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Deep Reinforcement Learning-Assisted Energy
Harvesting Wireless Networks

Junliang Ye

Abstract—Heterogeneous ultra-dense networking (HUDN)
with energy harvesting technology is a promising approach to
deal with the ever-growing traffic that can severely impact the
power consumption of small-cell networks. Unfortunately, the
amount of harvested energy, which depends on the transmission
environment, is highly random and difficult to predict. Since there
may be multiple sources of energy in the HUDN, e.g., macro base
stations or TV towers, the challenging issue is when and where to
harvest energy. Optimally controlling the HUDN can profoundly
influence the performance of both data transmission and energy
harvesting. However, the working pattern of individual small cell
base stations needs to be determined in every time slot. To find
an optimal solution in a highly random environment we propose
reinforcement learning methods, such as deep deterministic pol-
icy gradient (DDPG) and wolpertinger DDPG (W-DDPG). Since
the action space is large and discrete for the controlling tasks,
a W-DDPG algorithm has been found to be the best approach.
The simulation results verify that, compared with the original
DDPG algorithm and deep Q-learning, the proposed W-DDPG
method can achieve a superior performance in terms of both
energy efficiency and throughput.

Index Terms—Reinforcement learning, DDPG, heterogeneous
network, energy harvesting, mmWave.

I. INTRODUCTION

ETEROGENEOUS ultra-dense network (HUDN) is
Hemerging as an inevitable solution for fifth and sixth
generation (5G & 6G) cellular systems. It enables the transmis-
sion of millimeter waves to accommodate growing numbers of
users with higher data rates [1]. However, due to the relatively
limited range of the millimeter wave, service providers have
begun the process of cell densification in existing networks.
This demands a significant increase in the number of small
cell base stations (SBSs) installation. Although SBSs con-
sume less power compared to regular macro base stations
(MBSs), the anticipated massive increase in the number of
SBSs within small geographical locations would require an
unlimited access to power supplies, which cannot always be
available [2]. The challenge is not only the cost and time
involved, but also getting a power drop to each individ-
ual SBS instead of entirely relying on battery backup in
space-constrained urban locations. Energy harvesting (EH) is
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considered to be a critical technology that can significantly
improve the energy efficiency of HUDNs. With energy har-
vesting technology, the SBSs in the HetNets can obtain energy
from radio frequency (RF) signals, store it in batteries, and
then use it for data transmission [3]. Since the quality of
wireless links and the location of each users equipment (UE)
changes from time to time, the main challenge is how to con-
trol an EH-assisted HUDN within each time slot in order to
improve the performance of energy efficiency. For a time slot-
ted EH architecture, every base station needs to determine
its action at each time slot [4]. Under these conditions, con-
trolling EH-assisted networks is difficult to solve by regular
optimization methods, such as convex optimization. The rea-
son is that most of these methods are offline since they need
to know the precise values of all involved parameters [5]. Bear
in mind that accurately predicting these parameters would be
essential, but difficult, since EH-assisted devices are randomly
distributed. In order to derive practical online energy man-
agement algorithms, the Markov Decision Process (MDP) has
been widely utilized in EH communications [6]-[11]. While
MDP is an effective tool to solve the control problem in an EH-
assisted network, it still faces the problem of dimensionality
when the number of parameters is large.

With the assistance of artificial intelligence (AI), solv-
ing energy harvesting problems has recently entered a new
phase. For instance, a deep-learning-based architecture has
been proposed in [12] to aid channel estimation in EH-assisted
wireless networks. The authors of [13] leverage the deep
feedforward neural network to maximize effective secrecy
throughput. In addition, two machine learning techniques,
linear regression (LR) and decision trees (DT), have been
investigated in [14] to model the harvested energy based
on spectral power measurements in real-time. To study an
optimal transmission policy for energy-harvesting of wire-
less sensor nodes, a three-layer monotone neural network
has been considered in [15]. The authors of [16] apply a
deep belief network (DBN) based approach to solve a joint
resource allocation problem for the downlinks of a simultane-
ous wireless information and power transfer (SWIPT) enabled
multi-carrier non-orthogonal multiple access (MC-NOMA)
system.

Recently, reinforcement learning (RL) technology has
attracted worldwide attention. It deals with learning tasks
that require an agent to interact with working environ-
ments [5], [17]-[30]. Based on the RL technology, agent
interactions provide a unique ability to solve many types of EH
problems. This is mainly because most of the uncontrollable
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parameters that influence the performance of networks with
EH technology require interactions between the agent and
the working environment. Q-learning is a value-based RL
algorithm and has been used in many studies [17]-[20].
For example, to guarantee network energy efficiency while
ensuring low packet loss probability, the authors in [18] suc-
cessfully apply a Q-learning to multi-hop deflection routing
for EH of nanonetworks. A fuzzy Q-learning algorithm to
handle the power management of EH-assisted wireless sen-
sors by interacting with the environment has been studied
in [19]. To satisfy quality of service (QoS) constraints over
multi-hop relay networks, a Q-learning based optimal rout-
ing and power allocation method has also been investigated
in [20].

An advanced version of Q-learning is deep Q-learning
(DQL), which adopts deep neural networks to evaluate state
value functions. This characteristic enables a DQL-based
approach to solve many complicated tasks [21]. In addi-
tion, [22] also applies a DQL algorithm to support an
EH-assisted network by interacting with the environment
in order to maximize utility within the uncertainties of
harvested energy, request arrivals, and resource prices. To
optimize the energy efficiency while maintaining QoS, [23]
proposes a DQL-based framework for dynamic resource allo-
cation in EH-assisted networks. A deep distributed recurrent
Q-network algorithm is proposed to manage the complex
dynamic channel, data, and energy environment through a par-
tially observable state [24]. To maximize network throughput
performance, [25] investigates a DQL-based optimal policy for
transmission power allocation. In this method the modulation
level is adjusted adaptively according to the obtained causal
information on harvested energy, battery state, and channel
gain. To simultaneously maximize the throughput and min-
imize the prediction inaccuracy of the battery level of EH
devices, a two-layer RL network is adopted in [26].

