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Quasi-Deterministic Channel Propagation Model
for an Urban Environment at 28 GHz

Neeraj Varshney , Jian Wang, Chiehping Lai, Camillo Gentile , Romain Charbonnier , and Yoann Corre

Abstract—We reduced the parameters of the Quasi-
Deterministic channel propagation model, recently adopted
by the IEEE 802.11ay task group for next-generation Wi-Fi at
millimeter-wave (mmWave), from measurements collected in an
urban environment with our 28 GHz switched-array channel
sounder. In the process—as a novel contribution—we extended the
clustering of channel rays from the conventional delay and angle
domains to the location domain of the receiver, over which the
measurements were collected. By comparing channel realizations
from the model to realizations from a leading commercial
ray-tracer, we demonstrated that the model effects no detriment
to accuracy while maintaining the benefit of significantly reduced
complexity.

Index Terms—Location clustering, millimeter-wave (mmWave),
ray-tracing.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) propagation is charac-
terized by negligible diffraction due to the narrowing of

the Fresnel zone [1], [2]. What matters much more at mmWave is
diffuse scattering [3], originating from the intricacies of ambient
scatterers that appear electrically large at such short wave-
lengths. In fact, it has been demonstrated that diffuse scattering
can account for up to 40% of the total receiver power [3]–[5],
yet most mmWave channel propagation models do not model
it explicitly but save a few exceptions [3]–[13]. Of particular
relevance to this letter is [3] in which Siradel [14], in a joint
calibration with our team at the National Institute of Standards
and Technology, calibrated their Volcano 3-D ray-tracing engine
against our 28 GHz urban channel measurements.

Although full-scale ray-tracing can deliver a high degree of
accuracy, it does not scale to large environments with lots of
nodes, for example, for the end-to-end analysis of network
throughput and delay. For this reason, the IEEE 802.11ay task
group [15], developing a new standard for ultrafast (>20 Gb/s)
Wi-Fi at mmWave, adopted the Quasi-Deterministic (QD) chan-
nel model [11]. In the simplified model, only the line-of-sight
(LoS) and specular rays are traced, while the diffuse rays that
cluster around the specular rays are generated stochastically.
Aside from simplicity, its modular structure has spawned the
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Fig. 1. GIS database of downtown Boulder, Colorado, showing buildings (A1,
A2, B, C1, C2, and D), trees, and rows of vehicles (A, B, and C). The 61 RX
locations are displayed as black dots and the ray-traced LoS and specular rays
between the TX and RX11 are color coded against path gain.

construction of a library of environments and center frequencies
under one framework, each with its own set of model parameters
[16], [17].

In this letter, we reduce a set of QD model parameters from
our 28 GHz urban channel measurements. In Section II, we
provide an overview of our channel sounder and the measure-
ment campaign. In Section III, we describe a novel clustering
technique—novel in the sense that clustering is extended beyond
the conventional delay and angle domains to the location domain
of the receiver, over which the measurements were collected—
and present the QD model parameters that resulted from the clus-
tering. In Section IV, we validate the QD model demonstrating
that, despite its simplicity, its prediction accuracy is comparable
to the Volcano ray-tracer. Finally, Section V concludes this
letter.

II. MEASUREMENTS

Field measurements were collected with our 28 GHz
switched-array channel sounder. The system acquires the com-
plex channel impulse responses (CIRs) between a single dipole
transmitter (TX) antenna and 16 horn antennas on a spherical
receiver (RX) array. The detail of the system is provided in
[3]. The measurement campaign was conducted in downtown
Boulder, Colorado, during the month of July. The 3-D geomet-
ric information system (GIS) database of the environment is
depicted in Fig. 1. The database of the buildings was obtained
from OpenStreetMap [18], while the rows of vehicles and trees,
represented as simple polygons, were inserted based on pic-
tures/videos captured on site. The stationary TX was mounted

1536-1225 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 09,2021 at 13:48:58 UTC from IEEE Xplore.  Restrictions apply. 



