
NISTIR 8358

Deconstructing UML, Part 1: Modeling
Classes with Categories

Spencer Breiner
Sarala Padi

Eswaran Subrahmanian
Ram D. Sriram

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8358

NISTIR 8358

Deconstructing UML, Part 1: Modeling
Classes with Categories

Spencer Breiner
Sarala Padi

Eswaran Subrahmanian
Ram D. Sriram

Software and Systems Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8358

May 2021

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce

for Standards and Technology & Director, National Institute of Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8358
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8358, 43 pages (May 2021)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8358

Abstract

This is the first series of papers critiquing the Unified Modeling Language (UML) and
proposing an alternative modeling language based on a branch of mathematics called cate-
gory theory (CT). We argue that modeling in CT provides a richer and more precise formal
structure than UML, while still supporting many of the intuitive and diagrammatic features
which engineers appreciate. Deep ties connect CT to formal logic, physics, and computer
science, helping to connect our high-level models to simulation and implementation. In this
paper, we focus on modeling UML’s structural component, as exemplified by the class dia-
gram using CT models. To do this, first, we introduce CT and walk through the constructs
of the class diagram one by one. Later, we show how UML class models are implemented
through standard CT constructions. As we do, we show that some UML constructs are re-
dundant while others smuggle in assumptions that should be made explicit. Thus, we argue
that the use of CT in information modeling could make our models less ambiguous, more
precise, and more formal.

Key words

Unified Modeling Language, Category Theory, Modeling the Semantics of UML, Consis-
tent Model Generation

1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Table of Contents
1 Introduction 4
2 A critique of the Unified Modeling Language (UML) 6
3 Category Theory 7

3.1 History 8
3.2 Abstract definitions 9

4 From UML classes to objects and arrows 9
4.1 Classes, attributes and operations 10
4.2 State 14

5 Modeling UML Associations with Arrow Diagrams 17
5.1 Association 18
5.2 Generalization and monics arrows 23
5.3 Semantics with structures 25

6 Other class diagram relationships 28
6.1 Aggregation & Composition 28
6.2 Dependency 31
6.3 Navigation 33

7 Comparing models 34
8 Conclusion 36
9 Acknowledgements 38
References 38

List of Tables
Table 1 CT interpretations for different types of UML generalization sets. 27

List of Figures
Fig. 1 UML class diagram for analyzing the relation between a Customer and an Order [1] 10
Fig. 2 A (stateless) UML class and the corresponding CT model. 13
Fig. 3 A (stateful) UML class and the corresponding CT model. 16
Fig. 4 Two associations between classes in UML 18
Fig. 5 A translation from UML associations with multiplicity into CT spans. 21
Fig. 6 A generalization relation between two UML classes 23
Fig. 7 The product, coproduct and pushout constructions. 26
Fig. 8 Example aggregation and composition associations in UML [2]. 28
Fig. 9 Multiplicity constraints as dependent arrows. 30
Fig. 10 Dependency relation in UML [3] 31
Fig. 11 Navigation relations in UML [4]. 33

2

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Fig. 12 An example UML class diagram [1] and its translation into CT. Most attributes and
methods have been suppressed to avoid clutter. 35

Fig. 13 Defining methods via composition of arrows. 37

3

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

1. Introduction

A model is an analogy between a system of interest and a given semantic context, which we
might call a modeling language, broadly construed. Such contexts might include compu-
tational languages (simulation), numerical languages (statistical model) or physical “lan-
guages” (scale models). Any semantic context formalizes certain features of interests while
abstracting away others, so the quality of a model must be judged against its intended pur-
pose.

Modeling is a fundamental activity in engineering and design, allowing us to formalize
the critical aspects of a system or process of interest, while simplifying and abstracting
away details which are irrelevant to the purpose at hand. Such a model provides a lens on
the world, appropriate for asking certain questions and inappropriate for others [5, 6].

Modeling thereby supports a separation of concerns, allowing for different structures
and languages to support different phases of modeling. For example, we might model the
same system component using dynamical systems to assess system behavior under typical
circumstances, but use a fault tree analysis to diagnose errors. All engineering models are
circumscribed by their (sometimes implicit) assumptions and abstractions, and no model is
a complete representation of the world [7–9].

What any given model may lack details and nuance, it should make up for in precision
and formality. The explicit conceptual representation of a model may provide many ser-
vices, depending on one’s goals [10, 11]: an abstract representation of the system of interest
(description), a common vocabulary for collaboration and integration (communication), a
pathway to implement the system (planning), as well as control and/or simulation of the
system (management, analysis).

Though a modeling language may provide semantics for a particular system of interest,
we may also ask about the semantics of a modeling language. For example, we may give
semantics for a system component by drawing a circuit diagram which implements its
function; at the same time, we can use Kirchhoff’s laws to translate that circuit diagram
into a set of algebraic equations. The former provides a specific semantic realization for a
given system; the latter provides a general method for translating semantics in one context
(circuit diagrams) into another (algebra).

Moreover, both individual models and modeling languages may support several dif-
ferent (but often related) semantic interpretations. Kirchoff’s laws, mentioned above, are
sufficient to steady states, but more complicated semantics in differential equations are
required to studying dynamical aspects of the circuit.

The semantics for a language allow its models to interact with others in a broader con-
text: the equations derived from a circuit diagram can be compared with other models (e.g.,
heat) which are inaccessible from the circuit perspective alone.

In this way, a modeling language provides an intermediate representation between a
systemic, high-level representation (function) and generic, low-level representation (alge-
braic equation). Whenever we must compare or compose models expressed in different
languages, we need a common semantics to compare them. Languages which lack seman-

4

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

tics may also impede collaboration, as there is no formal arbiter of how one should interpret
the constructs of the language. In a circuit diagram, we could unambiguously define the
difference between resistors and capacitors based on the different equations they satisfy.

In engineering, models have traditionally taken the form of differential equations, suit-
able for the optimization of localized physical phenomena. However, the rise of computing
and the complex interactions it enables have driven the need for systems modeling at a
higher level of abstraction. Software engineering, because it must often interacts with or
simulates the outside world, has brought the need for semantic information models to the
foreground in nearly all engineering work. In particular, the advent of object-oriented pro-
gramming and the need to model software interactions prior to implementation led to the
development of the Unified Modeling Language (UML) [12].

UML is a de facto standard in large-scale software design and, along with related lan-
guages like the Systems Modeling Language (SysML), is increasingly used in the devel-
opment of more general complex systems. In fact, UML is an aggregation of 14 different
diagrammatic languages, each intended to specify different aspects of a system (e.g., class
relationships vs. usage vs. interaction). Generally speaking, these can be divided into two
main classes: the structural diagrams, providing a static view of the system of interest, and
the behavioral diagrams which describe its dynamical aspects.

One particularly note-worthy feature of UML is that its models are usually specified by
diagrams, rather than explicitly mathematical structures like equations or matrices. This
is important because it matches the intuitive usage of engineers as they work, rather than
forcing them immediately into less familiar mathematical abstractions. However, this move
to diagrams is not without cost: UML (as a whole) lacks formal semantics. This introduces
ambiguities into the language, and hinders interoperability with other modeling languages,
with concrete implementations, and even with different types of diagrams in the same UML
model!

This is the first of a series of papers critiquing UML and related languages, and propos-
ing an alternative based on a branch of mathematics called category theory (CT). As it is
based directly on formal mathematics, we avoid the semantic issues which have troubled
UML. At the same time, CT supports a diagrammatic viewpoint which is quite similar to
existing UML methods. At the same time, deep ties connect CT to many other mathe-
matical disciplines, ranging from probability and physics to logic and computer science.
This can help to explicitly connect our high-level models with low-level simulation and
implementation. Most importantly, CT provides new concepts called functors and natu-
ral transformations, which allow us to link together different categorical models into more
general, aggregated, multi-disciplinary structures.

In this paper we focus on UML’s structural component, and in particular on the class di-
agram, which is used to encode static structural relationships between different components
in a system. To introduce CT, we walk through the existing constructs of the UML class
diagrams. One by one, we will show how these constructs can be implemented through al-
ternative CT constructions. As we do this, we see that some UML constructs are redundant
while others smuggle in assumptions which should be made explicit. Thus we argue that

5

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

the use of CT in information modeling can make our models less ambiguous, more precise
and more formal.

The remainder of the paper is structured as follows. Section 2 provides a high-level
summary and critique of UML as a whole. Section 3 provides some background for both
the history and the formal definitions of category theory. The heart of the paper is in
sections 4 and 5, where we develop some basic elements of CT through their relationship
with UML constructs like classes and associations. Section 6 discusses some other UML
constructs like aggregation and composition, arguing that these are both ambiguous and
unnecessary. Section 7 puts these pieces together to demonstrate the similarity between an
example UML class diagrams and its inferred CT model, and to discuss some advantages
of the CT approach. We close in section 8 with prospects for future work.

2. A critique of the Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general-purpose modeling language based
largely on graphical representation. UML is actually a collection of modeling languages,
consisting of fourteen different diagrams types which can be used to represent different
facets of a system such as component types and relationships, activities, use cases and
interactions. More broadly, UML diagrams are divided into structural diagrams (class,
object), which represent static views of the system, and dynamic diagrams (activity, use
case, timing) which describe processes.

UML developed from object-oriented programming (OOP) practices, and its initial de-
sign and usage was to support software engineering. As a result, many UML concepts
and terms are tied to and derived from computing, where it has been quite successful. As
computing has begun to pervade other areas of engineering, UML (and relatives like the
SysML) has taken on a broader role in general systems modeling. In particular, it is fre-
quently used in the early stages of system development to develop a common understanding
of system design across teams of engineers, developers and other stakeholders.

An additional layer of UML, called the Object Constraint Language (OCL), can be used
to express constraints which are expected to hold between elements of a given diagram, or
between elements of several diagrams. OCL constraints are specified in a declarative lan-
guage with special facilities for defining invariants, pre/post-conditions and other business
logic. This allows augmentation of UML diagrams with logical specifications, though these
do not appear in the diagrams themselves.

