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The use of high-energy synchrotron X-ray diffraction sources has become

increasingly common for high-quality phase fraction measurements and

microstructural evolution experiments. While the high flux, large volume

illuminated and large number of diffraction vectors should reduce common

sources of uncertainty and bias, the distribution of the diffraction vectors may

still cause bias in the phase fraction measurement. This hypothesis of bias was

investigated with example experimental data and synthetic data. The authors

found that there may be bias depending on the sample texture, the distribution

of diffraction vectors and the hkl planes used in the phase fraction

measurement, even for nearly complete coverage of a pole figure. The authors

developed a series of geometry-based correction values that reduced the

measurement bias due to sampling scheme and texture in the phase fraction

measurement by an order of magnitude. The efficacy of these corrections was

demonstrated with application to both experimental and synthetic data.

1. Background

The use of synchrotron light sources has enabled a wide array

of techniques for analyzing microstructural evolution in

structural materials, often in three dimensions (Poulsen, 2004;

Suter et al., 2006; Robinson & Harder, 2009; Johnson et al.,

2008; Simons et al., 2015; Hayashi et al., 2019). Key improve-

ments include the wide use of large area detectors enabling a

large number of diffraction vectors (or large volume of reci-

procal space) to be probed simultaneously, deep penetration

of high-energy X-rays enabling transmission experiments with

relatively simple diffraction geometries, and high fluxes

enabling greatly reduced count times in comparison with

laboratory X-ray sources.

These advances have made in situ quantification of phase

fraction evolution during thermomechanical loading possible

on a wide variety of multiphase and metastable materials

(Babu et al., 2002; Elmer et al., 2005, 2007; Stone et al., 2008;

Zhao et al., 2017; Weißensteiner et al., 2019; Oh et al., 2020).

Furthermore, insufficient counting statistics and limited reci-

procal-space coverage are often no longer limiting sources of

error. Improved accuracy, necessary for manufacturing

process qualification and model validation (Allison et al., 2006;

Levine et al., 2020), can be achieved.

However, unless explicitly adjusted, phase fraction

measurements using integrated intensities (ASTM, 2013) rely

on the assumption of a uniform (or random) crystallographic

texture (or preferred orientation) distribution. Diffraction-

based phase fraction measurements build from the powder

diffraction community, where samples are frequently
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processed to create a fine powder to minimize texture effects.

This process of powdering a sample is ruled out if the as-

received sample, initial phase fractions and/or initial crystal-

lographic texture from prior thermomechanical processing are

of interest; if the processing conditions, resulting phase frac-

tions and/or crystallographic texture evolution as a function of

new thermomechanical processing are of interest; and/or if the

material under investigation is composed of metastable

materials.

One approach that has been employed to account for the

effect of texture is to measure over a large number of

diffraction vectors. Classically this has been done via a tilt-

and-rotate technique developed by Miller (1968) and recom-

mended in the widely used Society of Automotive Engineers

(SAE, now SAE International) publication on retained

austenite measurements (Jatczak et al., 1980). These and

similar approaches have the tacit assumption that, if there are

a large number of diffraction vectors, the texture effect is

negligible.

These assumptions were tested in prior work by Creuziger

et al. (2018a). As shown by Creuziger et al. (2018a,b), the series

of diffraction vectors (or sampling scheme) used to measure

phase fractions can cause oversampling of specific areas of the

pole figure depending on the distribution of diffraction

vectors. The oversampling occurs even for a large number of

diffraction vectors such as used in the tilt-and-rotate sampling

method. The oversampled regions in turn can cause bias errors

in phase fraction calculations if the material under study has

crystallographic texture. The magnitude and sign of the bias

error were found to be a function of the sampling scheme,

peak combination used in the phase fraction calculation and

texture of each phase. The number of peaks used seemed to be

a less significant factor than the number of diffraction vectors

used and the evenness of diffraction vector distribution.

One of the sampling schemes considered by Creuziger et al.

(2018a) was a diffraction ring recorded at high (infinite)

energies. However, at many high-energy sources the samples

may be rotated while in the beam, which results in the

recording of a series of diffraction rings. An example of this

approach and subsequent phase fraction calculation is shown

by Phan et al. (2019) for data measured at the Cornell High

Energy Synchrotron Source (CHESS) facility.