1146 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 20, NO. 7, JULY 2021

Fig. 2. Channel rays. (a) Measured rays, at illustrative location RX11. (b) Measured rays, across all RXs. (c) Measured rays, at RX11, clustered in different
colors, with the LoS and specular rays outlined in black. (d) Measured rays, across all RXs, clustered in different colors, with the LoS and specular rays outlined
in black. (e) Predicted LoS and specular rays, across all RXs, classified according to the scatterers that generated the rays (second-order reflections are indicated
by arrows).

on a tripod at 2.5 m height; the RX was mounted on the mobile
rover at 1.6 m height. The rover enabled the rapid and continuous
collection of channel data while recording the location of the RX
with centimeter precision. The rover followed a linear trajectory
along the sidewalk under a canopy of trees and aligned by
vehicles on both sides. The TX–RX distance ranged from 6.1 to
66.1 m, over which 61 large-scale channel measurements were
collected, shown as black dots, spaced about 1.1 m apart. Each
large-scale channel measurement consisted of eight small-scale
channel acquisitions triggered sequentially, spaced about one
wavelength apart (10 mm), producing a rich dataset of 488 total
acquisitions.

The 16 CIRs per acquisition were coherently combined
through the SAGE super-resolution algorithm [19], [20] to
extract a discrete set of measured rays and their properties.
The ray properties were extracted in a 4-D domain: path gain,
delay, azimuth (AZ) angle-of-arrival (AoA), and elevation (EL)
AoA, with average errors of only 1.2 dB, 0.55 ns, 2.70°, and
1.50°, respectively [3]. Any measurement taken with the channel
sounder captures not only the channel response but also the
response of the sounder itself, i.e., the directional patterns of the
antennas and the hardware responses of the TX and RX front
ends. Accordingly, SAGE deconvolved the antenna patterns as a
part of the algorithm, while the responses of the TX and RX front
ends were deconvolved through predistortion filters designed
from a back-to-back calibration [21]. Hence, the extracted rays
represent the “pristine” response of the channel itself (without
the measurement system), thus can be compared directly to
ray-tracing predictions. Fig. 2(a) shows the measured rays at
an illustrative location RX11, displayed in the delay and AZ
AoA domains, and color coded against path gain, and Fig. 2(b)
shows the measured rays aggregated across all RXs.

III. QD MODEL PARAMETERS

The reduction of the QD model parameters from the measured
rays is described in this section. First, the rays were clustered
jointly in the delay, angle, and—as a novel contribution—
location domains. Then, the clusters were classified against the
distinct scatterers in the environment that generated them. Fi-
nally, the classified clusters were reduced into scatterer-specific
model parameters.

A. Location Clustering

Most clustering algorithms are implemented per RX loca-
tion (e.g., [22]–[25]), hence, in the delay and/or angle do-
mains alone. The drawback is that, as the RX moves, the
clusters are subject to the birth–death process [26] in which
clusters are born (die) when they fall in (out) of the channel
sounder’s visibility region, either due to an occluded scatterer
or due to the sounder’s limited field-of-view, dynamic range,
link budget, etc. Thus, when considering locations singularly,
clusters at the edge of the visibility region may appear small
and/or weak and get dismissed as noise. Besides the additional
domain to better resolve rays, another advantage of clustering in
the location domain is spatial consistency, so the output of the
algorithm is delay–angle clusters that are already linked across
locations. As we shall see later, this is beneficial for cluster
classification.

Recently, algorithms that cluster in the location domain have
appeared. In [5] and [27], rays are first clustered in delay–angle
per location and the resultant cluster heads are, subsequently,
tracked over the location. However, because the clustering is
still implemented per location in the first step, the birth–death
process is not observable. In [28]–[30], the inverse occurs, i.e.,
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rays are first tracked individually in delay–angle over the loca-
tion and the resultant tracks are, subsequently, clustered based
on their similarity. However, the results are simulated based,
whereas tracking actual measured rays are highly sensitive to
measurement error, diminishing the similarity between the re-
sultant tracks. Moreover, in real measurements, the majority of
rays at mmWave are diffuse, which by nature have stochastic
delay–angle properties [3]–[5] that effect dissimilarity in their
tracks even with no measurement error.