It should be noted that in order to successfully apply RL
methods, such as Q-learning and deep Q-learning to solve
stochastic optimization problems, it is essential to discretize
all continuous variables of the state and action scenarios
into a finite set of discrete values [27]. These requirements
however, limit their applications as most of the involved
parameters have continuous values. To overcome this, an
RL-based algorithm called deep deterministic policy gradi-
ent (DDPQG) is proposed in [28]. In this article, the authors
present an actor-critic, model-free algorithm based on the
deterministic policy gradient that can operate over continu-
ous state and action spaces. Based on DDPG, the authors
of [29] propose a joint optimization scheme for data trans-
mission delay, energy consumption, and bandwidth allocation
in an EH-assisted network. To optimally control the power, a
DDPG algorithm, without prior knowledge of energy arrival,
user arrival, and channel state information, has been studied
in [30]. In addition, the authors of [5] propose a DDPG-
based algorithm applicable for continuous states suitable for
continuous energy management.

As a newly developed RL technology, there are some
studies using DDPG to solve tasks with continuous action
and state spaces. However, the control problem of base

stations in an EH-assisted network is a task with contin-
uous state space, but discrete action space. Moreover, as
the number of SBSs in the network increases, the action
space rises dramatically. Therefore, in this article we pro-
pose a Wolpertinger architecture-based deep deterministic
policy gradient (W-DDPG) to maximize energy efficiency in
a EH-assisted HUDN. W-DDPG can avoid the problem of
dimensionality compared with Q-learning, which requires dis-
cretization of the state. On the other hand, W-DDPG can solve
the nonconvex objective function in a long-term average form,
which is crucial to improving the lifetime of SBS’s. The major
contributions of this article are as follows.

1) We formulate the energy efficiency optimization
problem in an EH-assisted HUDN as an RL problem to
maximize long-term average energy efficiency and this
basically requires defining the state, action, and reward
of the RL framework. Thus, to solve the optimization
problem we map the parameters that influence the
performance of the HUDN into state, action, and reward
forms.

2) The W-DDPG based framework is developed to achieve
an optimal learning policy with continuous state and
large-scale discrete actions. As the DDPG algorithm can
only be used to perform continuous actions, it’s impos-
sible to apply it directly. Also, a simple discretization
method like the floor or round function, is not suit-
able for discretizing the actions in DDPG. Therefore,
we adopt a k-nearest-neighbor (k-NN) algorithm-based
method to perform discretization on the DDPG actions
in order to improve the performance of the HUDN. To
the best of our knowledge, this is the first time that
a W-DDPG-based algorithm has been considered as a
control for EH-assisted HUDN.

3) Simulations have been carried out to evaluate the
performance of the proposed W-DDPG architecture.
Since convergence of the deep RL algorithm can be
strongly impacted by configuration of hyperparameters,
a series of parameters have been evaluated to further
improve the performance of the algorithm. Compared
with the DQL algorithm and the simple action discretiza-
tion method assisted DDPG algorithm, the simulation
results verify that our proposed W-DDPG-based algo-
rithm can effectively improve the energy harvesting and
throughput performance of EH-assisted HUDNS.

The rest of the article is organized as follows: The system
model it described in detail in Section II, including defini-
tions of working patterns of base stations, analytical models
of power consumption, energy harvesting and data transmis-
sion. Section III introduces the W-DDPG RL architecture that
is used in this article. Simulations of the proposed algorithm
are carried out in Section IV. Conclusions are finally drawn in
Section V.

II. SYSTEM MODEL
A. Network Architecture

Here, we consider a EH-assisted HUDN where only MBSs
are connected to the power grid. In other words, all SBSs in
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Fig. 1. Network architecture.

this network need to harvest energy to serve the user equip-
ment (UE). Also, MBSs can transmit energy to SBSs through
wireless links where the transmitted energy will be harvested
by SBSs and stored in their batteries. In addition, each SBS
can harvest energy from TV white signals, which are broad-
casted by TV towers. An agent at the cloud server controls
operations of the MBSs and SBSs, as shown in Fig. 1.

Let’s define ¢ppBg, ¢sBs, ¢y and ¢y as the
set of MBSs, SBSs, UEs, and TV towers, respectively.

Then, the number of elements contained in these sets
is defined as |¢ups|. |dsBsl. |¢ue] and |é7v]
respectively, where |-| represents the cardinality of

the corresponding set. Thus, these four sets are repre-
sented as ¢yps = {mbj[l <j <|omBsl|}, dsps =
{sbpll <k < [dsps]}. dup = {uei|l <i < [dyp]}. and
o1y = {tvg]l <n < |d7y|}. The MBSs and SBSs are
assumed to be uniformly distributed in a two-dimensional
plane A . The TV towers are located outside A 7. The UEs’
movements are assumed to follow a random walk mobility
model as follows,

{ xui(tg + Ats) = xui(tg) + vm-(tg)
yu;(tg + Ats) = yu;(tg) +vyi(ty)

where zu;(ty) and yu;(ty) are the coordinates of the loca-
tion of UE: ue;, at a given time slot t,. Both vy;(ty) and
Uyi(tg) in (1) are two normally distributed random variables
with expectation and variance as 0 and 1, respectively.

(D

B. Working Patterns of Base Stations

In this model, if an SBS: sb;, is the closest base station to
a UE: ue;, we then assume it is covered by sby. Also, if an
MBS: mbj, is the closest base station to ue;, or sby, the case
is the same. We should point out that if a UE is covered by an
SBS, it doesn’t mean that it will be associated with this SBS
because of the status of battery or the action that is taken by
the corresponding SBS, i.e., if a UE is covered by an SBS,
which takes an action to harvest energy, then the UE will not

be associated with this SBS. Notice that we consider a widely
used distance-based association strategy in order to reduce the
complexity of problem formulation. The system is considered
to operate in a time-slotted fashion with an equal-length time
slot represented as: Atg. At the beginning of each time slot,
SBSs can switch between a data transmission mode and energy
harvesting mode according to conditions like battery level and
the amount of communication requests from UEs. When an
SBS is in energy harvesting mode, there are two sources of
energy that they can rely on: MBSs and broadcasting signals
from TV towers.

According to [6], [31], the charging speed of analog beam-
forming transmission is faster when compared with omnidi-
rectional transmission. However, it’s more energy consuming
compared with omnidirectional transmission. On the other
hand, utilizing TV white signals is a potential solution for
energy harvesting. This is because TV towers continuously
broadcast signals so SBSs can always harvest energy with-
out having to rely on MBSs. Also, the charging speed of
the TV signal is higher compared with omnidirectional trans-
mission [6]. Furthermore, harvesting energy from TV towers
instead of MBSs can save more energy, since the operation of
the TV tower is independent of the HUDN. However, harvest-
ing energy from TV towers depends mainly on transmission
environments (e.g., weather conditions, the distance between
TV towers and SBSs, etc.) [32]. Therefore, it is difficult for
an SBS to determine the best way to harvest the energy.