Phan et al. (2019) made a specimen from additively manu-

factured 17-4 stainless steel which was deformed in tension

during in situ X-ray diffraction. Nominally, the wrought form

of this alloy is in the martensitic phase with a low-to-moderate

amount of crystallographic texture, whereas the additively

manufactured material contains a significant volume fraction

of austenite and is heavily textured. X-ray diffraction data

were collected as a function of applied strain to measure

evolution in the crystallographic texture and phase fraction

simultaneously. The results showed the austenite phase frac-

tion started at approximately 0.54 (zero strain) and decreased

to 0.12 at a strain level of 0.03. The austenitic phase had

significantly more crystallographic texture in comparison with

the martensitic phase, but there was minimal evolution of the

texture in this strain range.

The phase fraction calculations of Phan et al. (2019) were

performed by summing all diffraction data to create a single

intensity 2� plot at each deformation step. While it is clear that

the method of rotating a sample and collecting a complete

diffraction ring results in a large number of diffraction vectors

and produces nearly complete pole figures, it is not clear if the

phase fractions calculated by summing all diffraction data are

free of bias errors. This paper assesses the hypothesis that this

sampling scheme may result in bias errors.

2. Methods

Parameters described by Phan et al. (2019) and data provided

in the companion data publication (Pagan, 2019) were used as

an example data set. Only the initial load point was considered

as the texture evolution in Phan et al.’s study was minimal.

Based on the experimental parameters, geometrical correc-

tions to the intensity data due to oversampling were devel-

oped. Paralleling the prior work of Creuziger et al. (2018a),

synthetic textures were used to investigate the robustness of

the rotated ring sampling scheme to particular texture

components and applied to a reduced series of rotation angles.

2.1. Example data parameters

The following list of key parameters from the Phan et al.

(2019) paper were implemented in this work:

(i) Energy of 61.332 keV (wavelength 0.0202 nm).

(ii) The axis and angle conventions used in this paper and

shown in Fig. 1 are the same as those used by Phan et al.

(2019).

(iii) Debye rings are recorded at a given rotation (!) and
each Debye ring is divided into 72 azimuthal (�) bins 5� wide.
Midpoints of the bins are used for the diffraction vectors and

start at � = 0�.
(iv) A series of Debye rings were collected in 36 increments

from !�90� to 90� (5� step) as the specimen was continuously

rotated about the Y axis.
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Figure 1
Schematic of a diffraction experiment at CHESS with axis conventions
for X, Y, Z, �, ! and 2�.
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(v) Peak profiles at each �, ! and 2� were used to calculate

the intensity and diffraction vector. The resulting intensities

were summed together for all diffraction vectors for each hkl.

(vi) Three austenite (� phase) hkls (111), (200) and (220)

and three martensite/ferrite (�0=� phase) hkls (110), (200) and

(211) were measured, but only the austenite (111) and

martensite/ferrite (110) were used to calculate the reported

phase fractions.

(vii) The resulting phase fractions were 0.54 austenite and

0.46 martensite/ferrite, prior to any applied load.

2.2. Example intensity data

Intensity data for the plots shown by Phan et al. (2019),

available from the data publication (Pagan, 2019), were used

in this work, expressed in multiples of a uniform (or random)

distribution (MUD or MRD). Additional notes and code to

import these data have been included as release 2.1.1 by

Creuziger et al. (2018b). Fig. 2 shows the pole figures calcu-

lated from the work of Pagan (2019) plotted using the software

package MTEX (Hielscher & Schaeben, 2008). By depicting

the data at each diffraction vector instead of as a filled

contour, the distribution of the diffraction vectors over the

entire pole figure is shown. Visible in this plot is how the

density of points increases when traversing from the XZ plane

to near the rotation axis (Y) and the presence of a small

unmeasured region parallel to the rotation axis (Y). Instead of

projecting the intensity data onto a sphere, equal-area

stereographic projection was used and only the top of the

sphere is shown.

2.3. Bias error quantification

The code developed by Creuziger et al. (2018b) was used to

assess the bias errors from the sampling scheme used by Phan

et al. (2019). Using the guidance of Phan et al. (2019) and with

the assistance of those authors, the sampling scheme used was

added to the code base of Creuziger et al. (2018b) and termed

‘rotated ring’. A depiction of this sampling scheme with an !
range of �90� is shown in Fig. 3(a), using the parameters

described above. For each hkl, the sampling scheme was

adjusted to account for the slight change in 2� for each

reflection.