Although it is the most widely used language for high-level modeling, a broady survey
of the software industry [13, 14] finds only middling penetration of UML in practice. Fewer
than half of those surveyed use UML, though many had considered and tried it. Among
those that did use it, most saw value only in early stages of a project, to be discarded at
later stages of the project. This runs counter to the hopes of the model-driven engineering
(MDE) community, which hopes to use tools like UML from the early stages of conception
through implementation and testing.

Common drawbacks regarding UML from those surveyed in [13] include an over-focus

6

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

on software development at the expense of other aspects of the system, the difficulty in
learning and applying 14 different types of diagrams (see [15], p. 685) and the problem
of ensuring consistency across the different diagrams which make up a UML model. We
will argue, here and elsewhere, that modeling based on category theory (CT) can address
these concerns without losing valuable aspects of UML like diagrammatic intuition and
separation of concerns.

There have been some post hoc attempts to provide UML with more concrete seman-
tics. The Precise UML (PUML) group was formed in 1997 to provide an open forum for
researchers in industry and academia to develop UML into a precise formal language. The
language has made significant progress on this front, but given that UML was developed
first, and its semantics later on, there is a sense that those semantics are tacked on, rather
than deeply embedded in the modeling language itself.

In particular, Evans, et al. [16] found that certain diagrammatic constructions in UML
lack sufficiently precise semantics, and clarify one such example through an extension
to UML called the OCL. In pursuing this approach further, the authors expect that some
notations may need to be adjusted in order to remove ambiguities. In particular, so dia-
grammatic notations in UML are under-specified and may be interpreted in different ways
by different users.

In another effort at formalization of UML, closer in spirit to our own, Diskin [17, 18]
proposes the use of generalized sketches from category theory to specify mathematical
interpretations for UML diagrams. Although some of our methods depart from Diskin’s
(e.g., our approach to state), this paper and its successors can be seen as an effort to flesh
out Diskin’s proposal with more concrete details, methodology and examples.

We believe that there are fundamental obstacles to the use of UML as a truly unified
modeling language. Its origins in software development embed certain assumptions about
systems that may not hold in more general contexts. Its diagrams arose from a variety
of needs and applications, and were not designed to work together. Its wide variety of
constructions overlap, so that it is often unclear what type of model should be used to
capture a particular observation. The underlying semantics for UML modeling was an
afterthought, defined after the fact and rarely called on in practice.

That said, there are many positive aspects of UML as well, most notably its diagram-
matic flavor. We hope to show that the mathematics of category theory (CT) can address
the above mentioned needs, providing diagrammatic models which are firmly grounded in
contemporary mathematics. This provides a powerful set of generic tools which can be
assembled in many different ways to meet the various needs suggested by the multiplicity
contained in UML. Here we begin with a consideration of the UML class diagram, and its
translation into the language of commutative diagrams.

3. Category Theory

Our goal in this paper is to argue for category theory (CT) as a mathematical foundation for
modeling in general and, more specifically, for modeling the sort of information contained

7

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

in UML class diagrams. CT is a branch of mathematics which studies abstract processes
[19]. Based on a close connection with formal logic [20], we can use CT to build informa-
tion models called ologs which look very similar to UML class diagrams [21].

Unlike UML diagrams these models are mathematically formal and precise. In later
sections we will study the relationships between UML and CT constructions, but for now
we merely introduce some historical background and some standard terminology and defi-
nitions.

3.1 History

In the late 19th and early 20th century, the character of mathematics shifted radically, mov-
ing its focus from classical entities like numbers and shapes to more abstract structures like
graphs and vector spaces. As mathematicians developed these abstract domains, they be-
gan to see deep connections between different areas. CT was developed as a new language
for talking about these sorts of connections.

More specifically, CT was initially developed to understand relationships between alge-
bra and geometry. Though these are very different sorts of mathematical structures, Samuel
Eilenberg and Saunders Mac Lane recognized a common framework for representing both
sides of the relationship: both support a notion of “structure-preserving” functions [22].
For geometries, these are continuous mappings, whereas in algebra they are usually called
homomorphisms (or also linear maps, in the case of vector algebra). The earliest appli-
cations of CT were in algebraic geometry and algebraic topology, two areas which bridge
algebra and geometry, and quickly became an indispensable tool in those fields [23, 24].

Later, in the 1970’s, William Lawvere instigated a new area of study in CT, demonstrat-
ing a deep connection between CT and formal logic. He showed that any logical theory can
be regarded as a category, and that various logical constructions can be interpreted in terms
of categorical structures [25, 26]. It is primarily this connection which we will rely on here.

Following Lawvere’s work, CT began to leak out of pure mathematics and into (more)
applied fields like computer science and theoretical physics. Today, functional program-
ming is regarded as a best practice in the development of large and complex software sys-
tems, and many of the key ideas in functional programming are derived from CT [27]. Its
language and methods are part and parcel of some areas of contemporary computer science,
most notably the theory of programming languages [28].

CT has also revealed new ways of representing and studying physical phenomena, es-
pecially those connected with quantum mechanics. String diagrams, a graphical language
developed by Roger Penrose to simplify tensor calculations [29], provide an intuitive yet
formal syntax for studying quantum processes. This approach has been especially influen-
tial in the area of quantum computing, providing a common base to represent both compu-
tational and quantum-mechanical processes [30].

A more recent development is the fledgling emergence of a field of applied CT, with a
specific focus on concrete, real-world problems. These new approaches, many still un-
der active development, range across a huge swath of application areas including ma-

8

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

chine learning [31, 32], dynamical systems [33, 34], database theory [35–37], neuroscience
[38] and biology [39], chemistry [40], electrical networks [41], knowledge representation
[21, 42] and much more.

As yet, most of this work remains academic mathematics, with a principle interest in
proving theorems. Our hope is that this paper will help to make these ideas more accessible,
pushing these ideas from theory into practice and broadening the field of applied CT from
math and science to include more concrete activities like engineering and design.

3.2 Abstract definitions

A category C is a mathematical structure which encodes processes and the way that they
compose. It consists of two types of entities: objects (X ,Y,Z, . . .) and arrows (f ,g,h, . . .).
Each arrow f has an input object (called its domain) and an output object (codomain)
which we indicate by writing f : X→Y . Intuitively, we think of f as a process which takes
elements of X as inputs and returns elements of Y as outputs.

Objects and arrows determine a directed graph. A category enhances this structure with
a composition operation. If f : X→Y and g : Y → Z, then the output of f matches the input
of g; feeding one into the other, we obtain a new process f .g : X → Z. Together with a few
more technical assumptions (identity arrows, associativity, see [19]), these rules define the
structure of a category.

In understanding the meaning of a category, we frequently rely on a set-theoretic in-
terpretation: objects are sets and arrows are functional (many-one) relations. In this case,
composition is defined by the usual formula (f .g)(x) := g(f (x)). However the CT approach
is quite flexible, also allowing for examples arising in algebra, geometry and probability.
Definitions and theorems expressed in CT can then be specialized to any of these areas.

A good example is the notion of an isomorphism. An arrow f : X →Y is an iso if there
is another arrow g : Y → X such that f .g = idX and g. f = idY . Intuitively, f provides a
dictionary allowing us to translate back and forth between X and Y . This formal definition
simultaneously generalizes many important mathematical definitions including bijective
functions and invertible matrices.

Isomorphism in CT plays a role analogous to equality in classical mathematics; we
write X ∼=Y to indicate that two objects are isomorphic. By explicitly framing equivalence
in terms of invertible mappings rather than simple equations, translation rather than identity,
CT manages to avoid some common pitfalls like name-space collisions between related
model elements. The remainder of the paper will explore these and other CT methods
through their relationship with analogous constructions found in UML class diagrams.

4. From UML classes to objects and arrows

In UML, the class diagram is used to describe the key conceptual entities in a context of
interest, as well as the important relationships between them. The entities themselves are
named, establishing a common terminology, and also described (implicitly) by a collection

9

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

of attributes and operations. The terminology and viewpoint derive from UML’s origins
in modeling for object-oriented programming (OOP), where a class is defined by the at-
tributes and operations that it implements. The principal difference between an attribute
and a operation has to do with the way they are implemented on a computer; an attribute
stores static (though mutable) information while an operation performs calculations and
manipulates data.

In this section, we talk about translating UML classes into the language of objects and
arrows. In general terms, this is easy: classes are objects and attributes/operations are
arrows. For now we will adopt two tenets of functional programming: immutability of
attributes and purity of operations. This simplifies the translation by eliminating issues of
state-dependence; we will relax these assumptions later on, in section 4.2.

4.1 Classes, attributes and operations

A class in UML is a collection of entities which are conceptually related, often because
they share some common properties of state, behavior, etc. The class itself is a collection,
and the individuals that make up the collection are called instances.1 Although a class
represents a collection of individuals, by convention, class names are capitalized singular
nouns. Instances of the class are uncapitalized, and membership in a class is indicated by a
typing assertion like mike:Employee.

Fig. 1. UML class diagram for analyzing the relation between a Customer and an Order [1]

1In OOP (though not in UML) these are usually called “objects”, but we avoid this usage because of the
conflict with CT terminology.

10

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

In CT, objects generalize the role of classes. In particular, when translating from UML
to CT every class will determine a CT object (though not vice versa). In practice, CT ob-
jects are labeled by names just like UML classes, but these names are purely conventional;
they convey an intended interpretation for the model but play no role in its formal specifica-
tion. Other objects in our CT models are not derived from UML classes, such as data types
like String and Integer as well as more complex data structures defined by operators
such as Cartesian products or list constructors.

UML also supports a distinction between abstract and concrete classes; the names of
abstract classes are rendered in italics like the Payment class in figure 1. This distinction
is rooted in the OOP paradigm, where abstract classes have looser implementation require-
ments than ordinary classes. Our translation to CT will erase this distinction, as it pertains
to the specifics of OOP, although we find that in some cases the abstract designation hides
a more structural relationship underneath. We will return to this issue in section 5.2.

Each UML class is further elaborated through a collection of attributes and operations
located inside the two interior boxes of each class, as shown in figure 2. In OOP, attributes
represent stored data while operations describe dynamic computations. Both attribute and
operations return values, and may be assigned an optional type (e.g., Int, String) to
restrict these values. Attribute and operation names are usually written in lower case, to
distinguish them from class names.