To address this issue, we assume that at the beginning of
each time slot: ¢4, one of the following three types of actions
can be selected by an MBS: mb;, and an SBS sb;. These
actions are summarized in Table 1.

In this article, the MBSs have two main functions in the
network; data transmission and charging SBSs. Our aim is
to improve the energy efficiency of HUDNs on the premise
of satisfying user communication’s needs. Under these con-
ditions, three actions are designed to deal with the following
cases.

Case 1: The number of communication requests from UEs
is significant, while the average battery level of SBSs is high.
In this case, there are only a few charging requests from
SBSs, despite many communication requests from UEs. The
MI action is designed to deal with this case.

Case 2: The number of communication requests from UEs is
small, while the average battery level of SBSs is high. When an
MBS is transmitting signals with an omnidirectional antenna,
all the associated SBSs with the S2 action can receive energy
from the transmission. Moreover, although the data rate will
be lower compared with M1 action, better energy saving can
be achieved without hybrid precoding.

Case 3: The number of communication requests from the
UE:s is large, while the battery levels of some SBSs are low.
We consider directional transmission and reception with ana-
log processing and phase shifters in the M3 action. According
to [31], it’s much more energy efficient to charge SBSs with
analog beamforming than hybrid beamforming as the power
consumption of RF chains is substantially higher. Compared
with omnidirectional transmission, analog processing based
directional transmission can quickly charge the associated
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TABLE I
ACTIONS OF MBSs AND SBSs

mb; will transmit signals on the mmWave band to associated

MI action UEs with hybrid beamforming and massive MIMO antennas
. mb; will transmit signals on the sub-6GHz spectrum
M2 action . : e
to associated UEs with an omnidirectional antenna
M3 action mb; will transmit signals on the mmWave band to associated UEs with hybrid beamforming
and massive MIMO antennas while charging SBSs with S2 action by analog beamforming
S1 action sby. will harvest energy from TV signals
S2 action sbg, will harvest energy from the MBSs
S3 action sby, will transmit signals on the mmWave band to the associated
UEs with hybrid beamforming and massive MIMO antennas

SBSs. However, as one-directional beam can only charge one
SBS, action M3 consumes more energy compared with M2
action, especially when the number of charging requests from
SBSs is large.

Case 4: The number of communication requests from UEs
is small, while the battery levels of some of the SBSs are low.
In general, this case is caused by a large number of users asso-
ciated with only a few SBSs. MBSs, which are closest to low
battery SBSs, can select M3 action for higher charging speed,
whereas the low battery SBSs proceed with the S2 action.

It’s obvious that any action taken by an MBS and the trans-
mission conditions of TV signals can strongly influence the
amount of harvested energy of sby. Therefore, it is still dif-
ficult for an SBS to decide which action to take. To solve
this problem, we propose an RL-based scheme, which will be
described in Section III.

C. Communication Requests and Base Station Associations

In this article, the association strategies for UEs are config-

ured as follows,

1) The UE with a communication request will be associated
with the nearest base station.

2) If the UE is associated with an SBS, and the battery
level of the SBS is below a given threshold By, or the
nearest SBS is in the energy harvesting pattern, the UE
will be associated with the nearest MBS of this SBS.

We assume that at the beginning of each time slot, each UE

will have a decision with a probability, P.,, about whether
to initiate a communication request. If a UE: ue;, is success-
fully associated with an SBS, the duration of the association
dr; is assumed to follow an exponential distribution with

an expectation of 1 [33]. After this duration, ue; will fin-
ish the association. Assuming communication requests from
UEs to be independent, for a given SBS sb;, the number
of communication requests at a given time slot: t;, can be
expressed as,

”“k(tg)
Nisy(tg) = Cri(ty) |1(bl(tg) > Bir)
i=1
+ Nsi(tg — Ats) — Lsg(tg)
x 1(asy(ty) = S3), (2)
where
4 _ | 1 wue; hasacommunication request

Cri(ty) = {0 otﬁerwise S

bl (ty) is the battery level of sby at time slot t4, 1(-) is
the indicator function, and nuy(t,) represents the number of
UEs that are covered by sby at ty. Lsp(ty) is the number of
UEs that finish the association at ¢, and asg(t4) is the action
that is taken by sby at ¢;. Thus, for a given MBS: mb;, the
number of communication and charging requests at a given
time slot ¢; can be expressed as (4), shown at the bottom
of the page, where nsy(ty) is the number of SBSs that are
covered by mb;, nm;(ty), nmj(ty) is the number of UEs
that are covered by mb;, and Lm;(ty) is the number of UEs
that finish the association at £;.

D. Power Consumption

We assume that the power consumption of base stations
consists of two parts: operational power consumption (e.g.,

+ Y Cri(ty) + Nmy(tg — At) — Lm;(tg) | 1(am;(ty) = M1 or M2)

nsg(ty)
1(a3k (tg) = 82)
=1

nsk(ty) [nuk(ty)
Nmj(tg) = > > Csilty) | 1(bh(tg) < Bir)
=1 =1

nm;(ty)
=1

nsk(ty) [nuk(ty)

+ Z Csi(tg) l(blk(tg) < Btr) +

=1 =1

nm;(tg)

+ Z Cri(tg) + Nm; (tg — At) — Lm; (tg) l(amj (tg) = MS)

i1=1

“)

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on May 24,2021 at 11:39:49 UTC from IEEE Xplore. Restrictions apply.



994 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

the energy consumption baseband, power amplifier, and so on)
and constant power consumption (i.e., the energy consumption
when there is no traffic load). Based on [34], the power con-
sumption of an SBS: sby, during time period [t4, t; + Ats]
can be represented as,

Pstr

Dl + Dsrf + Psbb
pSk(tg) = Nsg (tg) (fp_ oae) (L — oms)

x 1(asy(tg) =S3) + psst, )

where pgy- is the transmit power consumption of sby, 1y is
the efficiency coefficient of the power amplify module, pg,, is
the power consumption of the radio frequency module, pgpp,
is the power consumption of the baseband module, o, is
the loss coefficient of the digital control module, oy, is the
power supply loss coefficient, and pgg, is the constant power
consumption, which is independent from the traffic load of
sbg. Nsg(tg) is the number of communication requests at Z .
Based on the configuration in [34], the values of o, and o,
are smaller than 1.

