
Field-dependent dehydration and optimal ionic

escape paths for C2N membranes

Miraslau L. Barabash,† William A. T. Gibby,† C. Guardiani,†,‡ D.G. Luchinsky,†,¶

B. Luan,§ A. Smolyanitsky,∗,‖ and P.V.E McClintock∗,†

†Department of Physics, Lancaster University, Lancaster LA1 4YW, UK

‡Department of Mechanical and Aerospace Engineering, Sapienza University, 00184 Rome,

Italy

¶KBR, Inc., Ames Research Center, Moffett Field, CA 94035, USA

§Computational Biological Center, IBM Thomas J. Watson Research,

Yorktown Heights, NY 10598, USA

‖Applied Chemicals and Materials Division,

National Institute of Standards and Technology, Boulder, CO 80305, USA

E-mail: alex.smolyanitsky@nist.gov; p.v.e.mcclintock@lancaster.ac.uk

Abstract

Most analytic theories describing electrostatically-driven ion transport through

water-filled nanopores assume that the corresponding permeation barriers are bias-

independent. While this assumption may hold for sufficiently wide pores under in-

finitely small bias, transport through sub-nm pores under finite bias is difficult to

interpret analytically. Given recent advances in sub-nm pore fabrication and the rapid

progress in detailed computer simulations, it is important to identify and understand

the specific field-induced phenomena arising during ion transport. Here we consider an

atomistic model of electrostatically-driven ion permeation through subnanoporous C2N
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membranes. We analyse probability distributions of ionic escape trajectories and show

that the optimal escape path switches between two different configurations, depending

on bias magnitude. We identify two distinct mechanisms contributing to field-induced

changes in transport-opposing barriers: a weak one arising from field-induced ion de-

hydration and a strong one due to the field-induced asymmetry of the hydration shells.

The simulated current-voltage characteristics are compared with the solution of the 1D

Nernst-Planck model. Finally, we show that the deviation of simulated currents from

analytic estimates for large fields is consistent with the field-induced barriers and the

observed changes in the optimal ion escape path.

1 Introduction

Ionic permeation through nanopores in atomically thin membranes has attracted consider-

able and ever-growing attention in the past decade, for reasons that are both fundamental

and practical in nature.1,2 There is a wide range of applications including fuel cells,3 water

desalination,4–8 DNA sequencing,9–14 and “blue energy” harvesting.15 It is expected that

achieving control over the permeability and selectivity of nanopores will be critically impor-

tant in developing future applications .16 However, the problem of describing and predicting

the selective conductivity of nanopores remains a formidable task.

Numerous phenomena combine to make this problem especially challenging, including

the formation of water layers and electrical double-layers near the membrane surface,17

fragmented dehydration of the ions near and inside nanopores,18 non-trivial variations of

the local polarizability within the pore where it may differ from the bulk value by an order

of magnitude,19 effects of polarization,20 and quantum mechanical interactions within the

material near the pore.21 The complexity is further increased in the presence of a non-

negligible externally applied electrostatic field, which complicates direct comparisons with

analytical theories assuming near-equilibrium ensembles. Beyond non-equilibrium-related

complications, external fields are expected to induce nontrivial rearrangement of hydration
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shells, water and electric double-layers. Because neither in realistic simulations, nor in

experiments, can the electrostatic bias be assumed neglibible, a more complete understanding

of field-induced phenomena is critical for interpretation of the experimental and simulated

data.

Here we demonstrate several bias-induced phenomena affecting ionic transport through

subnanometer pores by studying the molecular dynamics (MD) trajectories of ions perme-

ating a single-layer C2N membrane. We focus on the effects arising due to asymmetry of the

hydration shells near the pore. This asymmetry is a generic feature of the permeating ions’

local environments, as identified in earlier works,4 yet its effect on permeation has not been

considered. Although C2N membranes possess the very high pore density of 1.62×1018 m−2,

we have not observed significant effects specifically caused by the close inter-pore spacing.

Therefore, the results presented here should be quite generally applicable to sub-nm pores in

two-dimensional membranes, regardless of pore density. Moreover, the high pore density in

C2N ensures essentially zero access resistance,22 thus enabling us to focus on the local bar-

riers. The results presented below were obtained from non-polarizable classical simulations,

which are broadly applicable to non-metallic membrane materials, including C2N, which

has been shown to be semiconducting.23 The results should therefore be directly relevant to

non-metallic 2D materials. At the same time, the fundamental mechanisms responsible for

the bias-induced effects on the permeation barriers shown here should remain intact for elec-

trically conductive membranes. Similarly, although we report on electrostatically-driven ion

transport, there remains a degree of qualitative applicability to osmotically-driven systems

that feature high transmembrane electric fields from local charge accumulation.

To facilitate our analysis, we use the prehistory and post-history of ionic trajectories

crossing the pores and study changes in the number and distribution of oxygen and hydro-

gen atoms surrounding the ions along the escape path. We show that, as the strength of the

external electrostatic field is increased, the statistically significant ion escape path bifurcates

and transitions to a different route. This transition correlates with the dependence of the
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current on the strength of the applied field. We further show that the observed behaviour

is closely related to the two mechanisms for bias-dependence of a barrier identified here.

Importantly, we demonstrate that the height of the barrier depends, not only on the num-

ber of water molecules in the hydration shells, as is conventionally assumed,24–26 but also

on the field-induced change in this number (1st identified mechanism) and on the closely

related asymmetric deformation of the hydration shells (2nd mechanism). We demonstrate

that the 1st mechanism is weaker than the 2nd. We note that many nanopores possess sig-

nificant dehydration-associated permeation barriers, making our results widely applicable.

It is therefore our hope that these findings will constitute another step toward a by-design

approach to ion transport in nanofluidics.

The paper is organised as follows. In the next section we provide the details of our MD

model. In Sec. 3 we discuss the trajectories crossing the pores and their most probable

paths. The populations of the hydration shells along the escape path and the field-induced

dehydration barrier are discussed in Sec. 5. The field-induced effects on the barrier, including

the asymmetry of the electric double-layers and water layers near the pore, the corresponding

changes in the asymmetry of the hydration shells, the resultant asymmetry of the induced

transition barrier (2nd mechanism), and the current are discussed in Sec. 5. Finally, we

summarise this work in the Conclusions, Sec. 6.