More specifically, an attribute describes a characteristic that all members of a class (are
assumed to) share. For example, we might specify that every Employee has a name:String
and a wage:Float. We write mike.wage to refer to the value of the wage attribute for the
particular class instance mike:Employee.

In order to simplify the initial presentation, in this section we will assume that all at-
tributes are immutable, meaning that their values are fixed and do not change over time.
We will lift this restriction in the next subsection, when we talk about state. Each instance
of the class defines a vector of attribute values, and these vectors define a state space for
class instances. Immutability means that the location of an instance in state space does not
vary over time.

In CT, each attribute defines an arrow whose domain is the class itself and whose
codomain is the type of the attribute. This means, first of all, that attribute types like
Int and String must be objects of our CT model. Implicitly, we also include arrows
corresponding to type operations like addition and concatenation, though we do not draw
them in our diagram unless we need to use them. Now we can then think of an attribute
as a functional relationship where the input is the class instance itself and the output is the
attribute value; thus the wage attribute of the Employee class determines an arrow

wage : Employee−→ Float.

If an attribute is untyped, we can associate it with type Any with minimal assumptions.
However, in most cases the type of an attribute is clear from context, and CT encourages
us to make this knowledge explicit.

11

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

An operation represents an action or computation that all instances of a class can per-
form. Such a computation determines a mapping from inputs to outputs, which we repre-
sent as an arrow in a CT model. From the CT perspective, the primary difference between
attributes and operations is that the latter may depend on additional input variables. For
example, we might want to know how many hours an employee worked on a given day,
suggesting a method hoursWorked(day:Date):Float which takes the date of interest as
a parameter.

Notice that the result of this operation depends on both the employee (i.e., the class
instance) and the date, so both should be regarded as inputs to this function. For now
we will assume that operations are pure, meaning that (for a given instance) the operation
will always return the same output when given the same input. Purity of operations is
somewhat analogous to immutability of attributes, and we will lift this restriction when we
discuss stateful classes.

When we represent a operation as an arrow, its codomain (target) is its declared type,
just as for attributes. The difference is that the domain (source) of a operation will involve
both the declaring class (here Employee) and the class of the explicit input (Date). We
can combine the two using the Cartesian product, an operation which generalizes from set
theory to CT. Thus the hoursWorked operation should define an arrow

hoursWorked : Employee×Date−→ Float.

For a operation with multiple arguments, the domain simply includes more factors in the
product.

It is also worth mentioning the CT interpretation of so-called “static” operations in OOP.
A static operation is one which does not depends on the state of the instance that executed
it. In other words, the value of a operation depends only on its explicit input values. Thus,
in the CT translation, this corresponds to an arrow which omits the declaring class from its
arguments.

For example, we might have an operation dailyPayroll(day : Date) : Float which
adds up the pay for all the employees who worked on a given day. Anyone who calculates
the payroll should get the same result; since this value is independent of the invoking
instance, this is a static operation. In CT, it corresponds to an arrow

dailyPayroll : Date−→ Float.

Compare the form of this arrow with that of hoursWorked, above, which is not static.
Another collection of attribute/operation modifiers—public, private, package,

protected—concerns access control. These declare which elements of a system are al-
lowed to see the value of an attribute or invoke a given operation. Just like the distinction
between abstract and concrete classes, access control is an issue that derives directly from
OOP, and in UML it is modeled as an issue of namespace management. We have already
noted that naming conventions are orthogonal to the mathematical structure of our CT mod-
els and, in keeping with our goal of abstracting OOP features away from our models, we

12

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Employee
name:String
wage:Float

hoursWorked(date:Date):Float
calcPaycheck(start:Date,end:Date):Float

static totalPayroll(day:Date):Float

Employee
name //

wage

**

String

Employee×Date
hoursWorked

// Float

Employee×Date×Date
calcPaycheck

;;

Date

dailyPayroll

OO

Fig. 2. A (stateless) UML class and the corresponding CT model.

will omit these modifiers in the present discussion.2

We now have a rubric for translating any immutable, pure class model into a CT model.
An example of such a translation is shown in the Figure 2. We note two specific points.

First, although the CT model seems more complicated than the original UML class, this
is only because the CT model makes some details of the original more explicit. The clearest
example is our insistence that every attribute and operation should provide a return type,
corresponding to the codomain of the associated arrow. Similarly the CT model is explicit
about the way that attributes and operations depend on class instances, which appear as
factors in the domains of their associated arrows. This dependence is obvious in context–
there is no name without an Employee–but in the UML model it is left implicit. The
transparency of the CT model, in turn, helps to formalize the meaning of other constructions
like the static keyword.

Second, CT also flattens out certain distinctions in UML, leading to a simpler meta-
theory. Both attribute and method are collapsed into a single concept: the arrow. Some
distinctions between these concepts are important, such as the potential for auxiliary in-
puts, but these can be modeled using existing, general-purpose constructions like Cartesian
products. Others distinctions, such as the differences in OOP implementation, are too
domain-specific to include at this level of abstraction. The same holds for the distinction
between abstract/concrete classes and access modifiers. Generally speaking, CT simplifies
the theory of our modeling language by encouraging parsimony in theoretical constructs.

2One way to approach this issue in CT is to think of each categorical model as an interface. A private

access modifier splits this single interface in two. First there is the Private interface which contains the
entire model, together with a Public sub-interface which omits (the arrows corresponding to) any private

attributes and operations. The “sub-interface” relationship is mediated by a categorical mapping called a
functor Public→ Private. A careful study of access is beyond the scope of this paper.

13

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

4.2 State

The last section describes a fairly simple translation of UML classes into CT objects and
arrows. However, this simple translation depended on some assumptions–immutability and
purity–which say that an instance’s state and behavior do not change over time. In practice
this is unrealistic; in many cases we expect attribute values to change over time, and for
methods to both depend on and modify these state parameters.

Consider the simple example of a (bank) Account class shown in figure 3. The state
of an account is determined by two quantities: the current balance in the account and the
(possibly smaller) amount which is available for withdrawal, corresponding to the total

and available attributes, respectively.
Whereas an immutable attribute would define an arrow total : Account→ Float,

a mutable attribute will determine a whole family of such functions, indexed by time:
totalt : Account→ Float. Equivalently, we can describe this as a single map total :
Account×Time→ Float.

At this point it is useful to shift focus from individual attributes to a more general notion
of state. Any class determines a state space which is the Cartesian product of the types of
its attributes. We can use projections to recover individual attributes from the larger state
space. In our categorical models, every class Cls will determine two objects: the class
itself Cls and its associated state space ClsState. So, in the two examples we have seen
so far

EmployeeState := String×Float
name //

wage
++

String

Float

AccountState := Float×Float
total //

available
**

Float

Float

Now we can track the state of each instance over time as a single function

state : Account×Time−→ AccountState

For example, we might have two bank accounts A and B, initially containing $500 each
(all of which is available). In sequence, B deposits a $100 check from A, then B withdraws
$50, and finally the deposited check clears. The time-indexed state functions can be tracked
using a table whose entries are points in state space (i.e., containing , as below:

state=(tot.,av.) Initial Deposit Withdrawal Clear
A ($500, $500) ($500, $500) ($500, $500) ($400, $400)
B ($500, $500) ($600, $500) ($550, $450) ($550, $550)

14

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Although each instance defines such a time-indexed function, tracing out its internal state
over time, we cannot use this map as an element in our model: it corresponds to the ground
truth behavior of our instances, and we typically do not have direct access to this informa-
tion.

To see this, it is useful to note that different purposes entail different relationships with
this ground truth mapping. In design we wish to predict and constrain state values; in oper-
ation, we monitor and update them; in documentation, we store, organize and analyze them.
In particular, our UML model does not contain enough information to derive this behavior
over time, especially given its dependence on stochastic processes like bank withdrawals.

Instead of tracking the ground truth, a class description provides a sort of dynamical
model for the class, describing (i) a state space for the class, (ii) initial values for new
instances and (iii) possible state transitions. These correspond to the attributes, default
values and methods of the class, respectively. Given this information and a history of
interactions (i.e., method invocations), we can then derive the state of the system over time.

Transitioning from stateless to stateful classes requires three important modifications to
our CT translation. The first we have already mentioned: we associate each UML class Cls
with two objects, Cls and ClsState. An elements of the first is an instance of the class;
an element of the second is a potential state that an instance may occupy, and is defined by
the attributes declared in the class.

Second, we must define initial conditions for our dynamics. Intuitively, this should be
an arrow

init : Cls−→ ClsState.

There are at least two common ways to provide initialization. One is to assign a default
state like ($0, $0), with the assumption that all new accounts will begin in this state. In
CT, we represent a single element of a set a0 ∈ A as an arrow ã0 : 1−→ A. Here the object
1 := {∗} is a one-element set, and we can recover the original element of A from the arrow
by evaluating ã0(∗) = a0.

The one-element set is called a terminal object and has the following property: for any
set B, there is exactly one function B→ 1 (often denoted by !), sending every element b∈B
to the unique element ∗ ∈ 1. Whereas the original function ã0 : 1→ A represents a constant

element a0 ∈ A, the composite B→ 1 ã0−→ A can be thought of as a constant function,
sending every element b ∈ B to the same place: a0 = ã0(∗). In the present circumstance,
we can use this construction to represent a default initial state as a constant function

Account

!
$$

init // AcctState

1
(̃0,0)

99

.

Alternatively, we can introduce a method to create new instances, often based on the
value of some auxilliary parameters. For example, we might want a method that cre-
ates a new account based on a given deposit amount. This would correspond to an arrow

15

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Account
total:Float=0

available:Float=0
newAccount(amt:Float)
withdraw(amount:Float)
deposit(amount:Float)

1

default

%%

Accountoo
initDeposit

// Float

newAccount

yy

AcctState×Float
deposit

//

withdraw
// AcctState

total //

available
// Float

Fig. 3. A (stateful) UML class and the corresponding CT model.

newAccount : Float→ AccountState. This produces initial states in much the same way
as above, with the additional caveat that each account must be associated with an attribute
capturing this initial investment:

Account

initDeposit &&

init // AcctState

Float
newAccount

77

Either way (and perhaps both), we end up with an initialization arrow from each class into
that class’s state space.