Also, the power consumption of an MBS, mbj, during
time period [ty, t; + Ats] can be expressed as (6), shown
at the bottom of the page, where p,,p, is the transmit power
consumption of a hybrid beamforming transmission pattern,
Pmotr 1S the transmit power consumption of the omnidirec-
tional transmission pattern, p,p. is the power consumption
of the radio frequency module of hybrid beamforming trans-
mission pattern, pp,,.s is the power consumption of the radio
frequency module of omnidirectional transmission pattern,
Dmaby 1S the power consumption of the baseband module
of hybrid beamforming transmission pattern, p,,,pp 1S the
power consumption of the baseband module of omnidirectional
transmission pattern, pm,s is the constant power consump-
tion, which is independent from the traffic load of mb,,
and N'm;(t,) is the number of communication and charging
requests at t4.

E. Energy Harvesting

An SBS harvests energy either from MBSs or from TV tow-
ers. Based on [32], for a given SBS, sby,, the amount of energy

that can be harvested during the time period [ty, t4 + Ats]
from the TV towers can be expressed as,

loTv] _py,
Etk<tg) = Z Dtotr - 10710
n=1
x 1(asg(tg) = S1)Ats, (7

where pyyi- 1S the transmitting power of the TV towers and
Ply,, is the path loss of the transmission link, which is
expressed as,

Ply, = (69.55 + 26.16 log f 1,
— 13.82log Hty, — a(H st)
+ (44.9 — 6.55log Hty,)) log dy,, - (8)

where ft, is the transmission frequency of tv,, Ht, is the
height of the TV tower tuvy, dy, is the distance between tvy,
and sby, a(Hsy) is the correction factor for the height of
the receiving antenna, and H s;, is the height of the receiving
antenna of sby. For a medium-sized city, a(H s) is given by,

a(Hs) = (1.1log ft, — 0.7)H sy,
— (1.561og ft, — 0.8). )

Based on [31], the energy that sb;, harvests from MBSs with
action M2 during a given time period [t4, t; + Ats] can be
expressed as (10), shown at the bottom of the page, where
Gmpo is the antenna gain for omnidirectional transmission, hy;
is the small scale fading which follows an exponential distri-
bution with expectation as 1, dy; is the distance between sby,
and an MBS mb;, and «y, is the path loss exponent.

The authors of [31] indicate that in mmWave networks,
interference has little impact on the harvested power. So, we
can ignore the effect of interference on harvested energy from
the mmWave spectrum. The energy harvested from the MBSs
with action M3 during a given time period, [ty, t; + Ats],
can be expressed as below, where G,,; is the antenna gain
for hybrid precoding transmissions.

Thus, the energy that sb; harvests during a given time
period [tg, ty + Ats] can be rewritten in closed-form as (12),

Pmhtr

+ Pmhrf + Pmhbb

pm;(tg) = Nmj (tg) =7
Pmotr

+ Nmj(tg) =2

(1=04c)(1 —oms)
+ Pmorf + Dmobb

l(amj (tg) = Ml)

Pmhtr

(1= 04c)(L = oms)
Tpa T Pmbrf T Pmhbb

1(am, (1) = M2)

+ ij (tg)

(1=04e)(L = oms)

l(amj (tg) = M3) + Pmst (6)

[#rBs] Nmj(ty)

Bop(ty) = [ 3 D (pmotr Gmohugds™ )1 (am; (1) = M2) | 1(asi (t) = S2) Aty (10)
j=1 k=1
|émBs]

Ehi(tg) = | > (pmbtr Gt is™ ) 1(am; (1) = M3) | 1(asi (1) = S2) At (1

j=1
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shown at the bottom of the page, and the battery level that
sby can harvest at t; + At is,

bl (tg + Ats) = bl (tg) + Ex(tg) — psi(tg) Ats. (13)

Notice that we don’t consider the charging and discharg-
ing losses when SBSs harvest energy. However, in practical
situations the RL agent can directly assess the value of the
reward that includes the charging and discharging losses from
the environment.

F. Data Transmission

According to the actions of MBSs and SBSs described in
Section II-B, there are two downlink data transmission meth-
ods in the HUDN: data transmission on the mmWave spectrum
with hybrid precoding and massive MIMO antennas, and the
other is to transmit data on the sub-6GHz spectrum with the
omnidirectional antenna. Thus, at the beginning of a given
time slot ¢4, a UE, ue;, may be in one of these four types of
association patterns.

Thus, by assuming the throughput of the downlink between
typical ue; and the associated base station equals the channel
capacity of the corresponding link, without loss of generality,
the throughput of patterns U2 and U4 can be expressed as,

T’"ji,h(tg) = BamhAtS
Pbir G hh“df‘)‘l)
x logy | 1+ miy Tmv R , (14)
Pno
TT’]%‘<7§9) = Bag, At
Gophpid, "
x 1og2<1+ps” sh ki T > (15)
Pno

where T'rj;(t4) is the throughput of the link between wue;
and mb; during the same time period, T'ry;(ty) is the
throughput of the link between ue; and sb; during the time
period [ty, ty + Ats], Bayy, Bag, and G, Ggp, are the
bandwidths, and the antenna gains of the corresponding work-
ing patterns of the base stations, respectively. hj; is the small
scale fading of the link between ue; and mb;. Similarly, hy;
is the small scale fading of the link between ue; and sbg.

Both hj; and hy; are exponentially distributed random vari-
ables with expectation as in 1. dj; is the distance between
ue; and mb;, di; is the distance between ue; and sby. ay
is the path loss exponent. The noise term, py,, is assumed to
be a normally distributed variable with zero expectation and
variance a . Notice that the interference has not been taken
into cons1derat10n here because the beam is narrow enough
to ignore interference when the data is transmitted on the
mmWave spectrum with massive MIMO antennas and hybrid
precoding.