2 Model

We consider a single layer of C2N
27,27–30 immersed in 0.5M aqueous potassium chloride, as

sketched in Fig. 1. The choice of potassium chloride is for consistency with a wide range

of earlier experimental work, as well as due to its natural abundance and biophysical rele-

vance. Note that although this work focuses on the effect of field-induced asymmetry of the

hydration shells during cation permeation through cation-selective pores, the fundamental

mechanisms responsible for the permeation barriers are expected to be the same for an-
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Figure 1: Model of a C2N membrane immersed in aqueous KCl solution. The nitrogen and
carbon atoms in the C2N lattice are shaded blue and dark-grey, respectively. Water is shown
as a blue transparent surface; potassium and chloride ions are shown as red and green balls,
respectively.

ions permeating anion-selective pores, thus suggesting qualitative applicability of our results

regardless of ion charge.

The partial atomic charges in the C2N lattice, obtained using density functional theory

calculations set up according to earlier work,31,32 are -0.31e for nitrogen and +0.155e for

carbon atoms. The Lennard-Jones parameters were set according to the OPLS-AA force-

field33 (σNN = 0.325 nm, εNN = 0.71128 kJ/mol; σCC = 0.355 nm, εCC = 0.29288 kJ/mol).

Aside from the harmonically restrained atoms at its perimeter, the C2N membrane was sim-

ulated as fully flexible. The corresponding bonded parameters for C2N and the rest of the

simulation components were set up according to the standard OPLS-AA33 framework. To

study the permeation trajectories of potassium ions, a static electric field was applied in the

direction normal to the plane of the membrane with a strength varying between 0 and 300

mV/nm. The rectangular simulation box size was 4.38 × 4.22 × 5.0 nm, where the mem-
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brane was located in the xy-plane at z = 2.5 nm and featured 30 periodically positioned

nanopores with an effective spacing of 0.551 nm (see Fig. 1). Typical counts of C2N atoms,

water molecules, and dissociated salt ions in the system were 540, 2750, and 60 (30 on each

side), respectively. Prior to production simulations, all systems were subject to relaxation

in the semiisotropic NPT ensemble (box size constant in the XY -plane, barostat-controlled

Z). The production simulations were performed in the NVT ensemble. All simulations were

performed with periodic boundaries applied in XY Z and were carried out using GROMACS

v. 2018.1.34–36 For production simulations, a time step of 2 fs was used, and trajectories were

tracked for at least 300 ns at each value of the applied electric field. The TIP4P water model

was used,37,38 yielding a bulk dielectric constant of ε ∼ 53. All ion trajectories crossing the

nanopores were collected. The positions of oxygen and hydrogen atoms within two hydration

shells of the ion were recorded at given distances from the pore corresponding to the escape

process.

Our statistical analysis of these trajectories and the corresponding distributions of ions

and water molecules in the system as a function of the applied electric field will now be

presented and discussed.

3 Trajectories and prehistory probability distribution

3.1 Trajectories.

Typical examples of trajectories obtained in MD simulations for potassium ions crossing the

pores are shown in Fig. 2 for electrostatic field values of 50 (a) and 200 mV/nm (b). It can

be seen from the figure that the ions dwell at a well-defined location at z = 2.4 nm (0.1

nm below the membrane plane) prior to their escape through the pore to the other side of

the membrane. After the escape, ions appear to dwell at z = 2.6 nm, (0.1 nm above the

membrane plane). As the applied field is increased, the pre- and post-escape locations of

the escaping ions symmetrically shift away from the membrane to ≈ 2.0 nm and ≈ 3.0 nm,
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Figure 2: Molecular dynamics trajectories crossing the pore for applied fields of (a) 50
mV/nm and (b) 200 mV/nm.

respectively. Unsurprisingly, the post-escape location is reached rapidly. These changes in

trajectory with increasing field depend on many factors, including the dehydration of the

ions and the structure of the electric double-layers, and these are considered in more detail

below.

3.2 Prehistory

Initial insight into the ionic permeation process can be obtained from an examination of

escape trajectories. The statistically significant structure of these trajectories can be ob-

tained from the prehistory probability distribution (PPD).39–41 The underlying concept is

that the probability of observing an ion escaping near the boundary xf of the attractors of

two metastable states is small, due to the relatively high transition barrier separating them.

In this system the boundary separates the pre-escape and post-escape bulk solutions. Here,

the pre-escape bulk solution corresponds to the bulk solution below the membrane shown in

Fig. 1. Note that cations escape in the direction of the field, i.e. to the post-escape region

above the membrane. In Figs. 2 and 3, the state transition from pre- to post-escape occurs

within ≈ 30 ps. The time intervals between successive escape events are relatively large,

and they are expected to exceed the system’s characteristic relaxation time for reaching
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quasi-equilibrium. Thus escape events are mutually uncorrelated, so that the PPD can be

expressed via the probability density functional P [x(t)] of the trajectory x(t) of the system.42

ph(x, t;xf , tf ) = ρ(xf , tf ;x, t|xi, ti)/ρ(xf , tf |xi, ti) = [ti → −∞][∫ xf (tf )

≈xeq(ti)
Dx(t′)δ(x(t)− x)P [x(t)]

]
×

[∫ xf (tf )

≈xeq(ti)
Dx(t′)P [x(t)]

]−1 (1)

where ρ(xf , tf ;x, t|xi, ti) is the conditional probability density for a system placed initially

at xi to pass through the states x at the instants t and arrive to the state xf at the final

time tf , while ρ(xf , tf |xi, ti) is the two-time transition probability. To eliminate dependence

of the PPD on the initial state the limit being taken in which the initial instant ti goes to

−∞. The importance of the initial state (xi, ti) in the definition of the prehistory probability

distribution can be understood if we recall that the particle can arrive at the barrier (xf , tf )

from different basins of attraction. For example in our system there are two such basins

– the two bulk solutions. Accordingly, the limit (ti → −∞) has to be taken with care to

ensure that the particle remains within the same basin of attraction at all times during the

analysis.

Empirically the PPD can be found by collecting all the trajectories that move the system

to the state xf from a given basin of attraction, setting the final time for all trajectories to

a fixed value tf and building the distribution of all such trajectories. This concept has been

shown to be useful for analysis of the dynamics of comparatively rare fluctuational escape

events in systems that are locally far from thermal equilibrium.40,43

To apply this concept to the ions’ escape through C2N, we note that all escape trajectories

have a clearly resolved time marker corresponding to the instant an ion is located in the

plane of the membrane. Also, as noted above, escape events are well-separated in time: i.e.,

while the transition of one ion takes around 100 ps, the time interval between transitions is

considerably longer, being on the order of 10 ns or more. It then becomes possible to collect
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Figure 3: Prehistory probability distribution obtained using molecular dynamics for applied
fields of 0.05 (a) and 0.2 (b) V/nm.

the escape trajectories of K+ ions and superimpose them using the escape time marker, thus

separating the pre- and post-escape portions of all trajectories. Finally, the 2D histograms

of the superimposed trajectories are built to reveal the expected paths for ions to approach

the membrane (pre-history) and to leave it on the other side of the pore (post-history). The

resulting prehistory probability distributions are shown in Fig. 3 for applied fields of 0.05

and 0.2 V/nm. We can see that there exists a most probable escape path (MPEP) for ions

approaching the pore in each case. Interestingly, the location of the MPEP shifts as the

applied field is increased, in accordance with the results shown in Fig. 2. It can also be

observed that the location of the ridge of the MPEP coincides with the peaks of the K+ ion

distributions shown on the vertical back planes of Fig. 3 by blue bars. Finally, we note that

an ion is ejected quickly from the pore into the other bulk, as soon as it has crossed the

membrane plane.