The last significant modification to our simple translation in the last section concerns
the methods of the class, but there are several differences. First, a method will now depend
on an instance’s state rather than the instance itself. In terms of CT, the Cls factor in the
domain of a method is replaced by ClsState.

The second and more substantial change is that methods may now modify the state of an
instance. This has several consequences. For example, consider the deposit(amt:Float)
method shown in figure 3. This takes as arguments a deposit amount and (implicitly)
the current state of the bank account, and returns a new state. Thus we can think of the
ClsState object as both an input and an output to this arrow; the amount becomes an
additional input and, because no value is returned, the state is the only type of output.

For other methods which both modify state and return a value, we would package these
together using Cartesian product, just as for inputs. More formally, an arbitrary method in
Cls of the form method(input : A) : B should be interpreted as an arrow ClsState×A→
ClsState×B. With this, we now have everything we need to convert a stateful UML class
into a explicit CT model. A simple example is given in figure 3.

In addition to describing the components which make up our class, we might also want
to specify some constraints which limit their behavior. If we deposit $50 into an account

16

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

with $125, the resulting total should be $175. Though UML does not include such state-
ments directly, there is the OCL extension which provides a logical syntax for specifying
constraints [43].

In CT, we include these additional semantics using commutative diagrams. Roughly
speaking, each directed path through a diagram defines a function, and a commutative
diagram constraint specifies that each of these definitions result in the same function. For
example, the total balance after a deposit should be the sum of the original balance and the
deposit amount. Sometimes we distinguish commutative diagram constraints from other,
non-commuting diagrams by drawing a X in the diagram.

This constraint is shown as a diagram below. The square on the left is the commuta-
tive diagram defining the constraint; the square on the right traces an instance through the
diagram to reveal the associated equation.

AccountState×Float

X

deposit
//

total×id
��

AccountState

total
��

((tot0,av0), amt)
� //

_

��

(tot1,av1)_

��
Float×Float sum

// Float (tot0, amt)
� // tot0+amt=tot1

Similarly, we could demand that the available balance after a deposit is unchanged.
The constraints associated with withdrawal are a bit more complicated, due to the

if/then nature of the action (i.e., total
?
> amt). This too can be handled as a commutative

diagram, but doing so requires a formal construction called the coproduct which we will
introduce in section 5.3.

The explicit declaration of commutative diagram constraints has a nice side-effect: the
databases that we produce from these models are automatically normalized. Normaliza-
tion is a body of techniques which can be applied to reduce redundancy among values in a
database, simplifying the maintenance of data integrity. For example, if the same semantic
value appears in two different places in a database, changes in one location must be prop-
agated to the other to maintain consistency. Commutative diagrams make these constraints
explicit so that they can be built into database systems directly rather than hand-coded in
an ad hoc fashion. See [44] for more details on categorical databases.

Now that we have a reasonably complete picture of individual UML classes, we are
ready to consider associations, UML relationships which allow us to link different classes
to one another.

5. Modeling UML Associations with Arrow Diagrams

While the class diagram provides important information about the structure of individual
classes through its attributes and methods, the real purpose of a class diagram is to describe
the important relationships between the classes that it describes. In UML, these relation-
ships are called associations. In this section we will see that associations can often be
decomposed into simple diagrams of functional relationships, allowing us to encode these

17

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

associations into the language of objects and arrows. The multiplicities for these associ-
ations can (usually) be reformulated in terms of special arrows called monics and epics,
which generalize set-theoretic injections and surjections. These monic arrows also provide
for an interpretation of a separate category of special UML associations called generaliza-
tions. We also introduce a new CT construction, called the coproduct, which provides a
concise description and additional semantic information associated with many real-world
examples of generalization.

5.1 Association

An association represents a specific relationship which may exist between (the instances
of) two given classes. In a UML class diagram, associations are indicated by line drawn
between the two classes, as shown in figure 4. Customers are associated with the orders
which they place, and students are associated with the courses that they study. Often, the
ends of an association will include decorations which specify numeric constraints between
related members; the example in figure 4 indicates that a customer may place any number
of orders (including zero) and that every order is placed by exactly one customer.3 We
may optionally assign names to an association. These names are directional, and may go
in either direction or both: the same information is encoded in the relationships “Student a
studies course b” and “course b enrolls student a”.

Customer Order1 0..∗

Student Coursestudies →

Fig. 4. Two associations between classes in UML

Arrows in CT represent functional (many-one) relationships, whereas associations in
UML represent arbitrary (many-many) relationships, so the latter would seem to be more
expressive. This is true if we limit ourselves to a single arrow, but pairs of arrows can be
used to represent arbitrary relationships (and more). Understanding this encoding is our
goal for this section.

Mathematically speaking, a relationship between two sets A and B can be encoded by
a subset of the Cartesian product R ⊆ A×B. If a is related to b (under the given relation),
then (a,b) ∈ R; otherwise, not. If we restrict the product projections to R, we obtain a pair

3In fact, UML attributes may also be assigned multiplicities, and these may be handled using the same
methods discussed here for associations.

18

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

of arrows as shown below.
R

p

��

q

��

A B

In CT, a diagram of this shape is called a span, R is its vertex, and p and q are its legs. This
allows us to encode arbitrary relations into objects and arrows. This procedure of adding
a new object corresponding to the relation is sometimes called reification; in UML we can
mimic this approach using association classes, which let us attach attributes and operations
to elements of an association.

To understand this encoding, it is helpful to first go in the opposite direction: what
would an arrow look like in UML? A function f : A→B represents some sort of relationship
between A and B, so we would expect to represent it as an association between the classes
A and B. The question then becomes, how can we specify that an association is functional?

Recall that a function f : A→ B is a mapping that associates every element a ∈ A with
a unique element b = f (a) ∈ B. We have already seen this pattern above, when every
order was associated with exactly one customer; generalizing from that specific case, we
can always indicate functionality (from A to B) by decorating the B-end of the association
with the number 1. Alternatively, this means that we can represent the association between
orders and customers as an arrow

Order−→ Customer.

Note the reversed direction.
Once we have recognized the above relationship between numerical decorations and

functionality, it is natural to ask what the other decorations might indicate. Clearly, if both
A and B are decorated with a 1, as in the first row of figure 5, then the relationship is a
function in either direction. This is a very strong condition, and is in fact equivalent to the
categorical concept of isomorphism (iso arrow) which we introduced at the end of section
3.

Diagrammatically, we indicate that an arrow is iso by decorating it with a tilde, as in
i : A ∼−→ B. Unlike other arrows, there is a symmetry between isos and their inverses, and
we often emphasize this symmetry by writing A∼= B, rather than specifying a direction for
the arrow. As the notation indicates, isomorphism in CT plays a similar role to equality in
more traditional mathematics.

When we decorate the A-end of a functional association with the numbers 0..∗, this
places no additional restrictions on the relationship: a customer may have any number of
orders. By contrast, if we decorate it with the numbers 1..∗, this places a restriction on the
association: every b ∈ B must be the image of at least one a ∈ A. This is the definition of a
surjective or onto function in set theory.

In CT, a similar role is played by the notion of an epic arrow (epi), indicated notation-
ally by a double arrowhead A� B. The formal definition of such a map is just beyond the
scope of this paper, but it is important to note that this concept is derived from the language

19

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

of objects and arrows, rather than representing a new construction. This is important se-
mantically speaking because new concepts must be supplied with interpretations, whereas
the interpretation of a derived concept comes for free with its definition. Regardless, the
intuition quite natural: an epi is an arrow whose image covers the entire codomain.

Alternatively, we could instead decorate the A-end of a functional association with the
numbers 0..1; every b is associated with no more than one a. This institutes very different
restriction on the mapping: distinct a’s map to distinct b’s. This corresponds to the set-
theoretic notion of an injective function, which generalizes in CT to a monic arrow. Monics
are usually indicated by an arrow with a tail, as in A� B or A ↪→ B; monics, like epics, are
a derived concept.

Now we would like to use these concepts to model non-functional relationships. As
mentioned above, the key is to represent the association as a span, a pair of arrows with a
common domain. An element of the common domain is just a pair of related elements; we
think of these as elements of the association.

For example, we could model the association from the second line of figure 4 by intro-
ducing a new object Enrollment together with a pair of arrows

Enrollment
student

vv

course

((

Student Course.

What about its multiplicities? A span is functional just in case one of its legs is an iso-
morphism; the span itself is an isomorphism if both legs are. Since a student may enroll
in several courses, and a course enrolls many students, we do not expect either direction of
this association to be functional. In other words, neither leg of this span is an iso.

We may also ask whether the legs are monic or epic. To say that the projection from
Enrollment to Student was monic would mean that every student was enrolled in at most
one course. Similarly, the course projection would be monic if each course could enroll at
most one student; both of these are clearly unreasonable restrictions.

On the other hand, it might make sense to require that every course should have at
least one student. This corresponds to a model in which the projection to Course is epic.
Similarly, the student projection is epic if every student must be enrolled in at least one
course.

Now we are ready to identify a general procedure for transforming a UML association
into objects and arrows. A table containing these translations is given in figure 5.

First, assign a name to the association and create a new object with that name (R, in
the figure). Also create two projection arrows from the new object into the classes which
participate in the association. Exactly the same procedure can be used to model associations
between three or more classes.

Next, associate each multiplicity decoration with an arrow type. Here the decoration
“1” corresponds to isomorphism, “0..1” to monic, “1..*” to epic and “0..*” to an ordinary
arrow (no constraint). Confusingly, the decoration written on one side of the association

20

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Fig. 5. A translation from UML associations with multiplicity into CT spans.

matches with the arrow pointing in the opposite direction, so that a “1..*” decoration on the
A-end of an association corresponds to an epic arrow R� B. in the span of arrows.4

Finally, if one leg of the resulting span is an isomorphism we may remove that leg, leav-
ing just one arrow connecting the two classes directly. For the case for the Customer/Order
association, this recovers the same answer that we arrived at above.

4 More generally, UML allows arbitrary numeric upper and lower bounds on associations. Modeling these
requires some additional idea; see Section 6 for details.