However, interference cannot be ignored when the data
is transmitted on the sub-6GHz spectrum with the omnidi-
rectional antenna. Thus, the throughput of state U3 can be
expressed as (16), shown at the bottom of the page, where
h,; is the small scale fading of the link between ue; and the
interfering MBS mb,. Similarly, d,; is the distance between
we; and mb,. Therefore, the throughput of the HUDN during
time period, [tg, ty + Ats], is expressed as

[pmBs] Nm;(ty)

Trhn(tg) = Z Z Trﬂ h tg (amj (tg) = Ml)
7=1 =1
lonBs] Nmj(tg)
+ Z Z Trji,o(tg)l(amj(tg) :MQ)
j=1  i=1
[pmps] Nmu;(ty)
+ Z Z Trji,h(tg)l(amj(tg) :M3)
j=1  i=1
[#sBs| Nsk(ty)
+ > > Tr(te)1(ask(tg) =S3) (17)
k=1 =1
with,
Nmuj(%) = ij(’f_q)
nsk(ty)
— Y 1(ask(ty) =S2).  (8)
=1

As MBSs are the only devices that are connected to
the power grid in the HUDN, the grid power consumption
of the network during time period [tg, ty + Ats] can be

lonBs] Nmj(tg)

By (ty) = > (motr Gmoln di™ )1 (am; (t5) = M2)
j=1 k=1
[énmps]
T Z (pmhtr Ginnhij dy ap)l(“mj(tg) = M3) |1(asy(ty) = S2) At
L¢T\/J
+ Z Dtvtr - 107" l(ask(tg) = Sl)AL‘S (12)
Pmotr Gmo hji d];ap
Trji,o(tg) = Bamology [ 1 + Atg (16)

Pno + ZWMBSJ (pmotr Gmohyzi dz_iap)l(amz (tg> = M2)
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TABLE II
ACTIONS PATTERNS OF ue;

Pattern Ul
Pattern U2
Pattern U3
Pattern U4

ue; has no communication request and no associated base station with ue;

ue; is associated with an MBS: mbj, and am; (t5) = M1 or am; (tg) = M3

ue; is associated with an MBS: mbj, and am; (t4) = M2

ue; is associated with an SBS sby, with a battery level higher than By, and sby, (t4) = S3

represented as,

Tryn (tg)

Solowns s (1) Aty

thn(tg) -

19)

III. REINFORCEMENT LEARNING FRAMEWORK

A. Energy Efficiency Optimization

We assume that the cloud agent can fully control the actions
of the MBSs and SBSs. Thus, at the beginning of each time
slot, the cloud agent will decide which action to choose for
each MBS and SBS. By defining the action set of the cloud
agent as Sp, and the action taken by the cloud agent at time
slot: ¢4, as a(ty), the action sequence that can be taken by the
cloud agent from time slot O to ¢, can be defined as,

A(tn) = {a(0), a(Ats),...,a(ty), ...,

a(tn — Ats), a(ty)|a(ty) €Sa}. (20
with
alty) = [ami(ty), ., amig, 0 (t),
as1(tg); -+ 4556 (1) ey

where T is the transpose operation.

Here, we define the location of each UE, MBS, and SBS
at time slot: t,, as a vector slm(ty), sls(ty), and slu(ty),
respectively. They can be expressed as,

st (tg) = [z (1), - 2y e (1)

g1 (1), U gy (1))
sts(tg) = [31(tg), -+ w8 g (1)

51 (tg)s -+ 15 ogps) (10)]
stutg) = [wur(ty) s wug ) (tg)

T
yunty), s yuigp ()] . @)

where zm;(ty) and ym;(ty) are the coordinates of the loca-
tion of mb; at t,. Similarly, xsj(ty) and ys;(ty) are the
coordinates of the location of sby at t;. By denoting the
element at position line x row y of the matrix Mat as
(Mat) sy, we have (slm(tg))mz C A, (sls(ty))sz C A,
and (slu(tg))ue C A for arbitrary 1 < mz < |dyps]
1< sz < |[pgps], and 1 < uz < |Pyg].

Similarly, by defining the battery level of each SBS at ¢,
as a vector: ba(ty), then ba(ty4) can be shown as,

T
ba(ty) = Bl (ty), - bligggs ()] (23)

Fig. 2. Framework of the RL system.

and obviously, we have 0 < (ba(ty))p; < blnax, for arbitrary
1 < bz < |pgps ], where blyax is the maximum capacity of
the battery of an SBS.

In order to maximize the average energy efficiency of the
network, the optimization problem can be formulated as,

t
" _F t
Efy = argmax —Ztn*o Jint5)
Atn) th +1
subject to a(tg) € Sa,
<Slm(tg)>m C AT? Vm € [17 L¢MBSJ]3
<Sl8(tg)>s - AT? Vs € [1? |_¢SBSJ]7
<5lu(tg)>u - AT? Yu € [17 \beEJ]»
(ba(tg)), € Ap, Vb€ [0, blmax]. (24)
We should point out that since only MBSs are connected
to the power grid, the service provider will be responsible for
their energy consumption costs during the HUDN operation.

So we only consider the energy consumption of the MBSs
in (24).

B. Reinforcement Framework

The best action sequence to maximize the average energy
efficiency depends on many uncontrollable, non-deterministic,
and time-varying conditions. These include the location of
UEs, SBSs, MBSs, and TV towers, as well as the mobility
of the UEs, and whether they have communication requests,
the battery level of each SBS at each time slot, and so on.
The optimization problem in (24) is obviously NP-hard. On the
other hand, as all conditions are memoryless (i.e., Markovian),
the optimization problem can be considered as Markov deci-
sion process (MDP). Fortunately, as one of the most popular
machine learning techniques, the reinforcement learning (RL)
approach can be efficiently applied to MDP. So, we use RL
to solve the optimization problem in (24).
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In our approach we define the state set Sq as formed by all
possible battery level values of SBSs and all possible locations
of MBSs, SBSs, and UEs. We can then see that Sq C R?’,
i.e., the state set is a subspace of three-dimensional real space
because all values in the state set are continuous. Moreover,
notice that there are 3l9mBs+¢sps] types of actions for the
agent to choose from at the beginning of each time slot, so
the action set Sp is very large. Therefore, we use a W-DDPG-
based algorithm to perform optimization in (24). Notice that
under these conditions, the action space is a large discrete
space. However, the DDPG is used for actions with continuous
values. So, in our approach we adopt the method in [36] to
map the continuous action set to discrete action sets.