The dynamics of ionic permeation is strongly affected by the potential of the free energy

landscape44 and by the applied electric field, as will be discussed below.
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4 Field independent hydration shells

Here we consider the connection between ionic permeation and the potential of the mean

force (PMF). Following convention,45–47 we assume that the PMF can be decomposed into

components related to the dehydration, Lennard-Jones and electrostatic interaction energies.

We also assume that the effective total potential is the sum of the external electric potential,

the single ion PMF, and other terms to take account of long range electrostatic interactions in

an inhomogeneous dielectric environment.48,49 Within this approach we consider dehydration

to be a function of the average number of water molecules in the hydration shells of the

permeating ion.24

We will summarise the limitations of the conventional approach at the end of this section

and will present the results of an extended analysis in Sec. 5.

4.1 Potential of the mean force

As mentioned above, the dynamics of the permeation process is strongly affected by the free

energy landscape. For zero and small applied fields, the Gibbs free energy as a function

of the effective reaction coordinate can be approximated by the PMF shown in Fig. 4 (a).

The PMFs in this work were calculated by combining umbrella sampling simulations with

the weighted histogram analysis method (WHAM).50 The sampling was obtained from disk-

shaped bins located at a series of Z-distances from the membrane, each bin parallel to it

in the XY -plane. The (X, Y )-location of ions restrained in the Z-direction within each bin

was sampled stochastically to obtain the corresponding histograms. For the PMFs shown in

this work, the effective reaction coordinate was the ions’ Z-separation from the membrane

plane.

A comparison of the PMF with the trajectories (Fig. 2) and prehistory distributions

(Fig. 3) show that the ions’ dwelling locations correspond to the two local minima of the

PMF. The applied field is forcing ions in the leftmost minimum to escape through the pore.
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Figure 4: (a) Potential of the mean force obtained in MD (black solid line with black-filled
circles) simulated at zero applied field using WHAM, compared to − log (ρ(z)) (blue dotted
line) and an analytic fit of the PMF with three Gaussians (red dashed line). The inset
compares the Gaussian fit (blue open circles) with exact MD calculations (red solid line)
of the Lennard-Jones potential. (b) Distribution of potassium ions ρ(z). For clarity, the
z-coordinate has been shifted by 2.5 nm to bring the pore location to z = 0 nm.

However, the high central potential barrier (∼ 10kT ) keeps the ions from escaping from this

local minimum for a relatively long time time, as compared to the time required to populate

it. For zero applied field, the locations of these minima can be found using the Boltzmann

distribution as51

〈ρ(z)〉 = Ae−βW (z),

where β = 1/kT and W (z) is the PMF: see Fig. 4 (a). It is generally expected that the

PMF should correspond closely to the natural logarithm of the distribution for K+ ions

in the system as a function of distance from the membrane − log (〈ρ(z)〉). Indeed, a close

correlation between the PMF and − log (ρ(z)) can be seen in Fig. 4 (a),

The distribution of K+ ions ρ(z), in the absence of a biasing field was obtained using

800-ns-long simulations by dividing the simulation box into 202 bins in the z-direction. The

deviation of − log (ρ(z)) from the PMF at the central peak location is attributed mainly to

the well-known problem of poor sampling of regions of high potential energy, with only a

few counts per bin at the barrier location. As mentioned above, it is customary to present
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the PMF as a sum of components arising from different physical interactions. In particular,

here the three peaks and two minima of the PMF are attributable to the interplay of three

main physical mechanisms: (i) the dehydration of the ion whilst passing through the pore;

(ii) the Coulomb interaction of the ion with the charged atoms of the membrane; and (iii)

the Lennard-Jones (LJ) interaction of the ion with the rim atoms. We note that the LJ

contribution does not depend on the electrostatic interaction or on dehydration. Within the

conventional approach,24,52 the ion’s dehydration is a function only of the pore geometry

(see next subsection). The simplest assumption, that the three components are mutually

independent, is therefore reasonably justified and the overall PMF is expected to be their

sum.

To illustrate this point, we fit the PMF curve using three Gaussian curves representing

the three distinct interaction mechanisms mentioned above, as shown in Fig. 4 (a). All of our

Gaussians are centered at the z-position corresponding to the membrane location (z = 0).

Utot = ALJ · e−
1
2
(z/σLJ )

2

+ AC · e−
1
2
(z/σC)2 + ADH · e−

1
2
(z/σDH)2 . (2)

We use the following values of the amplitude A and standard deviation σ: ALJ = 23.9 kT ,

σLJ = 0.078 nm, AC = - 36.4 kT , σC = 0.13 nm, ADH = 23.51 kT , σDH = 0.19 nm for the

Lennard-Jones (LJ), Coulomb (C), and dehydration (DH) interactions, respectively.

It is clear from the fitting results that the contributions of these different mechanisms

have comparable magnitudes (note, however, the negative sign of the Coulomb contribu-

tion) and similar values of standard deviation. The repulsive Lennard-Jones component is

spatially narrow, as expected, while the two minima at the sides result from the sum of

the dehydration and Coulomb contributions. We emphasize that the overall PMF can be

non-uniquely “constructed” from a variety of Gaussian curves and thus the considerations

above are provided mainly for qualitative illustration.
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4.2 Lennard-Jones interaction

In order to further calibrate this approach for semi-quantitative analysis, we compare the LJ

component provided by our Gaussian fit (the 1st term in Eq. (2)) with the results of explicit

calculations based on the parameters (εij and σij, see Eq. (3)) of the LJ interactions taken

from the corresponding OPLS-AA force field entries. The LJ interaction energy is calculated

as a function of the ion’s distance zi from the pore using the a priori known locations of the

carbon and nitrogen atoms

∆ULJ(zi) =
∑
j

4εij

 σij√
z2i + r2ij

12

−

 σij√
z2i + r2ij

6 . (3)

Here rij is the distance from the i-th ion to j-th carbon or nitrogen atom. The LJ con-

tribution was selected for calibration because it does not depend on the Coulomb or the

dehydration components, which themselves are non-trivially interrelated in general. The fit-

ted LJ contributions are compared with exact MD results in the inset of Fig. 4 (a). Details

of the fitting will be given elsewhere. Finally, the small oscillations observed in the tails of

the distribution between 0.5 and 1 nm are attributable to the double-layers of the K+ ion

distributions clearly seen in the Fig. 4 (b).