The clustering algorithm we propose considers the delay,
angle, and location domains jointly, so the birth–death process
is observable and can be processed intelligently. Furthermore,
the algorithm is applied to real measurements, substantiating
its validity. The original version of the proposed algorithm
was implemented in the delay–angle only [25]. The proposed
algorithm is a direct extension to include location as well, over
which the measurements were collected as the RX moved across
the 61 locations. The key to the success of the algorithm is
the closely and regularly spaced locations (about 1.1 m apart),
over which the clusters changed incrementally, i.e., were similar
in delay–angle. This enabled the delay–angle clusters to be
clustered yet further over the location. Due to space limitations,
just an overview of the algorithm is provided in the sequel.

Thanks to negligible diffraction, the mmWave channel is
considered sparse and can be represented as the LoS ray, and
specular rays surrounded by diffuse rays clustered densely in
delay–angle [3]–[5], [11]. Because the number of measured
diffuse rays per cluster tended to be low—anywhere between
one and eight—the eight small-scale acquisitions per location
were aggregated to populate the clusters with more rays for
reliable parameter reduction. Exploiting the channel sparsity,
the proposed clustering algorithm is based on density filtering
through DBSCAN [31]. In DBSCAN, each measured ray is
scanned to determine whether it is surrounded by a least Nm

rays within some radius ε, using the Euclidean distance in the
delay–angle–location domains.1 If so, the ray is designated as
a core point. Then, all neighbors (within radius ε) of a core
point are designated as reachable and kept; otherwise, they
are deemed outliers and discarded. The output is clusters of
mutually reachable rays. Fig. 2(c) and (d) shows the measured
rays clustered in different colors at RX11 and across all RXs,
respectively.

B. Cluster Classification

Upon clustering, the (unclustered) LoS ray was identified as
the absolute strongest ray per location, the specular rays as
the strongest per cluster per location, and the remaining rays
as diffuse. The LoS and specular rays identified are outlined
in black in Fig. 2(c) and (d). The next step was to classify
each cluster against the distinct environment scatterer that gen-
erated it. This was accomplished through ray-tracing-assisted
predictions at each of the 61 locations in the measurement
campaign, exploiting the GIS database in Fig. 1 containing the
salient buildings, vehicles, and tree scatterers. Only the LoS and
specular rays up to second-order reflections were predicted, as
prescribed by the IEEE 802.11ay channel model [32], through
the method of images [33]. The actual field-of-view of the

1Since the delay, angle, and location domains have different scales and units,
they each have to be normalized individually before combining into a composite
Euclidean distance. The normalization procedure is described in [5].

TX and RX, the dynamic range, and the link budget of the
channel sounder were incorporated to obtain predicted rays as
comparable as possible to the measured rays. The predicted rays
for RX11 are illustrated in Fig. 1, color coded against RX power.
These predicted rays are shown across all RXs in Fig. 2(e) and
classified in the legend according to their known scatterers. A
one-to-one correspondence was found between the predicted
(LoS and specular) rays in Fig. 2(e) and the measured (LoS and
specular) rays in Fig. 2(d) through visual inspection from which
the measured rays were classified according to the scatterers of
the corresponding predicted rays.