Two additional sampling schemes were tested for bias

errors. As some of the ancillary equipment used at high-

energy sources does not permit complete rotation of the

sample, the results from these schemes were of additional

interest. These schemes, also depicted in Fig. 3, represent more

limited ranges in ! of �60� and �30�.

2.4. Phase fraction calculations

A common method for calculating phase fractions via

diffraction is the reference intensity ratio method (Dinnebier

& Billinge, 2009; Pecharsky & Zavalij, 2009). This is frequently
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Figure 2
Equal-area stereographic projection pole figures replotted using theMTEX software package (Hielscher & Schaeben, 2008) reproduced from Phan et al.
(2019) via the data set (Pagan, 2019). Pole figures of (top row) the austenite phase and (bottom row) the martensite phase with the hkl annotated above
each figure. Pole figure normalized intensities are displayed at individual diffraction vectors. Intensity color scale is the multiples of a uniform (or
random) distribution (MUD or MRD).

electronic reprint



employed for phase fractions in steels (ASTM, 2013). The

intensity normalized by theoretical intensity value �IIhkl for each
hkl reflection is calculated as

�IIhkl ¼ Ihkl

Rhkl
; ð1Þ

where the integrated intensity Ihkl is measured from the

diffraction data and theoretical intensity Rhkl is calculated

from the diffraction setup and specimen parameters

(Dinnebier & Billinge, 2009; Pecharsky & Zavalij, 2009).

Assuming there are only two phases (austenite � and ferrite/

martensite �0), the phase fraction of austenite V� is then

calculated from the rule of mixtures as

V� ¼
�II�

�II� þ �II�0
; ð2Þ

where the intensity normalized by a theoretical value for each

phase (j) is the average over the (m) hkl planes measured:

�IIj ¼
1

m

Xm

1

�IIm: ð3Þ

These equations contain the tacit assumption that there is

no crystallographic texture, i.e. there is a ‘random’ distribution

of diffracting particles or uniform crystallographic texture. For

materials with crystallographic texture, the integrated inten-

sity Ihklð�; �Þ is also a function of the sample texture and the

location of the diffraction vector ð�; �Þ on the pole figure. To

represent crystallographic texture data, the intensity data

normalized for pole figures ÎIhklð�; �Þ are calculated using

equation (4) (Kocks et al., 1998):

ÎIhkl �; �ð Þ ¼ Ihkl �; �ð Þ
Pi

1 sin �iPi
1 I

hkl �; �ð Þ sin �i

: ð4Þ

The term ÎIhkl will be used to indicate the pole figure

normalized intensity over all measured ð�; �Þ for a single hkl

and ÎIj to indicate the average pole figure normalized intensity

for all hkl measured for phase j as in equation (3).

The pole figure normalized intensity ÎIhkl from an untextured

material or idealized sampling scheme that completely

accounts for texture would result in a value equal to 1 (since

uniform texture has MUD = 1). To include these data in the

phase fraction calculation, an imposed austenite phase frac-

tion � is required to convert between the pole figure normal-

ization and the theoretical intensity normalization:

�IIhkl ¼ �ÎIhkl: ð5Þ
Rewriting equation (2) to use the pole figure normalized

intensity for the phase fraction calculation results in

V� ¼
�ÎI�

�ÎI� þ 1� �ð ÞÎI�0
: ð6Þ

In this work the calculations for bias errors due to texture

and sampling scheme use the normalized intensities from the

pole figure data ÎIhkl. To assess bias errors, an imposed phase

fraction of � is set and the calculated austenite volume fraction

V� is determined as a function of texture, sampling scheme

and hkl.

Using this approach sidesteps the majority of factors used to

calculate the theoretical intensity values but preserves the

preferred orientation (or crystallographic texture) factor

[equation 8.41 of Pecharsky & Zavalij (2009)] as a function of

position on the pole figure in determining V� . In addition, any

deviation from the value of � in the calculated phase fraction

V� is a bias error caused by sampling and texture. Conversely

equation (6) can be reversed and the bias errors in the

calculated phase fraction and normalized intensities can be

used to determine the ‘true’ phase fraction �� for a specific

sampling scheme and peak combination.