21

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

UML
Customer Order

1 0..∗

7→

Generic CT Translation
CustOrder

��

∼
��

Customer Order

7→

Simplified CT Translation
Customer Orderoo

There is one additional point to make regarding the interpretation of UML associations
as categorical spans. Using the Cartesian product, we can encode both legs of a span into a
single arrow:

R
f

��

g

��

A B

becomes R
〈 f ,g〉

// A×B

In CT, we say that f and g are jointly monic if this paired mapping is a monic arrow,
in which case we also say that the span is a relation between A and B. This is a slight
categorical generalization of the usual mathematical definition of a relation as a subset
R⊆ A×B.

An example is helpful to understand the way that spans and relations differ. Consider
the relationship between a family of products and the parts from which they are constructed.
A relation can tell us whether or not product p contains part q; a span can tell us how many
q’s belong to p.

We might call the first relation isPart, while the more general span describes the Role
of various parts. Clearly the relational model can be derived from the span model–q is a
part of p just in case q has at least one role in p–and this relationship is mediated by an epic
arrow from the span to the relation, as in the diagram below:

Role
roleIn

vv

roleOf

((����

Product isPartpartOfoo part // Part

Product×Part

proj1

hh

proj2

66

��

��

Since UML associations are usually assumed to be relational, we should add this re-
striction into our categorical translation. In practice it often turns out that the relational
assumption is not needed explicitly, even though it may be useful for building intuition.

22

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

In that case we can use the less constrained structure of a (not-necessarily-relational)
span to model the association. We lose very little by doing this: a relation is a special kind
of span, and we can add in the relational assumption later if we find that we need it.

5.2 Generalization and monics arrows

The UML class diagram provides a special construction, called generalization, to indicate
that one class A is a subclass of another class B. In other words, B is a generalization of A
if every instance of A is necessarily an instance of B.

Diagrammatically, generalization is indicated by an arrow with a hollow tip, pointing
towards the superclass, as shown in figure 6.

In CT, it is common to model subclass/superclass relationships with monic arrows. This
is the same construction that we met in the previous section in modeling class associations,
hinting at an unnecessary replication of concepts.

In particular, the discussion of the previous section showed that a special class of
associations–those decorated by the multiplicities 1 and 0..1–can be modeled by a single
monic arrow:

CreditAccount Account
0..1 1 becomes CreditAccount // // Account

In words, we might describe the difference between generalization and monic association
as follows:

• With generalization, every CheckingAccount is a Account.

• With a monic association, every CheckingAccount is associated with a unique
Account.

Mathematically speaking, this is the difference between a subset A ⊆ B and an injective
function i : A� B.

From the perspective of CT, though, this is largely a distinction without a difference. If
A ⊆ B, we can define an injective function i(a) = a. Vice versa, the image of an injection
defines a subset i(A)⊆ B and, by injectivity, A∼= i(A). In either case, we get a pointer from
each credit account to a unique bank account, and we can follow this pointer whether or

Fig. 6. A generalization relation between two UML classes

23

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

not the credit account is “really” a bank account or not. CT encourages us not to focus on
what an entity is, and rather what it does as encoded in its relationships with other entities.

There is an important caveat: while there is only one way to have A⊆ B, there may be
different monic arrows m 6= m′ : A� B. This arises, for example, in the case of multiple
inheritance. Consider a diamond in which both B and C generalize A, and D generalizes
both B and C. If generalization is interpreted using subsets this exhibits A as a subset of
D. Using monics, we may have two different embeddings A� B� D and A�C� D.
The first interpretation is more intuitive, but the latter is more flexible, as we can demand
coherence between subclasses using commutative diagram constraints.

There is a large and complex literature concerning subtyping; see [45] for an overview.
In fact, a CT analysis can help to sort out the details of these issues, as in [46]. However,
for us the main point is that most of these issues concern the detailed semantics of vari-
ous programming language constructions, and by interpreting generalization explicitly as a
monic embedding we can sidestep these issues for the most part.

In OOP, one often defines a class A as an extension of another class B. This means that
A inherits the attributes and methods of B, as if we had copied the implementation of B
into that of A. Interpreting generalization with monics, we can see that this inheritance is
nothing more that arrow composition. Indeed, an immutable attribute of B (say, integer-
valued, for concreteness) corresponds to an arrow B→ Int and the associated attribute on
A is the composite A� B→ Int.

Things are not too much trickier in the case of stateful classes. Recall that the state
space of a class is defined as the product of its potential attribute values. Since every
attribute of B is an attribute of A, there will be a projection from the state space of A to that
of B. Flipping this around, we can model generalization in CT as a pair of maps: (i) a monic
arrow between class objects and (ii) an epic arrow (projection) between state objects. Now
A will inherit static attributes and pure methods through composition with the first, while
inheriting state and impure methods through the second.

Before continuing, we will highlight a few points regarding this interpretation. First
and most important is the observation that the generalization constructor in UML is, in
some sense, redundant; essentially the same class relationship can be described in terms of
a special class of decorated associations (i.e., those corresponding to monic arrows).

One might reply where UML introduces the generalization arrow, CT also introduces
a new concept, the monic arrow. However, there is an important difference here. UML
introduces an entirely new constructor, which must be supplied with its own semantics.

On the other hand, CT takes an existing concept, the arrow, and defines a property
(monicity) which an arrow might or might not satisfy. The semantics for these monic
arrows are then completely determined by our semantics for general arrows, simplifying the
interpretation. Even better, because the property which defines monicity is made explicit,
we can use it to make inferences in our model. The formal definition of monicity is outside
the scope of this paper, but see ([19], 3.4) or ([47], 2.1 & 5.1) for an introduction.

24

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

5.3 Semantics with structures

One of the strongest arguments for the use of CT as a modeling language is its extensive
collection of formal construction and properties which can be used to make the language of
objects and arrows more expressive. We have already met a few of these structures in the
preceding sections, most notably the Cartesian product A×B and the monic arrow A� B
(or more precisely, the property of monicity).

Generally speaking, a construction takes some collection of objects and arrows arranged
in a certain way, and uses these to create one or more new entities which reflect some
relationship within the original collection. A property is similar, in that it applies to a
collection of objects and arrows, but it only checks whether a condition holds rather than
producing new entities.

The Cartesian product is a construction: it takes two objects {A,B} and creates a new
object A×B as well as two new arrows (the projections) A← A×B→ B. On the other
hand, an arrow f : A→ B is either a monic (as defined by a certain condition) or not a
monic; no new pieces are added to our model, although the condition itself allows new
inferences in our model.

Another important construction is called the coproduct or disjoint sum.5 Just like the
product, this construction start with two objects A and B and uses them to build a new
object A+B. However, where the product has two projection maps out, the sum has two
injection pointing toward the new object.

The coproduct can be described in terms of its instances: an instance of A+B is either
an instance of A or an instance of B (and not both). This sounds very much like a set-
theoretic union, but there is an important difference: if A and B share elements, these must
be copied and placed once in either sides of the coproduct (i.e., one copy in A and one in
B). This is the disjointness of the sum.

Formally the coproduct, like any CT structure, is defined purely in terms of objects
and arrows. The importance of this fact, as we have already discussed with respect to
monics, is that once we provide semantics for objects and arrows the interpretations of
these constructions are fixed.

Like many CT constructions, the formal definition takes the form of a unique construc-
tion principle:

For any object Z and any two maps f1 : A→ Z and f2 : B→ Z, there exists a
unique map f : A+B→ Z such that f .i1 = f1 and f .i2 = f2.

CT definitions are famously abstract and unintuitive, but we can unwind the definition to
see how it encodes our intuitions about disjoint unions of sets.

First, note that the equation f .i1 = f1 says that the restriction of f to A is f1, and
similarly for f2. Based on this, we can see that the construction principle in the definition
encodes disjointness while the uniqueness principle says that A and B cover the coproduct.

5In this discussion we will assume that our coproducts satisfy a technical condition known as extensivity. See
[48] for more on this condition.

25

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

A A×B
p1oo

p2 // B A+
O

B

A 77
i2 77

Bgg
i1gg

A //
i1 // A+B Boo

i2oo O 77

77

gg

gg

Fig. 7. The product, coproduct and pushout constructions.

For the first point, consider two functions f1 and f2 whose images do not overlap; if A and
B had overlap, then we could not obtain both restrictions simultaneously, contrary to the
existence assumption. On the other hand if there were some x ∈ A+B belonging to neither
A nor B, we could choose different images for this point without changing the restrictions
to A and B, contradicting uniqueness.

In order to model the ordinary set-theoretic union in CT we need a more sophisticated
construction called the pushout and denoted A+

O
B. In this case the construction begins with

additional information: we must explicitly represent the overlap of A and B as a separate
class O, together with two maps A� O� A; these situate O inside A and B. Based on
this data the construction produces one new object and two new injections, just like the
coproduct construction. The difference here is that whereas the coproduct is disjoint, the
pushout overlaps at O.

Now we will compare the CT approach via coproducts and pushouts against a similar
UML construction called a generalization sets. We indicate generalization sets in a diagram
by joining several generalization arrows into a single tree. For comparison, the subclasses
displayed in figure 6 are separate generalizations, whereas the same classes are shown in
figure 1 as a generalization set.

Formally, a generalization set is just what it sounds like: a set of generalizations. In the
two figures just mentioned, there is no difference between the two different representations.
However, we can extend the semantics of a generalization set by decorating it with two
binary tags: complete/incomplete and disjoint/overlapping. The first determines whether
the collection of subclasses covers the full range of the super class, and the second identifies
whether the subclasses may intersect one another. If the tags are omitted, these properties
default to incomplete and overlapping.

In CT, we have already seen that coproducts and pushouts allow us to express disjoint-
ness and overlap. We can combine these with other tools, epics and monics, to express
facts about coverage. This allows us to translate the UML decorations on generalization
sets into different, visually distinct CT models.

Moreover, when we translate into CT we can see that some models are simpler than oth-
ers. In particular, the “incomplete” options is a bit awkward to model: we must introduce
a new “remainder” object R to fill out the rest of the superclass. Similarly, “overlapping”
models are more complicated because they require the explicit representation of an overlap
class.