C. QD Parameter Reduction

From the classified clusters, scatterer-specific QD parameters
were reduced. These stochastic parameters describe the
strength and shape of the clusters in delay–angle. Specifically,
the strength of the cluster’s specular ray is gauged through the
reflection loss (RL), i.e., its excess loss with respect to free
space. The remaining parameters describe the diffuse rays: the
K-factor (K) gauges the relative strength of the cluster’s diffuse
rays with respect to the specular rays; the AZ and EL root mean
square (rms) spreads (σRMS

AZ/EL) describe their shape in the angle
domains; and their shape in the delay domain is described by an
exponentially decaying envelope (γ) with random fluctuation
(σS) and by their inter-ray delay (λ). The formal definition of
these Rician-distributed parameters is provided in [33], and
Table I accordingly compiles the parameter values for the
building and vehicle scatterer classes, as identified in Fig. 1.
Note that while the trees are depicted in the GIS database,
their clusters could not be reliably resolved from the clusters
corresponding to buildings A2, B, and C2, and so instead were
incorporated as a part of these building scatterer classes. Also,
note that buildings C1 and D and vehicle C exhibited diffuse
rays too weak to detect and so their clusters were represented
by a single specular ray (through the RL parameter alone).

IV. VALIDATION

In this section, we compare the channel realizations of the
QD model with channel realizations of the Volcano ray-tracer
using the measurements as ground truth. The realizations of
the QD model were generated by first tracing the LoS ray and
specular rays from the scatterer classes in Table I at each of the 61
locations in the measurement campaign, as described in Section
III-B. The rays were traced based on the free-space propagation,
then the RL from Table I was added to the specular rays. Finally,
the diffuse rays were generated per specular ray stochastically
from the corresponding parameters in the table according to the
algorithm delineated in [33], yielding a set of predicted rays.
The algorithm to generate predicted rays from Volcano involved
distinct diffuse scattering models for building, vehicle, and tree
classes, hence is much more elaborate—beyond the scope of this
letter—so details are left in [3].

The mean and rms spread of the delay, AZ AoA, and EL
AoA, and capacity2 of the predicted rays from the QD model
were computed for each of the 61 locations and subsequently
compiled into cumulative distribution functions (CDFs) across
all locations. The seven corresponding plots are shown in Fig. 3.

2Ergodic capacity [35] assuming 0 dBm TX power and omnidirectional RX
antenna (to sum over all rays) to compute the RX signal power, and 1 GHz
bandwidth to compute the noise power.
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TABLE I
QD CHANNEL MODEL PARAMETERS FOR AN URBAN ENVIRONMENT AT 28 GHZ

Fig. 3. CDF of the large-scale channel metrics obtained by aggregating measured and predicted rays across all RX locations. (a) Delay mean. (b) AZ AoA mean.
(c) EL AoA mean. (d) Delay spread. (e) AZ AoA spread. (f) EL AoA spread. (g) Capacity.

Also shown on the plots are the analogous CDFs for the
predicted rays from Volcano and for the measured rays. The
Kolmogorov–Smirnov (KS) goodness-of-fit test [34] of the QD
model CDFs to the ground-truth measured CDFs and of the
Volcano CDFs to the ground-truth measured CDFs was con-
ducted, yielding the KS statistics displayed in the legends—the
value is between 0 and 1 and a lower value indicates a better
fit. The KS statistics indicate the fittings are quite compara-
ble; hence, the QD model delivers accuracy comparable to
Volcano.

The computational complexity of the QD model scales as
O(f2r+2), where f (=160 in our example) is the number of
faces in the GIS database and r (=2) is the highest number of
reflections considered. In contrast, the complexity of Volcano
scales as O(Δθ4 ·Δx), where Δθ (=6840) is the number
of rays launched in the spherical volume of the TX and Δx
(=17 422) is the number of grid points in the GIS database
volume. In short, the QD model is more advantageous when

the environment is simplified, i.e., when the number of faces is
low.

V. CONCLUSION

Although the accuracy of the QD model was demonstrated
as comparable to Volcano in the validation conducted, Volcano
is more elaborate and so more generalizable to environments
different than the one measured. For example, the presence
of trees is implicit to the scatterer classes in Table I, whereas
Volcano can deal with trees of any crown shape, height, and
leaf density, and placement in the environment since its tree
model is so parameterized. Another example is that vehicles
in the QD model are treated collectively as a row, whereas
Volcano’s vehicle model treats each car individually and so
is more generalizable to different placements throughout the
environment. This generalizability, however, comes at the price
of a significant increase in computation and so is stifling when
dealing with large complex environments.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 09,2021 at 13:48:58 UTC from IEEE Xplore.  Restrictions apply. 