C. Brief Introduction of DDPG

DDPG is a reinforcement learning framework that can han-
dle the continuous action sets based on the original actor-critic
algorithm. As DDPG is the advanced algorithm of the actor-
critic algorithm, it has four types of neural networks: 1) the
online actor net, 2) the target actor net, 3) the online critic
net, and 4) the target critic net. The architecture of the online
actor net is the same as the target actor net. Also, the archi-
tecture of the online critic net is the same as the target critic
net. Each of these four neural networks is constructed with
several fully connected neural layers, and all layers contain
their corresponding parameters. All parameters in a neural
network are denoted as . The critic net is used to approx-
imate the Q-table by using neural networks, while the actor
net is trained to generate a deterministic policy, which is differ-
ent from the stochastic policy gradient algorithm that chooses
a random action from a giving distribution. Given the instan-
taneous state s(t;) € Sg and the action a(ty) € Sy, if the
policy of actor: p, is deterministic, the Q value under policy
1 can be expressed as

Q" (st,at) = Epy 5, ~np[r(st,a2)

+ Q" (st1, u(st41))]] (25)
To simplify the above expressions, we use s; to denote
s(ty) and sy41 to represent s(ty) and s(ty + Ats), respec-
tively. Similarly, a(t,) and a(ty + Ats) are replaced by ay
and a4, respectively. r(s¢,a;) is the reward of the state-
action pair (s¢,a¢), and ¢ is the reward at time slot 7. ~y
stands for the discount factor in Bellman equation, and ¥ is
the corresponding expectation distribution for s;41 and ry.
Based on the Bellman equation, the loss of the critic net is

defined as
Lo(HQ):E (Q(st, atleQ)—yOz] (26)

stp¥ ap~th, Te~ Bu

where p¥ corresponds to the distribution of the state s; under
the current deterministic policy v, and Ev represents the envi-
ronment. #¥ is a parameter vector that includes the weights of
all neurons in the online critic network. y; in (26) is defined
as follows,

Yyt = T(Styat)JrVQ(StH, N(St+1)‘9Q>~ 27)
The policy of the actor net will be updated based on the output
of the critic net, where the gradient-based method is used to
update the online actor net as (28), shown at the bottom of
the page, where 6* is the parameter vector of the online actor
net.

The training process can be described as follows.

First, with action p(s¢) given by the actor net, a noise n;
will be added to u(s) by the DDPG agent, and the action
becomes a; = pu(s¢) + n¢. After action a; is taken, the
DDPG agent will observe a reward r; and the next state sy
(changed from s; due to the interaction between the agent
and the environment Ev). Then, DDPG will store the expe-
rience set (s¢,at, r¢,S¢41) in the experience replay buffer B.
Subsequently, N, sets of experiences are randomly selected
by the DDPG agent from buffer B to construct a mini-batch.
Simultaneously, N, sets of experiences are transferred into
both the actor net and critic net. Subsequently, the actor target
net outputs action z/(s; + 1) based on 0 to the critic tar-
get net. According to the experience sets in the minibatch and
w'(s¢ + 1), the target critic net can calculate y; based on (27)
and input it to the online critic net [5].

With a given optimizer, e.g., Adam optimizer in this
article, the online critic net will be updated. Afterwards,
the online actor net gives action u(s;) to the online
critic net to achieve the gradient of the corresponding
action, VaQ(s, a|0Q)\S:sha:u(St). With the optimizer of
the actor net, the parameter gradient of 0* can be derived
by Vguu(s|60#)|s=s,. Based on the two gradients, i.e.,
VaQ(s, a|9Q)|S:S“a:#(St) and Vgupu(s|0")|s=s;, the online
actor net will be updated with the approximation as (29),
shown at the bottom of the page [28].

Finally, DDPG updates the target nets in both the critic and
actor net with a small constant 7, i.e.,

09" — 709 4 (1- 7')9@,
o — M 4+ (1 — 7)o" . (30)
D. Wolpertinger Based DDPG

The Wolpertinger based DDPG (W-DDPG) is first proposed
in [36] to assist deep reinforcement learning in large discrete
action sets. The W-DDPG architecture used to map the output
of a neural network from a continuous space R" to a discrete

Voud ~ B,y {an(s, a’&Q)

st acisn) Vor (516" ls=s, | (28)

Nba

Vould ~ Niba 3 {VBQ(S, a’9Q>

1=1

(29)

s=s; ,a:u(si)VQN p(s[60") |s=si }
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(5:8,75.)
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Replay buffer

Randomly pickup N, experiences

Minibatch

Fig. 3.

‘W-DDPG architecture.

action space Sp. First, let’s consider the proto-action, which
is generated by the online actor net of a W-DDPG agent,

fe‘/r . S—>Rn,

Jor (st) = &, (31)

where 67 is the parameter of the online actor net of W-DDPG,
for (+) is a function parametrized by 6™, mapping from the
state representation space to the action representation space:
R™, and a; € R™ is the continuous proto-action at time slot z.
This function provides a proto-action a; in R™ for a given state
s¢. However, in most cases, proto-action is not a valid action,
i.e., we have a; ¢ Sp. Therefore, a new method is needed to
map from a; to an element in S . In order to address this, we
have,

g : R" — Sy,

gr(a;) = argmin |a; — &y, (32)

a;ESA
where g;. is a k-nearest-neighbor (k-NN) mapping from a con-
tinuous space to a discrete set. It returns the k actions in Sp
that are closest to a; by L2 distance. We use k-dimensional tree
searching to find the k-NN of a; [37], which has sub-linear
temporal complexity.

However, sometimes actions with low Q-values may be
the closest action to a; even in a part of the space where
most actions have a high Q-value. Moreover, the selected low
Q-value actions may misguide the agent with the real Q-value
of a;, and further reduce the performance of the whole algo-
rithm. Thus, simply generating the actions based on (32) is
not ideal. To avoid picking these low Q-value actions, we
can improve the choice of action by selecting those with the
highest Q-value based on Q(s¢, as|0?),

arg max

ar gy (for (s¢)) ¢ (St7 at ‘HQ )’

where 7y is the policy of the W-DDPG. By defining the
action generated by the target actor net as a/ = fy7(s¢), the
architecture of the W-DDPG is shown in Fig. 3.