26

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

Intersection Type
Disjoint Agnostic Overlapping

C
ov

er
in

g
Ty

pe

C
om

pl
et

e

A+B∼=C

C

A
<<

<<

// // A+B

OOOO

B
bb

bb

oooo

A+
O

B∼=C

A
gn

os
tic

A+B�C

C

A
??

??

B
__

__

A+
O

B�C

In
co

m
pl

et
e

A+B+R∼=C
R 6∼= /0

A+R�C� B+R
R 6∼= /0

(
A+

O
B
)
+R∼=C

R 6∼= /0

Table 1. CT interpretations for different types of UML generalization sets.

In fact, this awkwardness arises from these UML decorations have omitted an important
possibility: we may not know whether two classes overlap or cover! CT models easily sup-
port this agnostic point of view, and the resulting models are simpler than those associated
with the UML’s default options. All nine possible models are included in table 1.

We have only scratched the surface of CT constructions here. Other important exam-
ples include equalizers, which encode the extraction of solution sets, and pullbacks, which
model database joins. Just as importantly, these constructions are embedded in a mathe-
matical theory which details their interrelationships. For example, a simple CT lemma says
that the pullback of a monic arrow is again monic; this and other facts allow us to make
automatic inferences about our model based on how it is put together.

There is also a wide literature relating various categorical structures to other areas of
mathematics such as formal logic and the theory of computation. From this we know, for
example, that the expressive capability of CT varies depending on which constructors we
choose to employ. Products allow us to model equality and conjunction (algebraic logic);
image factorization based on epics and monics allows for existential quantification; impli-
cation and universal quantification require more advanced tools like the function spaces we
will meet in the next section. We can keep going... categories known as toposes support
full higher-order logic and type theory.

Thus, not only is CT an extremely expressive modeling language, we can also modu-
late that expressivity based on what features we need to model. This is important because
the expressivity is inversely proportional to analyzability: it is usually easier to verify or
prove statements written in weaker logics. In CT we can match this level to our problem,

27

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

simplifying these analyses. Moreover, more sophisticated CT constructions called adjunc-
tions act as partial dictionaries between different logics, specifying whether and how we
can transport our models from one modeling context to another.

6. Other class diagram relationships

Now we turn to some constructions in the UML class diagram whose semantics are less
clear for one reason or another. Some of these can be supported in CT, though at the
cost of greater complexity. Others, we argue, try to smuggle activity information into
the class diagram which doesn’t really belong there. Further problems arise from UML’s
entanglement with software development, and may not be appropriate in a truly unified
modeling language. Overall, we reason that the added complexity needed to deal with
these constructions is not worth the effort, and they could be removed without a substantial
loss expressive power in describing class relationships, though some elements of these
constructions may be relevant for modeling processes, the topic for our next paper in this
series.

6.1 Aggregation & Composition

Aggregation and composition in UML class diagrams are special types of associations,
indicated by diamond heads as in figure 8:

Composition
{

Aggregation
{

Fig. 8. Example aggregation and composition associations in UML [2].

Both are intended to express some sort of part/whole relation, but composition is in-
trinsic while aggregation is potentially transient. This is often explained by saying that
in aggregation you can remove the whole and still have its parts, whereas in composition
removing the whole also destroys its parts.

These constructions suffer from several of the complaints listed above. The origin of
the distinction is in object-oriented software, where these considerations were important
for memory management. The fact that the difference between the two is described in op-
erational terms (removal) suggests that there is some component of activity being projected
onto the class relationship. Most importantly, it seems that this distinction is context de-
pendent. The relationship between my car and its tires should act like composition when I
am driving, but like aggregation when the car is in the shop. Context sensitivity is another
indication that something beyond class relationships is being expressed here. Given all this,

28

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

we propose giving up on the distinction between these two constructs, at least at the level
of class diagrams.

Nonetheless, aggregation and composition do express an important concept, which we
think of at some times as ownership and at others as internal structure. For example, every
library owns a set of books, while every book contains a set of pages. Structurally, these two
relationships are quite similar, associating an instance of one class with a set of instances
from another. There is a categorical construction called a dependent type6 or a fibration
which expresses a similar idea.

Roughly speaking, a dependent type is a set whose definition involves one or more
(typed) variables. A typical example in mathematics is the vector space Rn, which depends
on a natural-number variable n : N; we can usually think of a dependent type as a family of
sets {Ba}a∈A, where a ∈ A ranges over the indexing variable(s) of the dependent type. The
key observation here is that we can always wrap up a set of sets into a single function, so
that, to a first approximation, a dependent type is nothing more than an arrow “thought of
in reverse”.

Usually we think of a mapping f : B→ A as a map which sends each element b ∈ B to
a unique element a = f (b) ∈ A. However, we can turn this around and think of it as a map
which takes an element a ∈ A and returns a set of elements Ba ⊆ B. Specifically, Ba is the
set of element b ∈ B such that f (b) = a, often called the fiber of B over a. This idea allows
us to encode the examples mentioned above:

Library

owns

%%

Book

contains

&&

belongs to
oo Page

is part of
oo

Set(Books) Set(Pages)

Single maps are sufficient to encode sets of sets, but commutative triangles are required
to express additional relationships between these. For example, a directed graph can be
represented by a pair of objects (nodes and edges) and two arrows (source and target)
mapping edges to nodes. This corresponds to a small category

Edges
s //

t
// Nodes .

Now suppose that we would like to model a company in which each division has a man-
agement structure described by a directed graph, with employees as nodes and supervisory
relations as edges. We can represent this categorically by fibering the graph category over

6This is a different notion of dependency than that found in UML, which we will discuss below.

29

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

the class of divisions:

MgmtRelation

divMgmt
((

sub //

super
// Employee

divEmp
ww

Division

super.divEmp= divMgmt= sub.divEmp

This specifies that each division has, as part of its internal structure, a directed graph
whose nodes are employees and whose edges are management relations. The equations
specify that supervisors and subordinates belong to the same division (ownership), as does
the management relation between them. Notice that this specification already enforces
some of the inferences attributed to composition. If we remove one of these divisions
without changing anything else, we are left in an inconsistent state: the depEmp map is no
longer functional because some employees are missing a division. To recover consistency
we must either remove or redirect them. Which of these is appropriate is a question of
activities rather than class relationships.

We can also use the dependent type construction to model some additional numeric
constraints which we passed over in section 5 (see footnote 4).

Suppose we want to say that every A has exactly two B’s. It follows that B is isomorphic
to a coproduct B∼= A+A, but this requirement alone is not enough: it only says that every A
has two B’s on average. To impose the constraint fiber-by-fiber we note that the coproduct
has a canonical map (the codiagonal) ∇ : A+A→ A, and require the isomorphism com-
mutes over A. The same construction works for other multiplicities and, more generally,
we can model upper or lower bounds rather than exact multiplicities by using monic arrows
rather than isomorphisms, as shown in Figure 9.

In closing we note one further important but subtle point. In the context of sets and
functions, there really is no difference between functions and dependent types. However, in
other semantic contexts, especially those which involve some notions of continuity, the two
context diverge, and dependent types are a more restrictive concept. These restrictions are
usually based on the ability to lift structure in the base (such as parthood or substitutability)
to corresponding relationships in the total space.

Exact Multiplicity Lower Bound Upper Bound
B

p
��

∼
j

A+A

∇��

A

A+A

∇ ��

//

j
// B

p
��

A

B ��

p
��

j
// A+A

∇��

A
p = j.∇ ∇ = j.p p = j.∇

Fig. 9. Multiplicity constraints as dependent arrows.

30

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

In most cases, though, we can simply use this method to embed whole/part relations into
our class diagrams. If we feel that it is useful we can add a special notation for arrows which
express ownership or structure in this way; mathematicians sometimes use a slashed arrow
B //| A to indicate dependent types. Although this construction supports categorical

semantics stronger than simple association, its main benefit here is conceptual: declaring
ownership or internal structure helps us to understand the intention of the model. However,
the distinction is invisible at the level of sets and functions, and so rarely enters directly
into our considerations.

6.2 Dependency

The next diagram construction we consider is UML dependency, which is a different no-
tion than the categorical dependency discussed in the previous section, though there is a
relationship between the two. In UML, dependency is expressed by a dashed arrow like the
one in figure 10.

Fig. 10. Dependency relation in UML [3]

Dependency is another construction which has its roots in software development, where
it is usually interpreted in terms of import statements, allowing one class access to the
methods of another. Officially, the UML construction is more general, applying also to
abstractions such as the relationship between a specification and an implementation. Un-
fortunately, this generality is achieved through weakening the semantics of dependency to
the point that it is little more than an annotation attached to an association.

This means that we won’t lose much if we remove dependency from the language.
Rather than having a special constructor for implementation/abstraction, we can just cre-
ate an ordinary association Implements to capture this relationship. If there are special
features of abstraction and implementation (e.g., validation and verification requirements),
these should be explicitly called out as attributes of the new relation object. Without pro-
viding more meaningful descriptions of these dependencies, the extra diagram component
provides intuition but little more.

As we think through the details of these descriptions, we see that the different rela-
tionships UML bundles together as dependencies may have little in common. Abstraction
relationships are usefully modeled as class associations. On the other hand, usage-based
dependencies like those created by import statements usually have more to do with the
methods of a class than with its instance.

In order this type of dependence through at CT lens we need another construction,
called the exponential. Given two classes X and Y we can consider the set of (computable)

31

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

functions Y → X , a new class denoted XY . When X and Y have n and k elements, respec-
tively, there are nk such functions, justifying the exponential notation.

The most important operation associated with exponentials is called currying. Given a
binary function of X and Y taking values in Z, we can curry to represent this instead as a
unary function of X , taking values in the exponential ZY . Diagrammatically, the two arrows
below encode equivalent information:

X×Y b // Z

X
curry(b)

// ZY

Given the curried arrow, we can recover the original binary function by composing with
the evaluation map ev : ZY ×Y → Z.

For example, suppose that we have a search engine implemented in one class which
scores websites based on a scoring algorithm implemented in another class. Typically,
these two classes cannot interact because they inhabit different scopes; dependency brings
the scoring algorithm into the scope of the search engine.