2.5. Correction factors

While it is hypothesized that the ! �90� sampling scheme

may oversample portions of the pole figure near the Y axis as

shown in Fig. 2 and cause bias errors in the phase fraction, the

nearly complete pole figure coverage and regularity of the !
�90� sampling scheme permit correction factors to be devel-

oped for this particular scheme. Correction factors are only

possible for the ! �90� sampling scheme as this scheme has

nearly complete pole figures but uneven coverage of the pole

figures. Additionally, the nearly complete pole figure coverage

can be used to accurately estimate an orientation distribution
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Figure 3
Diffraction vectors for a range of !�90� (a), !�60� (b) and !�30� (c) rotated ring sampling schemes shown on an equal-area stereographic projection.
Points assume 5� increments in ! rotation about the Y axis, a 5� binning in the azimuthal direction � of the detector and � = 2.5�. Equal-area
stereographic projection.
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function (ODF) (Bunge, 2015). For the ! �60� and ! �30�

schemes, there are significant gaps in pole figure coverage,

resulting in partial pole figures. While partial pole figures can

be used for ODF estimation, the authors are not aware of any

investigation using partial pole figures such as those shown in

Fig. 3 to determine the accuracy of the estimated ODF. As the

accuracy of the ODF is not established, corrections for these

sampling schemes were beyond the scope of this work.

The first correction factor takes into account the variation

in distribution density of diffraction vectors. There is a higher

density of points near the Y axis, visible in Figs. 2 and 3. While

the stereographic representation distorts this to some extent,

the higher density is due to the fact that the areas covered by

� = 0� (XZ plane) and � = 90� (near the Y axis) are quite

different, while the number of points in each area remains the

same (! rotation increments). However, the intensity data for

these two areas are typically in practice summed without

considering this difference in area, as was the case in the work

of Phan et al. (2019).

To account for the difference in area, it is possible to

multiply the intensity data by a weighting factor. This

weighting factor would be a function of the area covered. To

calculate the area covered, the pole figure sphere is discretized

into spherical zones (or spherical segments). A cross section of

a spherical zone is shown in Fig. 4(a). The cross section does

not have the distortion inherent in the spherical projections

used in Figs. 2 and 3. Examples of the change in area as one

approaches the Y axis are shown in Fig. 4(b). Using the

boundaries between azimuthal (�) bins as the bases (r1 and r2)

of a zone of the sphere [shaded region in Fig. 4(a)], it is

possible to calculate the area covered by each azimuthal (�)
bin. Note that when rotating by ! about the Y axis, the Y

component of the diffraction vector does not change for each

� bin. The area for each azimuthal bin is the area of the zone

(Az ¼ 2�rh), where h is the height of the segment. Normal-

izing this area by the area of the sphere (As ¼ 4�r2) and a unit

sphere (r = 1), the weighting factor reduces to h=2 for each

zone.

Two locations require additional adjustment. The midpoint

between azimuthal bin boundaries is used for the bases with

the exception of points nearest the rotation axis (� = 90�, � =
270�). For these points there is no additional point closer to

the Y axis to determine the midpoint. In this case one base is

set to the azimuthal bin boundary and the other is placed at

the midpoint of this arc (90�) and the weighting is calculated

on the basis of these points. The second adjustment occurs at

an ! rotation of �90� as these points appear on both the top

and bottom of the pole figure. An additional factor of 1
2 is

applied to points at ! = �90�. All of these weight factors are

summed and normalized such that the sum of points equals 1.

The second correction factor accounts for the small

unmeasured region along the Y axis (rotation axis). The

weighting factors alone cannot correct for values not

measured. However, in the ! �90� sampling scheme there is

sufficient pole figure data to calculate an ODF. From the ODF,

recalculated pole figures can be calculated and the intensity

data from these recalculated pole figures used to fill in the

missing region. In this second correction factor, the intensity

parallel to the Y axis �II hklkY in the recalculated pole figures and

the unmeasured area calculated as a spherical cap from the

azimuthal bin boundary at � = 90� or � = 270� were used.