4.3 Ion dehydration in the pore

A key phenomenon affecting ion transport through sufficiently narrow nanopores is transient

dehydration, which occurs when ions must temporarily shed a significant portion of their

hydration shells in order to pass through the pore. As a result, the local ion-solvent interac-

tions weaken temporarily, causing a permeation-opposing energy barrier. In Fig. 5 (a), the

boundaries of the first three hydration shells of a K+ ion approaching a C2N pore are shown

as dashed lines, while the pore boundary is shown as the solid black line. The cross-sections

of the hydration shells being cut off by the pore region are colour-shaded.
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Figure 5: (a) Dehydration of a K+ ion during its passage through the pore. The pore profile
is shown by the black line, the inner radius of the 1st shell by the blue dashed line, the inner
radius of the 2nd shell (i.e. the outer radius of the 1st shell) by the cyan dashed line, and
the outer radius of the 2nd shell (i.e. the inner radius of the 3rd shell) by the red dashed
line. The volumes lost from the 1st and 2nd shells are shaded in blue and cyan. (b) The
dehydration potential barriers obtained by calculating: (i) dehydration volumes (blue solid
line); (ii) analytic fit (red triangles) using eq. (2); and (iii) MD calculations of the number
of oxygen molecules (Ox) in hydration shells (black dashed line).

Rough estimates of the resultant dehydration barrier can be obtained analytically as

described earlier.5,24 For instance, the energy contributed by each hydration shell can be

estimated as24

U0
j =

zq2

8πε0

(
1

εp
− 1

εw

)(
1

R0
j

− 1

RI
j

)
(4)

where R0
j and RI

j are the outer and inner radii of the shell, respectively; ε0, εp = 3, and

εw = 53 (for the TIP4P water model) are the permittivities of vacuum, membrane, and

water, respectively. The values of the RO,I
j were taken from24 to be 0.19, 0.38, 0.62, and 0.84

nm for the first three shells. The dehydration barrier is then calculated as the sum

∆UDH(x) =
∑
j

U0
j (fj(x)− 1) (5)

where fj(x) is the remaining geometrical fraction of the shell available to water molecules j

at distance x from the membrane along the pore axis. The estimated dehydration barrier

as a function of x is shown in Fig. 5 (b) as the solid blue curve. For comparison, we also
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show the results of the analytical fit (the last term in Eq. (2)) with red triangles. The black

dashed lines denote the average number of water molecules in the ion’s hydration shell,

as it permeates through the pore. For further details of these calculations, see section 5.2

“Field-induced dehydration.”

It can be seen from Fig. 5 (b) and the inset of Fig. 4 (a) that the Gaussian approximations

fit quite well both the Lennard-Jones ∆ULJ and the dehydration ∆UDH contributions to the

total PMF. As mentioned earlier, within the conventional approach, the latter contributions

are “exact” and independent, so that the decomposition of the PMF into three additive

components is well-justified. The final fit is shown in Fig. 6. There is good agreement between

the Gaussian approximation and the corresponding theoretical results for each component

and for the overall PMF.

We emphasise that, despite the good agreement between the simulated results and the

Figure 6: Results of triple-Gaussian fit of the PMF using Eq. (2). The overall PMF fit is
shown by black dashed line in comparison with the MD results depicted as red diamonds. The
Gaussians are shown by lines for the following contributions: (i) dehydration - cyan dashed-
dotted line; (ii) LJ - blue dotted line; and (iii) Coulomb - black solid line. The corresponding
theoretical approximations are shown by symbols: (i) ∆UDH - (5) cyan triangles; (ii) ∆ULJ -
(3) blue plus signs; and (iii) contribution due to Coulomb interactions (UCoul = Utot−∆ULJ−
∆UDH) shown as black pentagons. The Coulomb contribution has been halved to balance
all the contributions in the figure. The inset shows an estimate of the effective dielectric
permittivity of the channel as ε∗ = UCoul,vac/UCoul.
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additive Gaussian fits, the data presented should be considered only as a rough estimates for

the dehydration and Coulomb components. Specifically, the dielectric permittivity in (4) is

assumed to be constant and the two contributions are assumed to be independent. Within

the pore, neither of these assumptions is accurate.53 It can in fact be shown by estimating

the effective dielectric permittivity within the pore as ε∗ = UCoul,vac/UCoul. Here UCoul,vac

is the exact potential of the Coulomb interaction of the ion with the pore in vacuum and

UCoul = Utot − ∆ULJ − ∆UDH is the same potential in the solution. The resultant value

of ε∗, shown in the inset of the Fig. 6, is qualitatively consistent with earlier work.53 The

effective permittivity averaged between ±0.3 nm of the effective pore height is ≈ 3, the value

used for εp in Eq. (4). Estimation of the PMF components can be further refined iteratively.

For example, an iteration of ∆ULJ can be obtained by substituting εp with the spatially

distributed ε∗ (inset of Fig. 6). This substitution will modify ∆ULJ , which will in turn

modify ∆UDH . This iterative procedure can be continued in a self-consistent manner until

convergence of the corresponding PMF components is obtained. It should thus be clear that

the Gaussian-based approximations presented here provide only a zeroth-order estimation.

In the next section, we will discuss the coupling of the two contributions with each other

and with the external field.

4.4 Current-Voltage (I-V) relationships

In MD simulations, the ionic currents through the pores were obtained using two independent

methods. In the first method, we measured the displacement of all ions moving along the

z-direction during a given time interval.54 In the second, we tracked all ion transitions

through the pore.5,25 These are shown as trajectories in Fig. 2. The resultant current-voltage

dependence is shown in Fig. 7 (b). The two methods yield data within the uncertainties

associated with thermal fluctuations and the corresponding results are combined in the

figure.