Suppose, for simplicity, that the search engine only returns the top document for a
query, so that we can represent the algorithm as an arrow search : Query→ Doc. This
relies on a scoring algorithm score : Doc× Query→ N. The search simply applies the
score map to each document in a corpus, sorts the results and returns the top scorer.

In particular, this means that when we change our scoring algorithm, even if the search
code is the same, we will get different search results. This means that the code in search

does not define a function Query→ Doc (in the mathematical sense). Implicitly, it contains
another variable.

It is instructive to think about what would happen if we tried to run the search code
in isolation: the compiler would complain that the score variable is undefined. It is more
accurate to think of search as a binary function, whose (implicit) second variable is of
exponential type:

search : Query×NDoc×Query −→ Doc.

This is usually what we mean when we say that one method depends on another: the
first implicitly employs the the second in the calculation, and this can be made explicit as
an exponential argument. One can easily generalize this to multiple dependencies. With
this we can concretely describe class dependencies: class X depends on class Y if X contain
methods which implicitly refer to function variables which are implemented in Y .

Notice that this necessitates a substantial change in perspective. Whereas we typically
identify a class with its set of instances, dependency associates them with the methods
which they implement. Again, it is not clear that this information belongs in a diagram
of class relations, especially if we are talking about real-world entities rather than object-
oriented programming.

32

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

6.3 Navigation

Navigation is the last decoration which can be attached to an assocation; an arrow head
indicates that one direction of an association is navigable, while an × across the arrow
means that it is not. For example, a customer should be able to see the items on their order,
but we may want to hide information about which customers purchase a particular item.

Fig. 11. Navigation relations in UML [4].

Again, we see operational descriptions for this UML component; navigation specifies
information about user and component interaction, specifically in regards to information
flow. This is undoubtedly important information, but may not be relevant to class relation-
ships. Better to model such issues properly in some sort of activity diagram.

Even though we argue for removing navigation considerations from class diagrams, we
can still gain some insight into the issue by considering the situation from a categorical
perspective. The key fact is that we can always think of an association (i.e., a relation) in
four equivalent ways. Each of these four corresponds to a different notion of information
flow.

Take the association between students and classes in a university. In one direction, we
can map each student to their schedule, a set of classes. Going the other way, we can map
each class to its roster, a set of students. The same information can also be represented as
a subset of pairs satisfying the association, or as a binary truth function. These correspond
to four different (but equivalent) arrows, where Set(X) represents the set of subsets of X .

Student // Set(Class)

Class // Set(Student)

Student×Class // {T,F}

Enrollment // // Student×Class

The key point is that these maps exist for any association; we can’t create or eliminate
the channels by drawing arrowheads and ×’s. The decision on when and whether to grant
access to these channels has more to do with activity than with class relationships, and so
belongs elsewhere.

33

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

7. Comparing models

In the last few sections we have walked through the main constructions in the UML class
diagram, and discussed how these can be interpreted in terms of categorical terms. Now we
will briefly compare our initial example of a UML diagram (figure 1) with the CT model
derived from it. Both models are shown in figure 12.

In this CT diagram we have suppressed all but the most important arrows associated
with attributes and methods; we use unboxed objects to indicate data types. This choice
cuts down on clutter and emphasizes the similarity between the two models. It is a simple
matter to add these arrows in, based on the procedure given in section 4. Alternatively,
these pieces of the model could be included in separate diagrams; a later paper in this series
will discuss the use of CT constructions called colimits to build up aggregate models from
modular pieces. We are also free to use a notation analogous to UML, listing the names
and types of the attributes and methods, so long as we understand that this is nothing more
than a syntactic sugar, which can be unambiguously translated into a diagram of objects
and arrows.

The first thing to notice about these two diagrams is their essential similarity: the two
diagrams have the same basic shape (except for the attributes included in the CT model),
and it is easy to identify a dictionary between the two models. In part, this similarity
is over-stated because all of the associations included in the original model were already
functional; we did not need to create any new vertex objects to mediate these relations.

In fact, the UML model could have been presented differently. It seems reasonable
that different OrderDetails for the same Order will refer to different Items; this means that
OrderDetails is a relation between Order and Item, and could have been omitted in favor
of a direct association. In UML seeing this requires parsing the multiplicity decorations of
both associations, whereas in the CT model it is immediately obvious from the directions
of the two arrows.

Another important observation is that the CT diagram strips out many of the semanti-
cally fuzzy features of the UML diagram. Sometimes these are replaces by analogous CT
features but, critically, all of these CT constructions are defined in terms of simple objects
and arrows, so their interpretation is fixed from the outset.

For example, we have replaced the UML generalization set with a coproduct of classes.
In fact, this is not an accurate translation of the UML diagram; an unlabelled generalization
set is assumed to be overlapping and incomplete. However, our knowledge of the domain
suggests that these three classes should definitely be disjoint and probably exhaustive, sug-
gesting that the diagram’s authors merely forgot to decorate the construction. Based on the
discussion in section 5.3 it would be easy to modify the model based on other choices, or
to leave these decisions unmade for now.

We can also do away with the notion of an abstract class. In our CT model, Payment
is just another class, not fundamentally different from any other. The special feature in CT
which corresponds to its abstract character in UML is that the class can be defined as a
coproduct of other, smaller classes. We suspect that this is a more general fact: abstract

34

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

classes in UML correspond to colimit objects (i.e., coproduct, pushout, etc.) in CT.
The CT model also forces us to be more specific in places. Most of the attributes and

methods listed in the UML diagram are not given types, although in most cases we can infer
the type based on its name. In CT, we have no choice but to make these inferences explicit.
Quantities and amounts are numbers, whereas dates, even if they are given numerically, are
not just numbers.

Forcing this information also helps to remove ambiguity from our models. While most
of the attributes in the original diagram are fairly intuitive, some are not. What does the
Cash attribute of the Cash class mean? If we knew what type of entity it was, this would
help, even though it would not pin down the answer to the question.

Customer Order
orderedBy

oo date // Date

Payment

paysFor

66 66

∼

OrderDetails

detailIn

OOOO

−

orderItem //

quantity

��

Item

shippingWeight

��

Credit + Cash + Check Number Weight
inLbs

∼
Fig. 12. An example UML class diagram [1] and its translation into CT. Most attributes and
methods have been suppressed to avoid clutter.

35

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

On a related note, the use of isomorphism in CT provides a useful method for distin-
guishing between equivalent types. For example, the quantity of an OrderDetail and
the shippingWeight of an Item can both be expressed numerically, but they are not the
same type of numbers: the first is a unitless number, whereas the second is a physical
quantity which does not have a numeric value until we fix a unit of measure.

By representing these as separate objects, we are forced to add in an explicit isomor-
phism which encodes this choice of units. This allows us to assert that some combinations
of numbers make sense while others do not. We cannot add a unitless number to a weight,
just as we cannot add a length to a time interval. On the other hand, it does make sense to
scale (i.e., multiply) a physical quantity by a unitless number, a fact which we make use of
below.

Although we have not pursued the issue here, we can also use CT in order to spec-
ify the meaning of certain attributes or methods more directly, using path equations. For
example, the total weight of an Order (the CalcTotalWeight method) should be calculated
starting from the set of its OrderDetails. For each detail, we can calculate its weight (the
CalcWeight method), say in pounds, based on the quantity and item. Summing these up
gives the total weight.

In CT, both operations can be defined in terms of a chain of arrow compositions, which
can be derived from the mathematical formula for each method. These are shown in figure
13. The arrow Set(calcWeight) which appears in the second method requires some
explanation. For any map f : A→ B we can define a related map Set(f) : Set(A)→
Set(B), which takes an input set {a1,a2, . . . ,an} and applies f to its elements one by one,
returning the set { f (a1), . . . , f (an)}. This reflects the fact that the Set construction is an
example of a categorical operation called a functor, a concept which we will explore later
in this series of papers. Notice, also, that the calculation of total weight in the Order

class requires access to methods and attributes from OrderDetails and Item, suggesting
that the UML model might be missing dependency relations between these classes. In
CT, we remove explicit dependency from our model, but it is nonetheless obvious from
the definitions of these methods. Moreover, this provides more information about which
methods in a class are dependent, and precisely what they depend on.

8. Conclusion

This is the first in a series of papers analyzing the Unified Modeling Language (UML),
and proposing an alternative approach to modeling based on the mathematical theory of
categories. Here we focussed on the UML class diagram, leaving other aspects of the
language for future work.

Our criticisms of UML fall into several dimensions. Perhaps foremost is the lack of for-
mal semantics for UML as a modeling language. This can lead to ambiguity in UML mod-
els, where certain constructions may be interpreted in different ways by different people,
limiting communication of our models both between humans and with computing systems.
This problem is compounded by UML’s tendency to introduce new constructions into the

36

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

language, rather than modeling new ideas through designs in the existing language. This
adds to the semantic issues by adding new terms in need of interpretation. It also makes the
language harder to learn and to use, because there may be many different ways to model
the same core concept, with little indication of how these choices differentiate. Finally, the
universality of UML is limited by its origins in object-oriented programming. This intro-
duces features into the language which may not be appropriate in other domains. It also
discourages a separation of concerns, as active concepts like navigation sneak their way
into models meant to contain static relationships.

Categorical modeling avoids all these concerns. CT is already a mathematical language,
so there is no concern for ambiguity or informality in our models. Moreover, the semantics
of categorical models is a well-studied area of mathematics, yielding connections not only
with formal logic and computation but also other areas of mathematics like probability and
dynamical systems. Despite connections to so many formal domains, the field’s abstraction
ensures that the modeling language itself is domain agnostic. Moreover, CT’s assumptions
are minimal–objects and arrows–with the rest of the theory defined through design patterns
rather than declared by fiat. Best of all, we can do all this without losing the diagrammatic
charater of UML which is so important for intuitive design and communication.