When normalized by the area of a unit sphere the area of the

spherical caps at �Y is equal to Ac ¼ 1� cos �. The intensity

data from the spherical cap are then combined with the

weighted normalized intensity via equation (7):

�II hkl ¼ Ac
�II hklkY þ �II hklweighted 1� Acð Þ: ð7Þ

2.6. Synthetic textures

To check the robustness of the phase fraction measurement,

in addition to the example texture data from Phan et al. (2019)

shown in Fig. 2, the phase fractions from

synthetic texture components were

tested using synthetic ODFs. This paper

uses the same series of seven austenitic

textures (uniform, cube, Goss, beta

fiber, brass, S and copper) and 13

martensitic (ferritic) textures [uniform,

shear, Goss, rotated Goss (RGoss),

alpha fiber, alpha1, alpha2, alpha3,

alpha4, gamma fiber, gamma1, gamma2

and 554 (O554)] as used by Creuziger et

al. (2018a).

3. Results

Fig. 5 shows the diffraction vectors for

� = 2.5� and � = 5.0�, similar to the data

from Phan et al. (2019). Echoing the

data in Fig. 2 there is a higher density of

points near the rotation axis and a small

region that is unmeasured near the
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Figure 4
(a) Cross section sketch of a spherical zone (blue). Upper (r1) and lower (r2) boundaries of the zone
(bases of a zone) are depicted. (b) Depiction of the difference in area on a sphere. Bases of a
spherical zone with � = 2.5� and azimuthal bins of � = 0� (blue) and � = 90� (red) are shown.
Baselines are set by the midpoint between adjacent azimuthal bin boundaries except where noted in
the text.
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rotation axis. This unmeasured region is correspondingly

larger at larger values of 2�. While it is clear that the density of

points varies in this sampling scheme, it may be hard to

interpret from the displayed scattering vectors alone.

However, a method to depict the density of points is available

in the work of Kington (2015) as an orientation density

contour map. The pole figure is discretized into a series of grid

points and the normalized number of orientations within a

patch 1% of the total area is returned for each grid point.

While generally correct, the discretization inherent in this

method can lead to visible artifacts from the grid size and

smoothing. Figs. 5(b) and 5(e) show that the points near the

�Y axis are oversampled with oversampling multiples

(orientation densities) exceeding 4, supporting our hypothesis.

In addition, a line with a higher density of orientations from

+Y to �Y is visible where X = 0. This is due to the duplication

of points with diffraction vectors symmetrically equivalent at a

rotation of �90�. Figs. 5(c) and 5( f) depict the sampling

scheme when corrected by the weighting factor described in

the Correction factors section above. As shown, applying the

weighting factor produces a nearly uniform distribution of

oversampling multiples with a value of 1.

3.1. Example data

From the pole figures shown in Fig. 2, ODFs were calculated

for each phase. These ODFs were used to recalculate the pole

figures used in the phase fraction calculations. Fig. 6 shows the

recalculated austenite pole figures and the recalculated

martensite pole figures. There are slight differences between

the original pole figures and the recalculated data, particularly

visible in the martensite (211) data.

The pole figure normalized intensity for each reflection ÎIhkl

is calculated from the pole figures shown in Fig. 6 for the

sampling schemes shown in Fig. 3. Table 1 lists the normalized

intensity for each hkl and sampling scheme in the unweighted

condition. The � angle was adjusted to match the position of

the hkl peak. Any deviation from a value of 1 indicates a bias

error in the normalized intensity. Bias errors are also shown as

a relative error value.

Considering the data from the ! �90� case there is a clear

trend: if the intensity parallel to the Y axis is >1 MUD (visible

in Fig. 6), the unweighted data are also >1 (Table 1). This is

consistent with oversampling occurring along the Y axis as

shown in Fig. 5. However, despite the oversampling near the Y

direction exceeding 4� as shown in Fig. 5, there is not a
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Figure 5
Locations of the diffraction vectors projected onto an equal-area pole figure for � = 2.5� as (a) a series of rotated diffraction rings, (b) the density of
points as a contour plot unweighted and (c) the density of points weighted. Subfigures (d), (e) and ( f ) repeat these for � = 5�.

Table 1
Pole figure normalized intensity values ÎIhkl and relative error for the
unweighted ! �90�, ! �60� and ! �30� range sampling schemes and
example data from Phan et al. (2019).