Knock-on events were not detected between ions passing through pores and their mobile
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neighbors. The knock-on process requires that an ion dwells inside a pore for a period

longer than that required to experience at least one collision with another cation. However,

the corresponding collisional frequency is reduced due to the local electrostatic repulsion

between cations, similar to the case of ion-trapping crown ether-like pores in graphene.25

Importantly, we did not detect any instances of an ion being within 1 nm of another ion

that was permeating the pore. Transition events appear to be independent and separated

in time by at least 0.5 ns for large applied fields (≥ 200 mV/nm), and by about 5 ns

for applied fields of order 50 mV/nm. Because we observe no significant ion-ion coupling

during the permeation events, the use of coupling-free models to estimate the current-voltage

dependence appears warranted here.

Figure 7: (a) Ion’s electrochemical potential for various magnitudes of the applied field
shown in the legend in mV/nm; (b) Comparison between currents obtained from MD sim-
ulations (blue squares) and the solution of 1D PNP equation (8) shown by pink shaded
circles.

One such model is based on the 1-D Nernst-Planck (NP) theory,46,55 according to which

the current of a single conducting species (e.g., K+) through the pore is determined by the

concentration gradient (ñ(z̃)) and the sum of the electrostatic potential (φ) and the PMF
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(W PMF ) across the pore in dimensional units46

J̃ = −D̃
(
dñ(z̃)

dz̃
+
ñ(z̃)

kBT

d

dz̃

(
zeφ̃(z̃) + W̃ PMF (z̃)

))
. (6)

Here, ñ is the number concentration of K+ ions normalised by the bulk concentration, φ̃ =

φUT and W̃ PMF = W PMFUT , where UT = kBT/e and z̃ = z d where d is the distance

between left and right boundaries.

We note that when an external field is applied, the resulting effective total potential

within the conventional approach is assumed to be the sum of the external electric potential,

single-ion PMF, and other terms, which account for the long-range electrostatic interactions

in the inhomogeneous dielectric environment.48,49 Such an approximation can be used for

zeroth-order estimation of the current-voltage relations in our system, as we now discuss.

To further simplify the estimations for consistency with this zeroth-order approximation,

we assume that, within the channel, the dielectric environment is homogeneous and the

corresponding effective dielectric permittivity is ε∗ ≈ 3, as mentioned earlier in the Fig. 6

caption and the associated discussion. Approximating the potential profile as a sum of the

equilibrium PMF obtained from MD simulations (Fig. 4 (a)) and the corresponding voltage

drop due to the external field, we have

ψ̃(z̃) = zeφ̃(z̃) + W̃ PMF (z̃), (7)

where the voltage drop was calculated using the built-in utilities of the GROMACS package.

The resulting electrochemical potential is shown in Fig. 7 (a).

By integrating the NP equation along z, one arrives at:46

I = −zeDSeff
ñ(R)eψ̃(R)/kT − ñ(L)eψ̃(L)/kT∫ R

L
eψ̃(z)/kTdz

. (8)

Ionic currents estimated using Eq. (8) are compared with the results of MD simulations in
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Fig. 7 (b). We can see that the simplified picture of the electrochemical potential (8) can

capture a number of important features of the problem. In particular, the central barrier is

decreasing while the new potential minimum appears at location -0.75 nm. As a result, the

NP model allows us to reproduce the initial activation-type increase of the current-voltage

curve as illustrated in the Fig. 7 (b). However, the simple NP model does not capture the

deviation from the activation regime of the current-voltage curve observed for applied field

> 70 mV/nm. In addition, it does not explain the transition of the MPEP discussed in

Subsection 3.2 to the new location, because the old location at ∼ −0.135 nm remains the

deepest minimum on the left side of the membrane. This demonstrates the fundamental

inaccuracy of NP-based calculations using an artificially perturbed equilibrium PMF (Fig.

Fig. 7 (a)). Therefore, understanding the physical origin of the non-perturbative nature of a

realistic PMF under an external field is critically important. We will now show that further

insight into phenomena affecting the energetics and transport can be gained by analysing

the field-dependent dehydration and asymmetry of the hydration shells around the ion.

5 Asymmetry of hydration shells and field-induced bar-

rier

We now consider two phenomena that accompany ionic transitions through the pore under an

external field: the field-induced changes of the average number of water molecules surround-

ing the permeating ion; and the field-induced asymmetry of the corresponding hydration

shells, including those away from the immediate vicinity of the pores. Both phenomena will

be shown to induce an increase in the transition barrier. We discuss this in detail and

estimate the corresponding field-induced transition barriers.

We perform the analysis in two steps. First, we present the results showing the field-

induced asymmetry of the hydration shells. Next, we calculate the forces acting upon ions

within the asymmetric shells and estimate the resultant contribution to the transition bar-
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rier. Finally, we show that the observed current-voltage relationship and the changes in the

corresponding MPEPs are consistent with these field-induced effects.

5.1 Ions/water layering and symmetry

The effect of external bias on an ion’s passage through a subnanoscale pore is multi-faceted.

In addition to the first-order influence of the field on the ions’ dynamics discussed above,

the electrical bias also modifies water layering, electric double-layers, and the structure of

the hydration shells in and near the pore. These effects are in addition to the field-induced

concentration gradients and asymmetric charge accumulation at the two membrane surfaces.

Here we consider the field-dependent layered structures that form near the membrane

surfaces and affect ion transport. Predicting these structures is a nontrivial problem, espe-

cially in the presence of charged or dipolar pores. An example of the distribution of the

water oxygens near the pore is shown in Fig. 8 (a). Water layering is evident, consistent

with earlier findings.4,56 We also observe that these layers are fragmented near the pores,

with islands of increased oxygen density likely near the positively charged carbon atoms in

Figure 8: (a) Calculated distribution of water oxygens in the xz-plane for an unbiased
system (left) and with an externally-applied field of 200 mV/nm (right). (b) Potassium ion
distribution near the pore for two different applied electrostatic fields: 0 mV/nm (left) and
200 mV/nm (right). The white circles indicate the location of the 1st hydration shell centred
around the peak in the island of ions distributed below the pore.
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C2N. When an external electrostatic field is applied, the peak of the oxygen distribution in

the island directly below the pore increases significantly (note the different intensity scales in

the left and right panes of Fig. 8 (a)), while the similar peak on the opposite site decreases.

These changes are strongly correlated with the distribution of K+ ions near the pore, as can

be seen by comparing Figs. 8 (a) and (b).

For K+ ions, similar islands of symmetric high concentration above and below the pore

can be observed in both distributions for the unbiased system. The peaks above the pores

almost completely disappear under a high applied field. It can further be noticed that the

positions of the three peaks in the oxygen distribution coincide with the location of the

1st hydration shell of ions confined at the island below the pore. The symmetry of this

distribution is broken once again under external bias. It is expected (and confirmed by MD

simulations, as discussed in the next section) that the broken symmetry of the water and

ion distributions will also result in a strong asymmetry of the hydration shells with respect

to the membrane plane.