The next paper in this series will be similar to the present work, translating UML ac-
tivity diagrams into categorical terms using a formal syntax called string diagrams. With
these two tools in hand, we will then explore the relation between these, showing how we
can link these methods together as two viewpoints on a single, unified model encompassing
both static and active relationships. As a demonstration of the utility of this approach, we
will show that in CT the other facets of UML–the use case diagram, the interaction dia-
gram, the object diagram, etc.–can be decompiled into activity and class representations,
obviating the need for all these different diagrams except, possibly, as a syntactic sugar for
the true models. We will also begin to explore the ways that CT goes beyond UML; in par-

calcWeight(d : OrderDetails) : Weight := (d.quantity)∗ (d.orderItem.shippingWeight.inLbs)

OrderDetails

〈quantity,orderItem〉
''

CalcWeight
//

:=

Weight

Number×Item
〈id,shippingWeight〉

// Number×Weight

multiply

88

calcTotalWeight(o : Order) : Weight := ∑
d:OrderDetails(o)

CalcWeight(d)

Order

contains
((

CalcTotalWeight
//

:=

Weight

Set(OrderDetails)
Set(calcWeight)

// Set(Weight)
∑

77

Fig. 13. Defining methods via composition of arrows.

37

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

ticular, we will examine the use of functors (mappings between categories) and other CT
constructions for practical model management, including model transformation, integration
and evolution.

Applied category theory is a field still in its infancy, though progressing fast. One of
the central obstacles to its growth is the lack of a standard methodology for applying ideas
from CT in concrete contexts. This paper begin to develop such a methodology by adopting
the successes of UML while avoiding its pitfalls. Eventually, we hope to develop this work
into a more formal Categorical Modeling Language (CatML), along with a broad collection
of design patterns for modeling various specific circumstances.

9. Acknowledgements

We would like to acknowledge the range of valuable comments and suggestions from Blake
Pollard, Jonathan Patrick and Ken Baclawski that made the paper better. However, we are
responsible for any errors or mistakes.

References

[1] Booch G, Rumbaugh J, Jacobson I (2005) Unified Modeling Language User Guide,
2nd Edition. Addison-Wesley Object Technology Series (Addison-Wesley Profes-
sional), .

[2] Wikipedia (2017) Class diagram — wikipedia, the free encyclopedia, https://
en.wikipedia.org/w/index.php?title=Class diagram&oldid=805715397. Online; ac-
cessed 19-October-2017.

[3] uml-diagramsorg (2017) Dependency in UML — uml-diagrams.org, http://www.
uml-diagrams.org/dependency.html. Online; accessed 19-October-2017.

[4] uml-diagramsorg (2017) UML class diagrams reference — uml-diagrams.org, http:
//www.uml-diagrams.org/class-reference.html. Online; accessed 19-October-2017.

[5] Frigg R, Hartmann S (2006) Models in science, https://seop.illc.uva.nl/entries/
models-science/. Accessed: 2018-66-20.

[6] Giere RN (2004) How models are used to represent reality. Philosophy of Science
71(5):742–752.

[7] Robinson S (2010) Conceptual modelling: Who needs it. SCS M&S Magazine 2:1–7.
[8] Robinson S (2011) Choosing the right model: Conceptual modeling for simulation.

Simulation Conference (WSC), Proceedings of the 2011 Winter (IEEE), , pp 1423–
1435.

[9] Robinson S (2013) Conceptual modeling for simulation. Simulation Conference
(WSC), 2013 Winter (IEEE), , pp 377–388.

[10] Kühne T (2005) What is a model? Language Engineering for Model-Driven Soft-
ware Development, eds Bezivin J, Heckel R number 04101 in Dagstuhl Seminar
Proceedings (Internationales Begegnungs- und Forschungszentrum für Informatik

38

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

https://en.wikipedia.org/w/index.php?title=Class_diagram&oldid=805715397
https://en.wikipedia.org/w/index.php?title=Class_diagram&oldid=805715397
http://www.uml-diagrams.org/dependency.html
http://www.uml-diagrams.org/dependency.html
http://www.uml-diagrams.org/class-reference.html
http://www.uml-diagrams.org/class-reference.html
https://seop.illc.uva.nl/entries/models-science/
https://seop.illc.uva.nl/entries/models-science/

(IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany), , pp 1–10. Available at
http://drops.dagstuhl.de/opus/volltexte/2005/23.

[11] Muller PA, Fondement F, Baudry B, Combemale B (2012) Modeling modeling mod-
eling. Software & Systems Modeling 11(3):347–359.

[12] Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen WE, et al. (1991) Object-
Oriented Modeling and Design. Vol. 199.1 (Prentice-hall Englewood Cliffs, NJ), .

[13] Petre M (2013) UML in practice. Proceedings of the 2013 International Conference
on Software Engineering (IEEE Press), , pp 722–731.

[14] Reggio G, Leotta M, Ricca F (2014) Who knows/uses what of the uml: A personal
opinion survey. International Conference on Model Driven Engineering Languages
and Systems (Springer), , pp 149–165.

[15] Object Managment Group (2017) Unified Modelling Language version 2.5. Unified
Modelling.

[16] Evans A, France R, Lano K, Rumpe B (1999) Meta-modelling semantics of UML.
Behavioral Specifications of Businesses and Systems (Springer), , pp 45–60.

[17] Diskin Z (2002) Visualization vs. specification in diagrammatic notations: A case
study with the UML. Diagrammatic Representation and Inference :79–127.

[18] Diskin Z (2003) Mathematics of UML: Making the odysseys of UML less dramatic.
Practical Foundations of Business System Specifications (Springer), , pp 145–178.

[19] Spivak DI (2014) Category Theory for the Sciences (The MIT Press), .
[20] MacLane S, Moerdijk I (2012) Sheaves in Geometry and Logic: A First Introduction

to Topos Theory (Springer Science & Business Media), .
[21] Spivak DI, Kent RE (2012) Ologs: a categorical framework for knowledge represen-

tation. PLoS One 7(1):e24274.
[22] Eilenberg S, MacLane S (1945) General theory of natural equivalences. Transactions

of the American Mathematical Society 58(2):231–294.
[23] Hartshorne R (1977) Algebraic Geometry (Springer-Verlag, New York-Heidelberg), .

Graduate Texts in Mathematics, No. 52.
[24] Hatcher A (2000) Algebraic Topology (Cambridge Univ. Press, Cambridge), .
[25] Lawvere FW (1963) Functorial semantics of algebraic theories. Proceedings of the

National Academy of Sciences 50(5):869–872.
[26] Lawvere FW (1970) Quantifiers and sheaves. Actes du Congres International des

Mathematiciens, Nice, Vol. 1, pp 329–334.
[27] Lipovaca M (2011) Learn You a Haskell for Great Good!: A Beginner’s Guide (no

starch press), .
[28] Barr M, Wells C (eds) (1995) Category Theory for Computing Science, 2nd Ed. (Pren-

tice Hall International (UK) Ltd., Hertfordshire, UK, UK), .
[29] Penrose R (1971) Applications of negative dimensional tensors. Combinatorial Math-

ematics and its Applications 221244.
[30] Selinger P (2010) A survey of graphical languages for monoidal categories. New

Structures for Physics (Springer), , pp 289–355.
[31] Culbertson J, Sturtz K (2013) Bayesian machine learning via category theory. arXiv

39

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

http://drops.dagstuhl.de/opus/volltexte/2005/23

preprint arXiv:13121445 .
[32] Culbertson J, Sturtz K (2014) A categorical foundation for bayesian probability. Ap-

plied Categorical Structures 22(4):647–662.
[33] Lerman E (2016) A category of hybrid systems. ArXiv e-prints 1612.01950.
[34] Vagner D, Spivak DI, Lerman E (2015) Algebras of open dynamical systems on

the operad of wiring diagrams. Theory and Applications of Categories 30(51):1793–
1822.

[35] Johnson M, Rosebrugh R, Wood R (2002) Entity-relationship-attribute designs and
sketches. Theory and Applications of Categories 10(3):94–112.

[36] Rosebrugh R, Wood R (1992) Relational databases and indexed categories. Proceed-
ings of the International Category Theory Meeting 1991, CMS Conference Proceed-
ings, Vol. 13, pp 391–407.

[37] Spivak DI (2012) Functorial data migration. Information and Computation 217:31–
51.

[38] Healy MJ, Caudell TP (2006) Ontologies and worlds in category theory: Implications
for neural systems. Axiomathes 16(1-2):165–214.

[39] Ehresmann AC, Vanbremeersch JP (2007) Memory Evolutive Systems; Hierarchy,
Emergence, Cognition (Elsevier), .

[40] Pollard BS (2016) Open markov processes: A compositional perspective on non-
equilibrium steady states in biology. Entropy 18(4):140.

[41] Baez JC, Fong B, Pollard BS (2016) A compositional framework for markov pro-
cesses. Journal of Mathematical Physics 57(3):033301.

[42] Patterson E (2017) Knowledge representation in bicategories of relations. arXiv
preprint arXiv:170600526 .

[43] Cabot J, Gogolla M (2012) Object constraint language (ocl): a definitive guide. For-
mal Methods for Model-Driven Engineering (Springer), , pp 58–90.

[44] Spivak DI, Wisnesky R (2015) Relational foundations for functorial data migration.
Proceedings of the 15th Symposium on Database Programming Languages (ACM), ,
pp 21–28.

[45] Baclawski K (1990) The structural semantics of subtypes and inheritance. Accessed:
6/20/2018.

[46] Reynolds JC (1980) Using category theory to design implicit conversions and
generic operators. International Workshop on Semantics-Directed Compiler Gener-
ation (Springer), , pp 211–258.

[47] Awodey S (2010) Category Theory (Oxford University Press), .
[48] nLab (2016) Extensive category — nLab, https://ncatlab.org/nlab/show/extensive+

category. Online; accessed 19-October-2017.

40

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8358

1612.01950
https://ncatlab.org/nlab/show/extensive+category
https://ncatlab.org/nlab/show/extensive+category

	Introduction
	A critique of the Unified Modeling Language (UML)
	Category Theory
	History
	Abstract definitions

	From UML classes to objects and arrows
	Classes, attributes and operations
	State

	Modeling UML Associations with Arrow Diagrams
	Association
	Generalization and monics arrows
	Semantics with structures

	Other class diagram relationships
	Aggregation & Composition
	Dependency
	Navigation

	Comparing models
	Conclusion
	Acknowledgements
	References

