# TRECVID 2020: Video to Text Description

Asad Anwar Butt NIST; Johns Hopkins University

George Awad NIST; Georgetown University

Yvette Graham Dublin City University

National Institute of Standards and Technology U.S. Department of Commerce

# **Goals and Motivation**



- Measure how well an automatic system can describe a video in natural language.
- Measure how well an automatic system can match high-level textual descriptions to low-level computer vision features.
- Transfer successful image captioning technology to the video domain.
- Real world applications
  - Video summarization
  - Supporting search and browsing
  - Accessibility video description to the blind
  - Video event prediction

#### Subtasks





Note: Images were selected from Google Images with Creative Commons license.

## Testing Dataset



- VTT tasks from 2016 to 2019 used the Twitter Vines dataset.
  - Videos were ~6 sec long
  - Quality control issues
  - Links distributed instead of videos, leading to problem of removed links.
- Mixed up things a little with addition of Flickr videos in 2019.
- New dataset: V3C
  - The Vimeo Creative Commons Collection (V3C) is divided into 3 partitions.
  - Total duration: 3800+ hours.
  - V3C2 duration: 1300+ hours. Divided into more than 1.4M segments. Only segments between 3 to 10 sec selected for this task.
  - Videos distributed directly to participants.

# **Testing Dataset**



- Manual selection of videos.
  - We watched 8000+ videos.
  - Selected 1700 videos for annotation.
- Selection criteria mainly concerned with diversity in videos.
- The V3C dataset removes some previous concerns:
  - Videos with multiple, unrelated segments that are not coherent.
  - Offensive videos.

#### **Annotation Process**



- A total of 9 assessors annotated the videos.
- Each video was annotated by 5 different assessors.
- Assessors were provided with annotation guidelines by NIST.
- For each video, assessors were asked to combine 4 facets if applicable:
  - Who is the video showing (objects, persons, animals, ...etc) ?
  - What are the objects and beings doing (actions, states, events, ...etc)?
  - Where (locale, site, place, geographic, ...etc) ?
  - When (time of day, season, ...etc) ?

#### **Annotation Process**



- Assessors were provided training for the task.
- Their work was monitored, and feedback provided.
- NIST personnel were available for any questions or confusion.
- Our annotation process differentiates our dataset from other datasets.
  - Arguably better/more detailed descriptions than crowd-sourced datasets.

## Annotation – Observations



 Average sentence length for each assessor:

| Annotator | Avg. Length | # Videos |
|-----------|-------------|----------|
| 1         | 16.60       | 825      |
| 2         | 16.65       | 875      |
| 3         | 17.67       | 1700     |
| 4         | 19.62       | 825      |
| 5         | 21.22       | 875      |
| 6         | 22.61       | 875      |
| 7         | 22.71       | 875      |
| 8         | 24.14       | 825      |
| 9         | 25.81       | 825      |

Avg. sentence length: 20.46 words

#### • Additional questions:



How likely is it that other assessors will write similar descriptions for the video? Not Likely Somewhat Likely Very Likely 1 2 3

> Q1 Avg Score: 2.53 (Scale of 5) Q2 Avg Score: 2.24 (Scale of 3)

Correlation between difficulty scores: -0.61

# Participants



| Teams          | Matching & Ranking | Description Generation |
|----------------|--------------------|------------------------|
| IMFD_IMPRESEE  |                    | $\checkmark$           |
| KSLAB          |                    | $\checkmark$           |
| KU_ISPL        |                    | $\checkmark$           |
| MMCUniAugsburg |                    | $\checkmark$           |
| PICSOM         |                    | $\checkmark$           |
| RUC_AIM3       | $\checkmark$       | $\checkmark$           |

#### • 6 teams participated

- 19 Description Generation Runs
- 4 Matching and Ranking Runs

## **Description Generation**



- Up to 4 runs in the *Description Generation* subtask.
- Metrics used for evaluation:
  - CIDEr (Consensus-based Image Description Evaluation)
  - SPICE (Semantic Propositional Image Caption Evaluation)
  - METEOR (Metric for Evaluation of Translation with Explicit Ordering)
  - BLEU (BiLingual Evaluation Understudy)
  - STS (Semantic Textual Similarity)
  - DA (Direct Assessment), which is a crowdsourced rating of captions using Amazon Mechanical Turk (AMT)

## Run Types



Training Data Types:

'I': Only image captioning datasets

'V': Only video captioning datasets

**'B':** Both image and video captioning datasets

Features Used:

**'V'**: Visual features only

**'A'**: Both audio and visual features

# Submissions - Run Types



| 1 | 'VV' (Video Data/Visual Feats) |
|---|--------------------------------|
|---|--------------------------------|

Teams: 3 Runs: 9 2 'IV' (Image Data/Visual Feats)

Teams: 1 Runs: 2

**3** 'BV' (I+V Data/Visual Feats)

4 'VA' (Video Data/V+A Feats)

Teams: 1 Runs: 4

Teams: 1 Runs: 4

#### **BLEU Results**





#### **METEOR Results**





#### **METEOR Results**

#### **CIDER Results**





#### **SPICE** Results





#### Average STS Results





# Significance Test - CIDEr





- Green squares indicate a significant "win" for the row over the column using the CIDEr metric.
- Significance calculated at p<0.05