Figure 9: MD-simulated distributions of K+ (grey bars) and Cl− (blue bars) ions in z-
direction (a,d); number of oxygen atoms in the 1st (b,e) and 2nd (c,f) hydration shells of
potassium (grey bars) and chloride (blue bars) or applied field (a) 25 mV/nm and (b) 200
mV/nm.
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5.2 Field-induced dehydration

In addition to the simple geometry-based estimates provided in Subsection 4.3, in particular

Eq. (5), the dehydration barrier can also be estimated by the use of MD simulations, which

enable tracking of the time-dependent changes of the water environment of K+ ions as they

traverse the pores. The results of such a calculation are shown in Fig. 9 for two different

values of the applied field. As shown in the figure, when an ion is approaching the pore, the

1st hydration shell can lose up to 50 % of its water, while the 2nd shell can be reduced by

up to 35 %. We note that these values are consistent with earlier work describing similarly

sized pores.25 The resultant dehydration barrier can then be estimated using an equation

similar to Eq. (5):

∆Uw(x) =
∑
j

U0
j (fw,j(x)− 1) (9)

where fw,j is the fraction of the water molecules remaining in the shell as a function of

distance from the membrane. Importantly, the results obtained demonstrate that the number

of water molecules in the dehydrated shells depends on the applied field,

Figure 10: (a) Dehydration energy ∆Uw(x) obtained in MD as a function of position x
for different applied fields shown in the legend in mV/nm. (b) Field dependence of the
dehydration barrier. The squares show the mean value of the barrier for X position between
-0.22 and 0.22 nm. The bars in (b) are the corresponding standard deviations.
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The dehydration barrier is shown in Fig. 5 (b) by a dashed black line. The fluctuations

at the top of the curve are once again attributable to the poor statistics of ions in the

membrane plane. We can see that the estimate of the dehydration barrier based on shell

geometry agrees with that based on the MD-simulated data for zero applied field. We note

that the key advantage of an MD-based barrier estimation is that it can be used in the

presence of an applied electric field. The results of such estimations are shown in Fig 10 (a).

There are two notable features: the dehydration barrier in the presence of bias is slightly

asymmetric with respect to the pore location; additionally, this asymmetry increases as a

function of increasing applied field.

The height of the dehydration barrier also increases with increasing applied field, as shown

in Fig. 10 (b). The large uncertainties correspond to the fluctuations of the barrier height

observed between ±0.22 nm. Although not surprising, this observation serves as a reminder

that the assumption of bias-independent barriers in simulations is generally incorrect and all

comparisons between MD-simulated or experimental data and any perturbative analytical

estimates should be made carefully, as the direct comparison is in principle only possible at

zero or low biases. The observed dependence on the applied field of the number of water

molecules in the dehydrated shells, and the corresponding increase in the dehydration barrier,

is relatively weak. Here we call it the weak 1-st mechanism of field-induced dehydration.

At the same time, the physical mechanisms leading to the field dependence deserve a

more detailed discussion, as provided in the next section. We note that the distribution

of water molecules in the hydration shells was assumed to depend only on the number of

water molecules surrounding the ion at any given time, 4,24–26 but this assumption is also

incorrect, as the shape of the hydration shell can contribute to barrier modification and is

generally a function of the applied field. It is worth noting that beyond their effect on the

individual hydration shells large applied fields are expected to modify the solvent-membrane

interactions in general. For instance, as shown in Fig. 11, the system-wide water distribution

is mostly field-independent at the field magnitudes considered. However, field dependence is
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Figure 11: Time-averaged water density within XY -slices as a function of the Z-position of
each slice for various values of applied field. The top-right inset shows the time-averaged
sheet density of water-C2N hydrogen bonds (σhb). As shown, the membrane is located at Z
= 0 nm.

clearly evident at the membrane-water interface below the membrane (Z ≈ −0.25 nm; see

also the top-left inset). This field-dependent water packing at one of the membrane-water

interfaces is accompanied by field-dependent hydrogen bond formation between the solvent

and the membrane, As shown in the top-right inset of Fig. 11, the corresponding sheet density

of water-C2N hydrogen bonds σhb increases with increasing applied field. Overall, such field-

dependent solvent ordering can further contribute to the field dependence of dehydration

barriers. Although relatively weak from the energetic standpoint, the observed effect is

another example of bias dependence beyond the assumption of infinitesimal perturbation.

In bulk solution, the hydration shells are usually symmetric, and the corresponding aver-

age force that they exert on the ions is zero, corresponding to bulk diffusion. Close to pores
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however, in absence of any external bias, this symmetry is briefly broken during permeation.

Near the pore, in the presence of an external field, the symmetry with respect to the mem-

brane plane is broken and the barrier is determined, not only by the total number of water

molecules in the hydration shell, but also by their distribution around the ion on either side

of the membrane. In the limiting case of a large externally applied field and an ion located

in the pore plane, the orientations of water molecules on either side of the membrane are

asymmetric. A possible contribution to the local asymmetry at high fields may also arise

from the quasi-ballistic motion of ions through pores i.e. a purely dynamical effect arising

from the finitely compressible shell surrounding an ion moving along a nearly straight path

with large acceleration. Regardless of any dynamical effects, it is clear that an asymmetric

shell will exert a considerable permeation-opposing force on the ion. We now consider these

field-induced asymmetries in greater detail, as well as their effect on the entire system.

5.3 Field-induced asymmetry of hydration shells

To analyse the asymmetry of the hydration shells, we consider distributions of oxygen and

hydrogen atoms in the first two hydration shells of ions approaching and passing through the

pore. To find these distributions, we use (cf. the calculations of the PMF in Subsection 4.1)

disk-shaped bins located on the pore axis at a series of z-distances from the membrane, see

Fig. 12 (a). Next, we detect all ion-water configurations for the K+ ions located in each bin.

Finally, for each ion’s position, we track coordinates of all the oxygen and hydrogen ions

located within 1st and 2nd hydration shells as shown in Fig. 12 (b). The number of such

configurations varies from several thousand in the bulk to a few dozen near the pore.