Avalue of 1 represents an ideal sampling scheme that corrects for texture and/
or a uniform texture distribution in the sample. Values are quoted beyond the
significant figures for replicability testing.

� ! �90�
Bias
error ! �60�

Bias
error ! �30�

Bias
error

A111 2.8462� 1.0386 3.86% 1.0515 5.15% 1.1422 14.22%
A200 3.2870� 1.0599 5.99% 1.1190 11.90% 1.2100 21.00%
A220 4.6511� 0.9717 �2.83% 0.9566 �4.34% 0.8712 �12.88%
Average 1.0234 2.34% 1.0424 4.24% 1.0745 7.45%

M110 2.7904� 1.0483 4.83% 1.0721 7.21% 1.1668 16.68%
M200 3.9478� 0.9575 �4.25% 0.9626 �3.74% 0.8659 �13.41%
M211 4.8370� 0.9954 �0.46% 0.9892 �1.08% 0.9888 �1.12%
Average 1.0004 0.04% 1.0080 0.80% 1.0072 0.72%
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commensurate bias error in this sampling scheme. The largest

relative errors are approximately 5%. If the ! range is

restricted, the bias error increases significantly, exceeding 10%

in the ! �60� case and exceeding 20% in the ! �30� case. For
the textures observed by Phan et al. (2019), the largest errors

are in the austenite (200) peak and the martensite (110) peak.

Phan et al. (2019) used the A111 and M110 peaks and !
�90� for the phase fraction calculation in that work, reporting

phase fractions of 0.54 austenite and 0.46 martensite prior to

deformation. As shown in Table 1, both of these peaks have

bias errors of the same sign and nearly the same value. Using

these values, the true phase fraction �� would be 0.542, which

is more precise than the uncertainty implied from the signifi-

cant figures in their work. If, instead of using a single peak, the

intensity values for all three austenite peaks and all three

martensite peaks are averaged, the calculated phase fraction

V� would change to be slightly outside the significant figures

reported [� ¼ 0.54 in the work of Phan et al. (2019), V� = 0.546

in this work], owing to the non-offsetting bias errors in the

austenite phase.

Examining the ! �60� and ! �30� cases indicates that a

similarly small error in phase fraction would occur for this

example texture and use of only the single peak pair, with V�

values of 0.535 and 0.534, respectively, for �� ¼ 0.54. Including

three austenite and three martensite peaks results in larger

values of V� of 0.548 and 0.556, respectively, the larger bias

errors in phase fraction again owing to the non-offsetting bias

errors in the normalized intensity in the austenite phase.

The results above demonstrate that bias errors are observed

due to the sampling scheme when the correction factors

described in theMethods section are not applied. The effect of

applying each correction factor is shown in Table 2. Note that

this technique is only applied in the ! �90� case due to the

large gaps in pole figure coverage in the ! �60� and �30�

sampling schemes. The relative error for each peak is reduced

by an order of magnitude or more when the weighting factor is

included. The largest relative error is 0.39% for the A220 case,

with the relative error for the other hkl peaks of a similar

magnitude. While the weighting factor alone does decrease

error, it does not eliminate error owing to the missing

measurement points along the rotation axis. In the weighted

case, the sign of the error now has an inverse relationship to

the intensity parallel to the Y axis and the unweighted case.

research papers

1486 Adam Creuziger et al. � Refinements in phase fraction determination J. Appl. Cryst. (2021). 54, 1480–1489

Figure 6
(Top) Recalculated austenite pole figures. (Bottom) Recalculated martensite pole figures.

Table 2
Normalized intensity values for the unweighted, weighted correction, and
weighted and with unmeasured region correction cases for the range of !
�90�.

Relative error values for each peak and the average of all three peaks are
included. Values are quoted beyond the significant figures for replicability
testing.

Unweighted % error Weighted % error
Unmeasured
region % error

A111 1.0386 3.86% 0.9987 �0.13% 0.9991 �0.09%
A200 1.0599 5.99% 0.9975 �0.25% 0.9989 �0.11%
A220 0.9717 �2.83% 1.0039 0.39% 1.0027 0.27%
Average 1.0234 2.34% 1.0000 0.00% 1.0002 0.02%

M110 1.0483 4.83% 0.9985 �0.15% 0.9991 �0.09%
M200 0.9575 �4.25% 1.0012 0.12% 1.0006 0.06%
M211 0.9954 �0.46% 1.0005 0.05% 1.0002 0.02%
Average 1.0004 0.04% 1.0001 0.01% 0.9999 �0.01%
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For this example data set, the bias errors for the average

normalized intensity values are near zero due to offsetting bias

errors in the three hkl average.