Here, we use an Ornstein-Uhlenbeck based process to gen-
erate exploration noise [28], in order to ensure the agent looks
for other possible actions. The generating process of the noise

7T9(St) = (33)

term n; is defined as N/. The state, reward, and action in the
algorithm are defined as follows;

State: The state of the HUDN at time slot, ¢, (i.e., s¢) is
defined as a matrix that includes the information on the posi-
tions of MBSs, SBSs, and UEs, as well as the battery levels
of SBSs. It can be expressed as,

xmy (t) ymi (1) 0
: lomBs] : |émBs) : émBs]
xs1(t) ys1(1) bl (t)
8t = EL¢>SBSJ EL¢>SBSJ ELdJSBSJ (34)
zuy (1) yur (1) 0
E|_<1>UEJ EL<Z>UEJ EL<}5UEJ
| TU ) (t) TU | (t)

Action: The action of the W-DDPG agent at time slot ¢,
i.e., a; is defined as a vector that includes information of the
positions of MBSs, SBSs, and UEs, as well as the battery level
of each SBS. It can be expressed as,

a; = [aml(t), amp(t), ..., amigp, .o (1),

T
s 08| pgps] ] , 35)

asi(t), asa(t),...
with
1 if M1 action is selected
2 if M2 action is selected ,
3 if M3 action is selected

am;(t) = (36)

and

1 if S1 action is selected
2 if S2 action is selected .
3 if S3 action is selected

asy(t) = (37)

Reward: The reward received from the environment at time
slot, ¢ (i.e., 1) is defined as r = Efy, ().

Therefore, the corresponding algorithm can be presented as
Algorithm 1.

IV. SIMULATION RESULTS

In this article, the actor net and critic net each has two hid-
den layers of fully-connected units with 500 and 400 neurons.
The capacity of memory B is set at 10000 and the size of the
mini batch is set as Np, = 128. The discount factor vy is set
as 0.95. The small constant 7 is configured as 0.001, and the
exploration rate ¢ is set as 0.01. Based on [31], [32], [35], the
parameters of power consumption models (5) and (6) are set
as pstr = 1 W, npg = 8, poy = 0.7 W, pgp = 1.6 W,
oge = 0.08, oms = 0.1, psst = 5 W, ppypgr = 20 W,
Pmotr =4 W, Pmhrf = 10 W, Pmorf = 4W, prnpy = 10 W,
Pmobb = 4 W and pps¢ = 1000 W. The Wolpertinger archi-
tecture is set to search for the 100 nearest neighbors of the
proto-action. Other defaulted parameters are configured as
Table III.

The average energy efficiency, Efy , with respect to the
number of different RL methods, is shown in Fig. 4. We
compare the proposed W-DDPG algorithm with other two
algorithms, i.e., the regular DDPG and DQL. As the outputs
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Algorithm 1 W-DDPG
1: Randomly initialize critic net )y and actor net fy~ with
weights 9? and o,
2: Initialize target networks @Qyq and fyr with weights
99" — 09 and 7 — ¢

3: Initialize replay buffer B;
4: for episode = [1, Maz,] do
5. Initialize a random process A for action exploration;
6:  Receive initial observation state sq;
7. for t =[1, Max] do
8: Select action a; = my(s¢) according to the current
policy;
9: Execute action a; = mg(s¢) and observe reward r¢
and new state s;1;
10: Store transition (s¢,ag, 1¢,8¢41) in B;
11: Sample a random minibatch of N, experiences
(St, at, t, St+1) from B;
!
12: Set y; = r(s,ar) + ’YQ(StJrl, feT(StJrl)’@Q );
13: Update the critic by minimizing the loss:
1 ]Vba )
1o0) = 3 (- 0fs o))’
7
14: Update the actor using the sampled gradient:
1 j\lba (2
Vol ~ ,; & VaQ(s: 8109) |sms, ipyr 50
Voo e, )
15: Update the target networks softly:

09" — 709 + (1 —7)0?
0T — 7™ + (1- T)GT

16:  end for

17: end for
TABLE III
VALUES OF SYMBOLS USED IN SIMULATION

Symbol Definition/explanation Value
Maz. Maximum training episodes 500
Max Maximum training steps 1000
ap Path loss exponent 3.5
Aty Length of a time slot 1s
Ptotr Transmit power of TV towers 960 Kw
ftn Transmission frequency of tvy, 512-524 Mhz
Ht, Height of the TV tower tv, 114-125 m
din Distance between tv,, and sby 1-3 Km
Hsy Height of the receiving antenna of sby 10 m
Gmo Antenna gain for omnidirectional transmissions 10 dB
Gmh Antenna gain for hybrid precoding transmissions 180 dB
on The standard deviation of Gaussian noise 0.01
Bamp Transmission bandwidth of action M1 and M3 2 Ghz
Bagp Transmission bandwidth of action S3 2 Ghz
Bamo Transmission bandwidth of action M2 10 Mhz
blmax Capacity of the battery of SBSs 10000 J
Bir Threshold of battery level 1000 J

of a regular DDPG agent correspond to continuous actions,
we adopt a simple method to discretize them. For an arbitrary
(ag)i, if 0 < (az); < 3, then (a;); < Ro((a¢);), where Ro(-)
is the round function. If (a;); < 0 or (a;); > 3, then (a;);

Average energy efficiency Ef;m [Mbits/Joule]

—— | 6 ygs) =1 | & ggs/=5. | & ) =50, W-DDPG
10 16 ygs) =1 | @ gg/=5. | 6 /=50, DDPG
[ ¢ ms)=1: | @ ggs /75, | 6 ) =50, DAL
8 J
6 J
4 ‘ ‘ . s ‘ : ‘ . .
0 50 100 150 200 250 300 350 400 450 500
Episode
Fig. 4. Optimized average energy efficiency with respect to different RL
methods.
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Fig. 5. Average energy consumption with respect to different RL methods.

will be clipped to ensure 0 < (a;); < 3. The structure of the
neural net of the DQL algorithm used here is the same as in W-
DDPG and DDPG, i.e., two hidden layers of fully-connected
units with 500 and 400 neurons. As we can see, the energy
efficiency of W-DDPG is the highest, while the energy effi-
ciency of DQL is the lowest. This is mainly because the DQL
algorithm is not suitable for solving tasks with large action
spaces. On the other hand, compared with the original DDPG
algorithm, the k-NN algorithm supported by W-DDPG can
effectively prevent the agent outputting a low Q-valued action
after the discretization process. Also, for all three algorithms,
the average energy efficiency, Ef; , increases with a rise of
the learning episode. This result indicates that our W-DDPG
method can help the agent to achieve a better optimization on
the energy efficiency of the HUDN.

An average energy consumption with respect to different
RL methods is shown in Fig. 5. As can be observed, the gaps
in average energy consumption among these three algorithms
are not as large as the gaps in Efy" . This is because the
value of p;s, which is constant and cannot be optimized,
is much larger than any other type of energy consumption.
Thus, the influence of different algorithms on the average
energy consumption is not significant when compared with
the average energy efficiency Ef;’ .
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The average throughput with respect to different RL meth-
ods is shown in Fig. 6. The average throughput of the
W-DDPG algorithm is the highest compared with the other
two algorithms. Also, the simulation results in Fig. 6 seem to
follow the same trend as in Fig. 4. This is also because of
the large value of pp,s¢, which enables the agent to improve
energy efficiency, hence reduce power consumption. As a
result, the agent can optimize average energy efficiency, Efy" ,
by increasing the average throughput.