Note that the effect of the system size can be obtained using radial distribution functions

(RDFs)8 for symmetrical systems. However, to analyse the asymmetry of hydration shells,

the RDF-based methods have to be substantially extended.57 Therefore, a conventional RDF-

based analysis does not provide any additional information as compared with the MD-based

approach adopted in this work.
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Figure 12: (a) Membrane, shown as a collection of carbon atoms (green) and nitrogen
atoms (blue). The axis of the pore is shown by the vertical line. A disk-shaped bin located
on the pore axis 0.45 nm below the membrane (height 0.1 nm, radius 0.2 nm) is shown by
transparent faces shaded cyan. (b) Snapshot of hydration shells and water molecules around
a K+ ion located inside the sampling bin. Colour code: K+ ion (brown), oxygen atoms
in the 1-st shell (red), oxygen atoms in the 2-nd shell (pink), hydrogen atoms in the 1-st
shell (white), hydrogen atoms in the 2-nd shell (gray). The transparent spheres show the
effective boundaries of the hydration shells with radii <0.19 nm (gray), between 0.19 and
0.38 nm (yellow), between 0.38 and 0.62 nm (green).

The radii of the shells are given above in Sec. 4.3. Each distribution was obtained from an

800-ns-long simulation, during which we averaged the coordinates of all oxygen and hydrogen

atoms within the two first shells for an ion located in a cylinder of height 0.1 nm and radius

0.2 nm. Examples of such distributions for a cylinder located 0.25 nm above the pore are

shown in Fig. 13.

In Figs. 13 and 14, it can be observed that the hydration shells of ions passing through

the pore at non-zero applied field are generally asymmetric. This asymmetry depends on

the distance to the pore and is an increasing function of the applied field. As mentioned

earlier, the resulting asymmetric charge distribution, in addition to the dynamic effects,

should induce transport-opposing Coulomb forces.

In particular, if we consider the distributions of oxygen and hydrogen atoms in the 1st
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Figure 13: (Top line) Distribution of the oxygen (blue) and hydrogen (red) atoms in the
XZ-plane for zero applied field (a) and 200 mV/nm (b). The distance of the ion from the
membrane is 0.25 nm. (bottom line) The same distributions for an ion in the plane of the
membrane for applied fields: (c) 0 V and (d) 400 mV/nm.

and 2nd hydration shells in Figs. 13 (b), we see that the water oxygens are located closer

to the ion, predominantly in an asymmetric manner. It is therefore clear that this is a case

where the averaged force will indeed oppose transport, readily contributing to the transition

barriers and further increasing with increasing bias. For example, we note that for Eapp =

200 mV/nm, all oxygen atoms in the 1-st hydration shell are located on one side of the ion.

Similar changes can be observed for an ion located in the membrane plane, as shown from a

different angle in Fig. 13 (c) and (d). In this case, the distributions are symmetric for zero

field and become strongly asymmetric under nonzero bias.
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5.4 Field-induced forces opposing ion transport

To estimate the electrostatic forces acting on the ion due to asymmetry of the hydration

shells, and hence the resultant changes in the energy barriers, we find the charge distribution

in the hydration shells as a function of the ion’s distance from the pore. To do so, we select a

cube with 2.0 nm side, centred at the ion location, and split the corresponding cubic volume

using a 51×51×51 mesh. With the TIP4 model, oxygen atoms are each assigned a charge of

-1.04q, while hydrogen charges are 0.52q. The total charge of each mesh volume is the sum

of the probability of finding an oxygen atom, plus the probability of finding a hydrogen atom

within this volume, weighted by the corresponding charges. For example, the probability of

finding oxygen atoms is shown in Fig. 14.

Figure 14: Oxygen atom distribution around a potassium ion shifted along the pore axis in
the z-direction by 0.75 nm. Carbon and nitrogen atoms in the C2N membrane are shown by
the blue and black colours respectively. The potassium ion is shaded by the silver colour.

Here, the ion (silver sphere in the centre of the cube) is located 0.75 nm above the pore.

The pore is embedded into the C2N membrane with carbon and nitrogen atoms shown as

blue and black spheres, respectively. It can be seen in the figure that the 1st hydration shell
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(light circle around the ion) remains almost intact. Although the 2nd shell is nearly intact

in the upper hemisphere, it becomes fragmented in the vicinity of the pore below the ion.

By superimposing this distribution upon the probability of finding hydrogen atoms weighted

with 0.52q, we obtain the distribution of the total charge in two hydration shells of the ion.

The evolution of these charge distributions as a function of the ion’s distance from the pore

is shown in Fig, 15. From Fig. 15(a) we see that at large distance from the pore two nearly

intact charged rings (negative and positive shown as red and white, respectively) surround

the ion as expected.24 When the ion approaches the pore, the charge distribution around the

ion becomes strongly asymmetric/fragmented, leading to a rapidly increasing field-induced

electrostatic force. The maximum force corresponds to the maximum asymmetry and arises

at positions about ±0.25 nm from the pore. The resultant Coulomb force was calculated as

~FCoul =
1

4πε0ε∗

∑
i,j,k

qionqvox
|rijk|3

~rijk,z (10)

where |rijk| is the distance between ion and the voxel with indices i, j, k and the summation

is over all voxels, and qion and qvox are the ionin and voxel charges respectively. Here, we are

interested in the z-component of the force. For consistency, the value of ε∗ in this equation is

taken to be the same as εp = 3 in Eq. (4). We note once again that this is a crude approxi-

mation, and that a more accurate calculation of the values of effective dielectric permittivity

ε∗(r) in confinement is required. Moreover, the effects of shell asymmetry may indeed intro-

duce a second-order asymmetry in the distribution of the local dielectric permittivity itself,

further contributing to the z-component of the resulting force.

The z-component of the force as a function of applied field is shown in Fig. 16 (a). As

expected, the force decreases to near-zero at a considerable distance away from the pore due

to the symmetry of nearly intact hydration shells. The maximum shift in the force due to

external bias is estimated at ∼0.1 nN between the unbiased case and a field of ∼ 200mV/nm.

To estimate the corresponding changes in the energy barrier, we integrate the force (10) along

the z-coordinate. The result, shown in Fig. 16 (b), clearly demonstrates the field-induced
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Figure 15: Charge distribution around a potassium ion at different z-positions along the
pore axis: (a) z = 0.9 nm; (b) 0.5 nm; (c) 0.3 nm; (d) 0.2 nm; (e) 0.1 nm; and (f) 0 nm.
Carbon and nitrogen atoms in the C2N membrane are shown by the blue and black colours
correspondingly. The potassium ion is shaded by the silver colour.

increase of the central barrier in the amount of ∼7 kJ/mol, in agreement with the results

in Fig. 10. One can also see the emergence and deepening of a local minimum in the quasi-

potential58 located at ∼ -0.75 nm, which is also in agreement with the data shown for ∆Uw(x)

in Fig. 10 (left).