Normalized intensity values after applying the second

correction for the unmeasured region are also shown in

Table 2. Most of the relative errors decrease by approximately

one-half when compared with the weighted scheme. However,

the error in the austenite (220) does not decrease substantially.

3.2. Synthetic data

The results above demonstrate that, while there were bias

errors in the normalized intensity, the resulting bias errors in

phase fraction were minimal due to the texture of their sample

and the peak pairing choice of Phan et al. (2019). However,

this is only one example texture. To check the robustness of

the phase fraction measurement to different peak pairings, !
range and weighted sampling scheme, the volume fractions for

a series of texture components were calculated. In these plots

the imposed phase fraction � is set to 0.54 for comparison with

the experimental data above. The angle � had minimal influ-

ence on the volume fractions, so a value of � = 2.79� (M110)

was used for all calculations. A half-width of 20� was set for

each of the texture components. The phase fractions for each

combination of textures are expressed as a heatmap matrix.

The A111/M110 peak pairing and ! �90� unweighted

sampling scheme is shown in Fig. 7. The largest bias error

occurs for the austenite brass and martensite rotated Goss

component combination, with a calculated phase fraction V� =

0.612, overestimating the imposed phase fraction � = 0.54 by

14% of value. The most significant underestimation occurs for

the austenite cube and martensite shear component combi-

nation, with a calculated phase fraction V� = 0.473, under-

estimating by 13% of value. The austenite textures tend to

have a slightly more significant effect, shown by the common

row colors. Martensite textures (column colors) seem to have

less of an effect.

The A111/M110 peak pairing and ! �90� weighted

sampling scheme is shown in Fig. 8. The bias errors are

substantially reduced for all texture components. With the

weighting correction, the range of calculated phase fractions

V� is 0.542–0.538, under- or overestimating by 0.3% of value.

If the ! �90� unweighted sampling scheme uses all three

measured austenite hkls (111), (200) and (220) and three

martensite hkls (110), (200) and (211) to calculate the average

normalized intensity, the calculated volume fractions are as

shown in Fig. 9. The range of calculated phase fractions V� is

0.557–0.524. The bias errors are substantially reduced from the

single peak pair used in Fig. 7, but are larger than if the

weighting scheme is used as in Fig. 8. Again, the austenite

textures tend to have a slightly more significant effect, with the

exception of the martensite rotated Goss texture components.

The A111/M110 peak pairing and ! �60� unweighted

sampling scheme is shown in Fig. 10. The overall pattern of

bias errors is similar to that seen in Fig. 7 for the ! �90� data.
The largest bias error occurs again for the austenite brass and

martensite rotated Goss component combination, with a

calculated phase fraction V� = 0.613, slightly greater than the

! �90� case. The most significant underestimation occurs for

the austenite copper and martensite Goss combination, with a

calculated phase fraction V� = 0.486. With this sampling

scheme the austenite textures and martensite textures seem to

have approximately even effects, with the exception of the

austenite Goss and brass textures. As stated above, weighted

sampling schemes for ! �60� and ! �30� are outside the

scope of this paper due to insufficient pole figure coverage.
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Figure 7
Calculated phase fractions for a series of austenite and martensite texture
components. Using the A111/M110 peak pairing, range of ! �90�,
unweighted.

Figure 8
Calculated phase fractions for a series of austenite and martensite texture
components. Using the A111/M110 peak pairing, range of ! �90�,
weighted.

Figure 9
Calculated phase fractions for a series of austenite and martensite texture
components. Using the average intensity from the three austenite and
three martensite peaks, range of ! �90�, unweighted.
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The A111/M110 peak pairing and ! �30� unweighted

sampling scheme is shown in Fig. 11. The overall pattern of

bias errors is also similar to that seen in Fig. 7 for the ! �90�

data and Fig. 10 for the ! �60� data. The largest bias error

occurs in this case for the austenite Goss and martensite

rotated Goss component combination, with a calculated phase

fraction V� = 0.628. The most significant underestimation now

occurs for the austenite cube and four different martensite

textures (gamma1, gamma2, gamma fiber, O554), with calcu-

lated phase fractions V� = 0.408 or 0.409. Like the !�90� case,
the austenite textures seem to dominate the phase fraction

values. The austenite cube texture leads to significant under-

estimation of the phase fraction, and the martensite rotated

Goss leads to overestimation in all cases except when paired

with the austenite cube texture.

