for incumbent
activity at sensitivity -89 dBm/MHz. Industry standards [24]
have tentatively adopted tests proposed by regulators [25].

Tests proposed so far do not capture false positives in the
ESC. Causes include in-band emissions from LTE networks
[10], which may be mitigated by ESC detector [20] and an-
tenna design, as well as out-of-band emissions from adjacent-
band radars, e.g., [22], [23], [26]. Another possibility, false
positives triggered by commercial weather radar, was studied
in [27]. Mitigation with RF filters in these legacy radars may
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be challenging to implement, because of the burden of perfor-
mance verification. Another ongoing barrier to detecting these
incumbent systems is the scant public waveform parameters
that are available due to their military use, especially for
classified adjacent-band systems.

Infrastructure for CBRS is early in deployment, so large-
scale field validation measurements of ESC sensors, sensor
networks, incumbent false-positive or false-negative detec-
tions, or overall CBRS interference protection have not yet
been performed. Measurements will require careful data col-
lection with the ability to separate CBSDs and incumbent
waveforms.

VI. CONCLUSION

Many challenges remain to be addressed to continue im-
proving the dynamism of access for more efficient spectrum
use. We have considered CBRS and spectrum commons ap-
plications here, but other surveys such as [28] have pointed
to this problem elsewhere as well. Coexistence performance
testing will therefore only become more challenging.

The application-specific challenges that we presented here
suggest that unresolved problems in measurement approaches
are an impediment to their utility in spectrum sensing opera-
tion. Confusion matrices and ROC curves are taken to sum-
marize detection performance. Even for these simple summary
parameters, there are no consensus measurement methods to
ground simulated parameters in fundamental physical metrol-
ogy. While these parameters have clear intuitive meaning,
their applicability to system modeling is unclear. Spectrum
sensing in the spectrum commons (Section IV) and centrally
coordinated sharing (Section V) both involve complex mutual
interactions between spectrum users. Sensor measurements
that are straightforward with coaxial interconnects can become
extremely difficult when sensing and transmission are pack-
aged together into a wireless networking chip, as is normal
in mobile devices. Is enough information still accessible for
measurements-based “ground-up” models of spectrum sharing
performance models, or will data-driven models of high-level
network performance marginalize physical measurements?

The large number of combinations of different input vari-
ables in a measurement can easily result in an untestably
large number of possible test conditions. These could include
many combinations of a receiver’s selectivity in time, space,
frequency, and code, different channel propagation and noise
characteristics including correlations between communication
and sensing channels, and a protocol parameters for each user.
A small, tractable subset of this parameter space needs to
be identified in order to make measurements tractable. Can a
general procedure be defined to help downselect test conditions
with the support of system and coexistence models?
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