We note that the asymmetry-induced barrier enables one to reveal an additional feature

that is missing in the local minimum in ∆Uw(x). Namely, one can clearly see in Fig. 16

(b) that the local minimum located at ∼ -0.3 nm becomes shallow and disappears when
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the applied field is large enough. The change in location of this local minimum from ∼ -0.3

nm to ∼ -0.75 nm with increasing field is presumably what underlies the switch of the

optimal path between the two routes observed in Fig. 2. The discussed in this section field

induced dehydration is relatively strong (cf 1-st mechanism discussed in Sec. 5.2) and we

call it 2-nd mechanism of the field-induced dehydration.

5.5 Mechanisms of field-induced modifications of barriers

We have identified two mechanisms underlying the field-induced barrier that opposes the

conduction of ions through the pore. The first mechanism discussed in Sec. 5.2 is relatively

weak and corresponds to the dependence of the ion’s dehydration in the pore on the applied

field, i.e., because the number of water molecules in the 1st shell is reduced when the field

is increased. For example, the value of the barrier is increased by ∼ 2kT for an applied field

of 200 mV/nm. The second mechanism described in this section is considerably stronger

and corresponds to the field-induced asymmetry of the oxygen distribution in the first two

hydration shells. The corresponding barrier increase is ∼ 7kT for an applied field of 200

mV/nm.

Note that we only considered here electrostatic interactions of the permeating ion with

the hydration shell determined by Eq. (10), while asymmetry of the shell also affects the

ion’s electrostatic interaction with charged atoms on the rim and the Lennard-Jones inter-

action with the shell and rim atoms. Importantly, it is exactly field-induced changes in the

ion’s electrostatic interaction with the asymmetric shell that, together with the field-induced

dehydration (see Sec. 5.2), comprise the two mechanisms that oppose an increasing cur-

rent through the pore with rising applied field. In a sense the field-induced asymmetry and

dehydration of the shells of the permeating ion represent the effect of dielectric medium

polarisation near the membrane.

We propose that the increased dehydration cost is associated with the field-induced asym-

metry of the shells. Note that the force estimates shown in Fig. 16 (a) are close to our earlier
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Figure 16: Coulomb force (a) and the energy barrier (b) due to the charge distribution
around a potassium ion obtained in MD for various magnitudes of applied fields shown in
the legends in mV/nm

estimates of the maximal total electrostatic force experienced by an ion near a graphene

nanopore,47 of 0.35 nN per particle. It is also worth noting that the field-induced asymme-

try of the hydration shells may be strongly correlated with the local polarisation of water

molecules under the incident field, as discussed earlier.41 The two mechanisms leading to

field-induced barrier changes oppose the original bias field and consequently limit transport,

providing yet another example of solvent screening at the nanoscale. Interestingly, field-

induced asymmetry of hydration shells along the z-direction may be combined with in-plane

manipulation of shells induced by directed membrane strains,59 potentially yielding a path

toward hybrid mechano-electric gating.

The latter phenomena partially compensate for the decrease of the electrochemical bar-

rier, as discussed in Subsection 4.4. We therefore attribute the deviation of the I − V curve

predicted by. (8) from the MD simulation to the field-induced asymmetries and field-induced

changes in the dehydration barriers. We note that the changes in the hydration shells to

oppose the effect of the applied field on the ion transport are consistent with the general

statement of Le Chatelier’s Principle. In our case, if a dynamic equilibrium is disturbed by

an external bias, the position of the new quasi-equilibrium is such that the effect of the bias
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is reduced.

The asymmetry of the shells also reveals the relationship between the ion’s dehydration

and the electrostatic interaction with the charged pore. Such an interrelation, often neglected

within the conventional approach (see Ref.24 and (4) in Sec. 4), comes into play due to the

asymmetry-induced strong dependence of the local effective dielectric permittivity ε∗ on the

ion’s distance from the membrane.19,60 This dependence (also evident from the estimates of

ε∗ shown in the inset of Fig. 6) strongly affects the local electrostatic interaction of the ion

with the pore. In turn, the latter interaction modifies the orientations41 and distribution of

the water molecules in the shells. We emphasise that induced asymmetry of the hydration

shells appears to be a generic feature of nanopores whose dimensions are comparable with

the diameter of the hydrated ion: understanding and tuning these effects paves the way to

controlling permeation in such nanopores.

6 Summary and conclusions

It is common for particle-based simulations and experiments to be compared with analytic

theories that are only applicable close to equilibrium, or that assume material continuity in

the vicinity of the pore. Strictly speaking, such comparisons are valid only for systems in-

volving wide pores and subject to infinitely small bias, electrical or otherwise. This routinely

results in difficulties in the interpretation of the simulated and experimental data. The nature

of systems under non-zero and large applied biases, is far from being well-understood. In this

article we have therefore investigated the specific effects of applied fields on ionic transport

through sub-nm pores. The results obtained above are not specific to the ultrahigh-pore-

density membrane (C2N) considered and are, in fact, applicable to subnanoscale pores in

various 2D membranes quite generally, regardless of the pore spacing.

We identified field-induced changes in the ions’ escape paths and demonstrated that these

changes are closely associated with field-induced shifting of transport barriers in the vicinity

33



of the pores. To further analyse these effects, we considered the distributions of ions and

water molecules near the pores and the structure of the hydration shells around the ions

passing through the pore, as a function of applied field. We showed that both the EDL and

water layers become strongly asymmetric in response to the external field. In particular, the

individual hydration shells of the ions exhibited a similar asymmetry.

We demonstrated two transport-opposing mechanisms arising from bias-induced changes

in the hydration shells. The first mechanism is relatively weak and corresponds to an overall

decrease of water numbers, caused by the field. The second mechanism is considerably

stronger and corresponds to field-induced asymmetry in the ions’ first two hydration shells.

The corresponding changes in the permeation barrier were estimated and shown to partially

compensate for the effect of the applied field, essentially presenting yet another manifestation

of local screening at the nanoscale. The latter effect was also observed in the MD-simulated

current-voltage curves compared to numerical solutions of the corresponding 1D Nernst-

Plank (NP) equation. It was shown that the NP model agreed well with I−V curves obtained

in the MD simulations for lower biases. At larger fields, the discrepancies between the

simulated currents and currents from the NP-based model increase, as expected, highlighting

the need for robust field-dependent corrections to the corresponding energy barriers.
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We study electrostatically-driven potassium ion
transport through sub-nanoscale pores in C2N mem-
branes. By analyzing the permeating ions’ trajec-
tories and their hydration shells, we find that the
field induces an asymmetry of the hydration shells.
This strongly influences the shape of the potential
of mean force and the dynamics of permeation via a
field-induced barrier.
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