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ABSTRACT 
 The frequency response function (FRF), defined as the ratio 
between the Fourier transform of the time-domain output and the 
Fourier transform of the time-domain input, is a common tool to 
analyze the relationships between inputs and outputs of a 
mechanical system. Learning the FRF for mechanical systems 
can facilitate system identification, condition-based health 
monitoring, and improve performance metrics, by providing an 
input-output model that describes the system dynamics. Existing 
FRF identification assumes there is a one-to-one mapping 
between each input frequency component and output frequency 
component. However, during dynamic operations, the FRF can 
present complex dependencies with frequency cross-correlations 
due to modulation effects, nonlinearities, and mechanical noise. 
Furthermore, existing FRFs assume linearity between input-
output spectrums with varying mechanical loads, while in 
practice FRFs can depend on the operating conditions and show 
high nonlinearities. Outputs of existing neural networks are 
typically low-dimensional labels rather than real-time high-
dimensional measurements. This paper proposes a vector 
regression method based on deep neural networks for the 
learning of runtime FRFs from measurement data under 
different operating conditions. More specifically, a neural 
network based on an encoder-decoder with a symmetric 
compression structure is proposed. The deep encoder-decoder 
network features simultaneous learning of the regression 
relationship between input and output embeddings, as well as a 
discriminative model for output spectrum classification under 
different operating conditions. The learning model is validated 
using experimental data from a high-pressure hydraulic test rig. 
The results show that the proposed model can learn the FRF 
between sensor measurements under different operating 
conditions with high accuracy and denoising capability. The 
learned FRF model provides an estimation for sensor 

measurements when a physical sensor is not feasible and can be 
used for operating condition recognition. 

 Keywords: Frequency response function, Encoder-decoder, 
Neural network, Deep learning 
 
1. INTRODUCTION 
 Frequency response functions (FRFs), defined as the ratio 
between input and output spectra, describes the steady-state 
relationship between each possible sinusoidal input and the 
corresponding output under zero initial conditions for linear 
time-invariant (LTI) systems. Learning FRFs between system 
inputs and outputs is important for system identification and 
control. An accurate FRF can help with condition-based 
maintenance and system response prediction of mechanical 
systems as it models the system dynamics and can be used to 
monitor system parameters. FRFs are often estimated 
analytically or obtained experimentally. However, in certain 
dynamic operations, the FRF can be difficult to predict or obtain 
due to experimental difficulties, unsteady operating conditions, 
and mechanical noise. For example, the FRF is often measured 
between the dynamic force at the tool tip and the dynamic 
response measured on a stationary point on milling machine 
tools, such as the spindle headstock. Since the cutting tool is 
rotating, the transmission path between the tool tip and the 
spindle headstock involves a flexible component (the cutting tool) 
and a moving contact surface. The source excitation spectrum 
from the tool tip can be modulated by bearing ball pass 
frequencies and low-pass filtered by the flexible component 
along the transmission path. One frequency component can 
affect the harmonic frequency components at another 
measurement point due to mechanical modulation. Also, the 
structural resonance frequencies can serve as carrier frequencies 
that shift the original excitation frequency components to a new 
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frequency. Therefore, in practical systems, especially with 
relative movement involved between input and output points, the 
frequency components can affect one another. 
    Because the FRFs may be difficult to determine for complex 
systems with moving parts and varying operating conditions, this 
paper proposes to learn a runtime FRF from sensor 
measurements that would model the previously mentioned 
factors with a data-driven black box model. Such a method 
would have applications for manufacturing systems in which 
sensor-based systems are needed to decrease machine downtime 
and increase product quality and enrich the knowledge of 
complex manufacturing processes. For example, it is typically 
not possible to monitor real-time cutting forces during milling 
processes within machine tools. However, as a future application, 
by using runtime FRFs to relate force signals to on-machine 
sensor signals with known cutting force before cutting, on-
machine sensors could be set up to monitor cutting forces during 
real-time machining for quality control purposes. 
 Note that the generalized FRF has been used to define FRFs 
for nonlinear systems under nonzero initial conditions, 
especially for nonlinear Volterra systems [2][3]. Generalized 
FRFs include the effects on the output response from previous 
inputs. The term of runtime FRF in this paper is different from 
existing definitions for generalized FRF. As argued in the above 
section, this work assumes that in general mechanical systems, 
one input frequency component may be related and can be used 
to calculate a different frequency component in the output 
spectrum. In the generalized runtime FRF, these cross-
relationships among different frequencies can be learned.  
 It is generally understood that one wave frequency cannot 
affect another wave frequency. Hence, the system response at 
one frequency can only be determined by the same frequency 
component in the input spectrum. However, for certain 
mechanical and electrical systems, there are certain conditions 
needed for this constraint to hold in practical FRF measurements: 
1.) The signals are not modulated internally between inputs and 
outputs; 2.) Sensors for data collection have wide-enough 
frequency range to capture the significant spectral amplitudes; 
and 3.) Nonlinearities in the system are insignificant and do not 
add extra frequency components to the output response. In 
practical systems, especially for assemblies containing multiple 
components, the above assumptions may not hold. 
 To account for all the previously mentioned factors, we 
propose to learn the generalized runtime FRF from sensor 
measurements with a data-driven black box model. The rest of 
the paper is organized as follows: Section 2 reviews related work 
for FRFs and vector regression; Section 3 introduces the basic 
background of encoder-decoder neural networks and presents the 
methodology; Section 4 provides the experimental setup for the 
case study; Section 5 presents the results and data analysis; and 
Section 6 concludes the paper. 
 