#### Correlation of Run Scores – Automated Metrics NIST

|               | CIDER_Score | CIDER-D_Score | SPICE_Score | METEOR_Score | BLEU_Score | Average_STS |
|---------------|-------------|---------------|-------------|--------------|------------|-------------|
| CIDER_Score   | 1           | 0.992         | 0.959       | 0.948        | 0.911      | 0.961       |
| CIDER-D_Score | 0.992       | 1             | 0.953       | 0.945        | 0.929      | 0.942       |
| SPICE_Score   | 0.959       | 0.953         | 1           | 0.986        | 0.889      | 0.963       |
| METEOR_Score  | 0.948       | 0.945         | 0.986       | 1            | 0.893      | 0.969       |
| BLEU_Score    | 0.911       | 0.929         | 0.889       | 0.893        | 1          | 0.914       |
| STS           | 0.961       | 0.942         | 0.963       | 0.969        | 0.914      | 1           |

# Correlation – Individual Video Scores

|               | CIDER_Score | CIDER-D_Score | SPICE_Score | METEOR_Score | BLEU_Score | Average_STS |
|---------------|-------------|---------------|-------------|--------------|------------|-------------|
| CIDER_Score   | 1           | 0.908         | 0.588       | 0.654        | 0.524      | 0.535       |
| CIDER-D_Score | 0.908       | 1             | 0.6         | 0.652        | 0.508      | 0.622       |
| SPICE_Score   | 0.588       | 0.6           | 1           | 0.69         | 0.543      | 0.637       |
| METEOR_Score  | 0.654       | 0.652         | 0.69        | 1            | 0.562      | 0.682       |
| BLEU_Score    | 0.524       | 0.508         | 0.543       | 0.562        | 1          | 0.458       |
| STS           | 0.535       | 0.622         | 0.637       | 0.682        | 0.458      | 1           |

NIST

# **Confidence Scores**



- Teams were asked to provide confidence scores for the generated sentences.
- Correlation was calculated between these confidence scores and evaluation metric scores for all runs.



#### Direct Assessment



- DA uses crowdsourcing to evaluate how well a caption describes a video.
- Human evaluators rate captions on a scale of 0 to 100.
- DA conducted on only primary runs for each team.
- The DA score is reported as follows:
  - Z score is standardized per individual AMT worker's mean and standard deviation score. The average Z score is then reported for each run.

#### DA Results - Z





# DA Result - Significance



- Green squares indicate a significant "win" for the row over the column.
- No system yet reaches human performance.
- Amongst systems, RUC-AIM3 outperforms the rest, with significant wins. PicSOM is firmly in the second place.



# Matching and Ranking



- This subtask was designated optional in 2019.
- Only 1 team (4 runs) submitted in 2020.
- Training was done using video datasets and both audio and visual features were used ('VA').
- Mean inverted rank used for evaluation.

### Matching and Ranking Results



# Matching and Ranking



- We included (obviously) fake sentences to check how they would be ranked. None of these sentences corresponded to any videos in the dataset.
- These fake sentences included:
  - Grammatically correct sentences that made no logical sense.
  - Grammatically incorrect sentences (e.g. random words just strung together).
- Median rank of fake sentences: 461 (Out of 1720)
- 13.5% of fake sentences ranked in top 100.
- 53% of fake sentences ranked in top 500.

# High Level Overview of Some Approaches

National Institute of Standards and Technology U.S. Department of Commerce

# KsLab\_NUT



- Keyframes are extracted from the video
  - First and last frames + 3 frames with largest changes in features.
  - Image features extracted by a GoogLeNet. ImageNet dataset used for pre-training.
- Encoder-decoder method used to caption each frame.
  - Neural Image Captioning (NIC) Model.
  - MS COCO used for pre-training.
- Caption aggregation using extractive methods.
  - BERTSUM and LexRank used.
- Proposal to use abstractive methods in the future to improve scores.

## KU\_ISPL



- Different methods for each run.
- SA-LSTM used as baseline method (Run 1).
- Transformer and LSTM connected for runs 2 and 3.
- Attention mechanism used.
- Only TRECVID VTT data used for training.

# MMCUniAugsburg



- Model based on Transformer architecture [1].
  - Modified to take videos as input by adding an image embedding layer and positional encoding.
  - Three datasets used for training:
    - Auto-captions on GIF
    - TRECVID-VTT
    - MSR-VTT
- Systems pretrained on merged datasets and fine tuned on TRECVID-VTT.
- Found significant improvement over traditional image captioning pipelines.

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems, pp. 5998–6008, 2017.

# **Conclusion and Future Work**



- This year we used a new video source V3C2
- Lots of training sets are available.
- Need to increase visibility of the task. Dataset consolidated and made available to allow new teams to participate. (https://ir.nist.gov/tv\_vtt\_data/)
- The task will be renewed.
  - Upcoming changes will be discussed at the end of the session.

# Thank you!

National Institute of Standards and Technology U.S. Department of Commerce