VARSHNEY et al.: QUASI-DETERMINISTIC CHANNEL PROPAGATION MODEL 1149

REFERENCES

[1] J. Senic, C. Gentile, P. B. Papazian, K. A. Remley, and J.-K. Choi, “Analysis
of E-band path loss and propagation mechanisms in the indoor environ-
ment,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6562–6573,
Dec. 2017.

[2] S. Deng, G. R. MacCartney, and T. S. Rappaport, “Indoor and outdoor
5G diffraction measurements and models at 10, 20, and 26 GHz,” in Proc.
IEEE Global Commun. Conf., 2016, pp. 1–7.

[3] R. Charbonnier et al., “Calibration of ray-tracing with diffuse scattering
against 28-GHz directional urban channel measurements,” IEEE Trans.
Veh. Technol., vol. 69, no. 12, pp. 14264–14276, Dec. 2020.

[4] C. Gentile, P. B. Papazian, R. Sun, J. Senic, and J. Wang, “Quasi-
deterministic channel model parameters for a data center at 60 GHz,” IEEE
Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 808–812, May 2018.

[5] C. Lai, R. Sun, C. Gentile, P. B. Papazian, J. Wang, and J. Senic, “Method-
ology for multipath-component tracking in millimeter-wave channel mod-
eling,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1826–1836,
Mar. 2019.

[6] X. Lin, B. Ai, D. He, K. Guan, C. Zhao, and Z. Zhong, “Angular spread
characteristics in high-speed railway scenarios in millimeter-wave band,”
in Proc. 12th Eur. Conf. Antennas Propag., 2018, pp. 1–5.

[7] C. Zheng, Z. Xu, D. He, K. Guan, B. Ai, and J. M. García-Loygorri,
“Millimeter-wave channel measurement based ray-tracing calibration and
analysis in metro,” in Proc. IEEE Int. Symp. Antennas Propag. USNC-URSI
Radio Sci. Meeting, Jul. 2019, pp. 1–2.

[8] D. He et al., “Channel measurement, simulation, and analysis for high-
speed railway communications in 5G millimeter-wave band,” IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 10, pp. 3144–3158, Oct. 2018.

[9] D. He et al., “Influence analysis of typical objects in rural railway
environments at 28 GHz,” IEEE Trans. Veh. Technol., vol. 68, no. 3,
pp. 2066–2076, Mar. 2019.

[10] L. Wang et al., “Vehicle-to-infrastructure channel characterization in urban
environment at 28 GHz,” China Commun., vol. 16, no. 2, pp. 36–48,
Feb. 2019.

[11] A. Maltsev et al., “Quasi-deterministic approach to mmwave channel
modeling in a non-stationary environment,” in Proc. IEEE Globecom
Workshops, Dec. 2014, pp. 966–971.

[12] B. Ai et al., “On indoor millimeter wave massive MIMO channels: Mea-
surement and simulation,” IEEE J. Sel. Areas Commun., vol. 35, no. 7,
pp. 1678–1690, Jul. 2017.

[13] K. Guan et al., “Towards realistic high-speed train channels at 5G
millimeter-wave band—Part I: Paradigm, significance analysis, and sce-
nario reconstruction,” IEEE Trans. Veh. Technol., vol. 67, no. 10,
pp. 9112–9128, Oct. 2018.