The average energy efficiency Ef;; with respect to the num-
ber of UEs, |¢yg] is depicted in Fig. 7, which shows how
the energy efficiency increases as |¢yg | increases. This is
because the throughput of the networks mainly depends on
the number of communication requests from UEs, while the
energy consumption increases more slowly than the through-
put. On the other hand, when |¢ | is fixed, we can see that
Efy increases at higher training episodes, which indicates the
impact of the W-DDPG method. Also, similar to the result in
Fig. 4, the performance of the W-DDPG algorithm is bet-
ter than the performance of the DDPG algorithm. Moreover,
as we can observe from Fig. 4 and Fig. 7, the performance
gaps between these two algorithms increase with an increase
in the size of the action space. This result verifies that it is
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Fig. 9. Average throughput with respect to |¢ g |-

more important to adopt W-DDPG for tasks with large action
spaces.

The average energy consumption with respect to the number
of UEs |¢yg] is shown in Fig. 8. As shown, the energy con-
sumption increases as |¢yp| increases. On the other hand,
when |¢yg| is fixed, the energy consumption decreases at
a higher training episode. Moreover, the decrease of aver-
age energy consumption is more noticeable when |¢yg| =
150. Since there are too many communication requests when
l¢ur] = 150, all base stations in the network have to deal
with heavy traffic loads. Under these conditions, energy con-
sumption of the HUDN increases rapidly and this provides
better opportunities for the RL agent to reduce energy con-
sumption by selecting actions with higher average rewards.
In contrast to the result in Fig. 5, gaps in average energy
consumption between the W-DDPG algorithm and the DDPG
algorithm become significant. This is mainly because any
increase in the size of the action space makes the DDPG agent
more likely to output actions with low Q-values.

Fig. 9 shows the average throughput with respect to the
number of UEs | ¢ g |. As can be seen, the average throughput
increases with an increase of |¢yg|. However, when |¢ g |
is fixed, the throughput performance of the W-DDPG method
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becomes more significant when | ¢ g | = 100. This is because
the throughput of the network is restricted by an insufficient
number of communication requests from UEs when |¢ g | =
50, while the number of base stations is not enough when
l¢ug] = 150. Thus, the effect of the W-DDPG method is
inadequate in both cases. On the other hand, when |¢yg| =
100, the number of UEs and base stations is more balanced.
Therefore, in this case, the W-DDPG is capable of improving
the performance. Also, similar to the results in Fig. 7 in terms
of throughput the W-DDPG outperforms the DDPG algorithm.

Fig. 10 shows the probability of the appearance of actions
with respect to | ¢ g |. As we can observe, this is quite differ-
ent with varying values of | ¢ ;7 |. This further verifies that the
proposed RL-based structure can effectively change the policy
to improve the performance of the network. Notice that as the
value of |¢ g ]| becomes larger, actions S1 and S2 become
more likely to be selected by the RL agent. As the traffic
demand and energy consumption of the HUDN rises with the
increase of |¢yg], the RL agent changes the policy to con-
trol the SBSs to harvest more energy. If the battery level of an
SBS is below By, the traffic will be handed off to the MBSs,
which are more energy consuming. When |¢yg| = 50, the
RL agent may prefer to allow more traffic to be carried by
MBSs. Since the average distance between BSs and UEs is
large, using MBSs with larger transmission power to carry
more network traffic can effectively improve the throughput
of the HUDN. When |¢yg| = 100, the average distance is
small enough for SBSs to carry more network traffic. Thus,
in this case the RL agent prefers to select more M3 actions
to charge the SBSs and carry traffic simultaneously. When
l¢ur] = 150, the number of UEs is too large for SBSs to
handle because of battery limitation. Therefore, in this case
more UEs will be automatically assigned to MBSs. Also, as
more S1 actions are selected by SBSs, more energy is har-
vested from TV towers to reduce energy consumption from
the power grid. Thus, less M3 actions are selected by MBSs,
compared with the case of |¢yg| = 100.

The average battery level with respect to |¢yg | is shown
in Fig. 11. As we can see, when |¢yg]| is fixed, the
average battery level converges with the rise of the train-
ing episode. Moreover, the converged battery level of the
HUDN decreases as |¢pyg] increases. This is because an
increase in traffic demand requires higher energy consumption.
Another interesting result is that the average battery level with
|¢ur] = 150 decreases at the beginning of training and then
increases after the training episode becomes larger as more
actions will be explored. More specifically, the agent concludes
that energy efficiency is higher when more communication
requests are carried by SBSs.

1001
65 ‘ ‘ ‘ ‘ ‘
1 ¢ s /=3 [ 6 5ps)=10. [ 6 =50, W-DDPG
o [ 6 ygs)=3 | ¢ gpg/=10. | 6 /=100, W-DDPG |
16 ygs)=3: | @ gps /=10, | 6 /=150, W-DDPG
— 55 4
B
©
>
2501 J
>
2
©
o
© 451 4
j}
o
o
>
< ol J
V""\/"’
35 3
30 s s s ‘ ‘ ‘ | |
0 50 100 150 200 250 300 350 400 450 500
Episode
Fig. 11. Probability of action appearance with respect to |¢ ;g ].

V. CONCLUSION

This article mainly focuses on developing methods to
optimize the energy charging efficiency of Heterogeneous
ultra-dense networking (HUDN). Efficiently controlling data
transmission and energy harvesting can profoundly influence
the overall performance of HUDN. The main challenge is to
how to optimally control both, which cannot be solved by reg-
ular optimization methods such as convex optimization. This
is because the amount of harvested energy mainly depends on
the transmission environment, which is highly random and
difficult to predict. Advances in artificial intelligence (AI)
technology can be utilized to solve the combined energy har-
vesting and communication optimization problem Therefore,
in this article we first establish a theoretical network model
to derive the optimization problem. Then, a reinforcement
learning-based framework is considered to optimize the energy
efficiency of the HetNet. We specifically develop a W-DDPG-
based algorithm to deal with the large discrete action space
in the learning task. The simulation results verify that the
proposed W-DDPG-based method outperforms DQL, as well
as the original DDPG based method.
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