4. Discussion

The hypothesis that the rotated ring sampling scheme

employed by Phan et al. (2019) may result in bias errors is

supported. These bias errors have relative errors on the order

of 5% for the unweighted ! �90� sampling scheme. The large

number of points and wide coverage of the pole figure in the !

�90� sampling scheme seem to help minimize bias errors, even

with uneven distribution.

The phase fractions reported by Phan et al. (2019) have no

significant bias error due to offsetting bias errors in the two

peaks used in the phase fraction calculation. While phase

fraction calculations are possible with only two peaks, this

method lacks many diagnostics that could address other

sources of error. If the three peaks for each phase were used in

the phase fraction calculation, the normalized intensities for

each hkl would have smaller bias errors, but counterintuitively

this would result in a larger error in the phase fraction than the

two peaks used by Phan et al. (2019) due to non-offsetting

errors.

Application of the weighting factor developed in this work

largely corrects for bias errors, reducing the relative error of

the normalized intensities to the order of 0.3%. A second-

order correction for the region not measured reduces the

relative error further to approximately 0.15%. In these cases,

including all three peaks in the average for the example data

reduces the relative error to approximately 0.01%.

There are some slight differences between original and

recalculated pole figures, particularly in the martensite (211)

peak. This should not greatly affect the calculated phase

fractions, as the texture intensity is near a uniform or untex-

tured state (MUD = 1). However, this does demonstrate a gap

in the accuracy of ODF calculations that will be explored in

future work. A complementary topic for future work would be

the demonstration of accurate ODF reconstruction for

reduced pole figure coverage in the ! �60� and ! �30� cases.
Accurate ODF reconstruction would permit corrections

similar to the one performed for the ! �90� sampling

scheme.

In the synthetic data, the single peak pair results in relative

errors in the phase fraction in the range of �14%. Using the

weighted values and the single peak pair, the relative error

range of the phase fraction is reduced to �0.3%. Using all

three peaks for each phase decreases the relative errors in the

phase fraction to the range of �2% for the unweighted

scheme compared with the single pair. The weighted values for

all three peaks result in values comparable to the single pair

weighted scheme (not shown). Reducing the coverage in ! to

�60� and �30� leads to slightly larger ranges of errors than

the unweighted single peak pair. As there may be additional

sampling schemes of interest, the tools developed are avail-

able to investigate additional textures and sampling schemes

(see Creuziger et al., 2018b).

In summary, a large number of diffraction vectors alone are

not sufficient to ensure accuracy in phase fraction measure-

ments. Increased accuracy can be achieved by even coverage

of the pole figure, appropriate weighting of diffraction data

and incorporation of texture data from prior knowledge, or

with fitting methods that include texture models. Uneven

coverage can be problematic as many subsequent analysis

steps tacitly assume that all data should be equally weighted,

even if there is significant oversampling of some areas. For

experiments conducted without corrections, the synthetic data

presented in this work provide a guide as to which textures
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Figure 11
Calculated phase fractions for a series of austenite and martensite texture
components. Using the A111/M110 peak pairing, range of ! �30�,
unweighted.

Figure 10
Calculated phase fractions for a series of austenite and martensite texture
components. Using the A111/M110 peak pairing, range of ! �60�,
unweighted.
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may be particularly problematic for phase fraction determi-

nation.

5. Conclusions

The authors find that bias errors did occur due to texture, hkl

peaks chosen and sampling scheme. These bias errors did not

significantly affect the results of Phan et al. (2019) due to

offsetting bias errors in each hkl used. Synthetic data show

particular texture and peak choice combinations that may

affect phase fraction calculations if these textures are present.

The correction factors developed in this work decreased bias

errors by an order of magnitude when applied to the experi-

mental data, and reduced them to comparable levels in the

synthetic data.
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