[14] Siradel. [Online]. Available: https://www.siradel.com/
[15] IEEE P802.11 - Task Group ay. [Online]. Available: https://www.ieee802.

org/11/Reports/tgay_update.htm
[16] Mathworks. [Online]. Available: https://www.mathworks.com/help/wlan/

ref/wlantgaychannel-system-object.html
[17] A. Bodi et al., “NIST quasi-deterministic (Q-D) channel realization

software,” 2020. [Online]. Available: https://github.com/wigig-tools/qd-
realization

[18] OpenStreetMap Project, 2020. [Online]. Available: www.openstreetmap.
org

[19] K. Hausmair, K. Witrisal, P. Meissner, C. Steiner, and G. Kail, “SAGE
algorithm for UWB channel parameter estimation,” in Proc. COST 2100
Manage. Committee Meeting, 2010, pp. 1–7.

[20] P. B. Papazian et al., “Calibration of millimeter-wave channel sounders
for super-resolution multipath component extraction,” in Proc. 10th Eur.
Conf. Antennas Propag., 2016, pp. 1–5.

[21] R. Sun et al., “Design and calibration of a double-directional 60 GHz
channel sounder for multipath component tracking,” in Proc. 11th Eur.
Conf. Antennas Propag., 2017, pp. 3336–3340.

[22] C.-C. Chong, C.-M. Tan, D. L. Laurenson, S. McLaughlin, M. A. Beach,
and A. R. Nix, “A new statistical wideband spatio-temporal channel model
for 5-GHz band WLAN systems,” IEEE J. Sel. Areas Commun., vol. 21,
no. 2, pp. 139–150, Feb. 2003.

[23] C. Gentile, S. M. Lopez, and A. Kik, “A comprehensive spatial-temporal
channel propagation model for the ultrawideband spectrum 2–8 GHz,”
IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 2069–2077, Jun. 2010.

[24] R. He et al., “On the clustering of radio channel impulse responses using
sparsity-based methods,” IEEE Trans. Antennas Propag., vol. 64, no. 6,
pp. 2465–2474, Jun. 2016.

[25] J. Wang, C. Gentile, J. Senic, R. Sun, P. B. Papazian, and C. Lai, “Unsu-
pervised clustering for millimeter-wave channel propagation modeling,”
in Proc. IEEE 86th Veh. Technol. Conf., 2017, pp. 1–4.

[26] A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick,
“The COST259 directional channel model—Part I: Overview and method-
ology,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3421–3433,
Dec. 2006.

[27] J. Salo, J. Salmi, and P. Vainikainen, “Automatic clustering of nonstation-
ary MIMO channel parameter estimates,” in Proc. Int. Conf. Telecommun.,
2005, pp. 1–5.

[28] C. Huang, R. He, Z. Zhong, Y.-A. Geng, Q. Li, and Z. Zhong, “A
novel tracking-based multipath component clustering algorithm,” IEEE
Antennas Wireless Propag. Lett., vol. 16, pp. 2679–2683, 2017.

[29] Q. Zheng, R. He, and C. Huang, “A tracking-based multipath components
clustering algorithm,” in Proc. 2nd URSI Atlantic Radio Sci. Meeting,
2018, pp. 1–4.

[30] C. Huang, A. F. Molisch, Y.-A. Geng, R. He, B. Ai, and Z. Zhong,
“Trajectory-joint clustering algorithm for time-varying channel model-
ing,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 1041–1045, Jan. 2020.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
2nd Int. Conf. Knowl. Discovery Data Mining, 1996, vol. 96, no. 34,
pp. 226–231.

[32] Mentor.ieee.org. “IEEE P802.11 Wireless LANs: Channel Models for
IEEE 802.11ay,” [Online]. Available: https://mentor.ieee.org/802.11/dcn/
15/11-15-1150-09-00ay-channel-models-for-ieee-802-11ay.docx

[33] M. Lecci et al., “Quasi-deterministic channel model for mmWaves: Math-
ematical formalization and validation,” in Proc. IEEE Globecom, Dec.
2020, pp. 1–6.

[34] F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,” J. Amer.
Statist. Assoc., vol. 46, no. 253, pp. 68–78, 1951.

[35] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 09,2021 at 13:48:58 UTC from IEEE Xplore.  Restrictions apply. 