2. RELATED WORKS 
 Existing research on FRF identification can be separated 
into several categories: physics-based FRF evaluation, 
experimental data-based FRF estimation, and hybrid methods for 

FRF identification. Theoretically, FRFs can be obtained 
analytically from the governing differential equations of the 
system [1]. Towards this direction, the effects of different factors 
on the FRF have been studied. For machine tools, the single-
point FRF at the tool tip has been widely studied for the 
identification of chatter-free zones. The effects of rotational 
speed [5] and nonlinear behavior [6] have been considered for 
FRF identification. The effect of rotor rub-impact has also been 
modeled for the analysis of the FRF of rotor systems [7]. For 
nonlinear systems with fading memories, Volterra-based FRF 
models can be established when the system parameters are 
known using Volterra series [4]. However, Volterra models 
require the complete knowledge of the system parameters for the 
governing differential equations [3]. In applicable cases, system 
parameters can be measured offline or calculated using 
geometric and material parameters. However, for practical 
mechanical systems, the runtime boundary conditions and 
system parameters may change due to external loads and 
dynamic interactions between moving parts. Therefore, accurate 
estimation of system parameters are often infeasible. 
 With regards to experimental methods, impact hammer 
testing and sinusoidal function sweeping-based FRF 
identification are available in most commercial modal testing 
systems. Receptance coupling provides a hybrid approach to 
identify the FRF for assemblies. Several studies have tried to 
obtain FRFs for coupled mechanical structures with multiple 
components. For example, Schmitz and Duncan predicted the 
output frequency response of an assembly of nested components 
with common neutral axes using the receptance coupling 
approach [8]. 
 There have been a couple of attempts towards runtime FRF 
determination. Kushnir proposed to estimate the runtime FRF for 
a lathe using the measured vibration spectrum at the top plate and 
spindle headstock [9]. The author took the average of the input 
and output spectrums under different spindle speeds, and then 
took the ratio between the averages to get the dynamic FRF. This 
ratio assumes no interaction among different frequency 
components in the input and output spectrums. Thenozhi and 
Tang used a radial basis neural network and support vector 
machine (SVM) to learn the frequency response function from 
simulation data [3]. The input space they used for the learning 
process was set as the system input amplitude and frequency, and 
learning outputs were set as the amplitudes of frequency 
response. They built a regression model between the learning 
inputs and outputs. While their input space is in the space of R2 
(i.e., two dimensions) and output space in R (i.e., one dimension), 
their learning model learned the output frequency response as 
OFR = f(a, w), where a is the amplitude and w is the frequency, 
and OFR is the amplitude of the corresponding output frequency 
response. Similar to the model in [9], the model in [3] is 
equivalent to finding the average ratio between input and output 
spectrums. Once again, this ratio assumes no interaction among 
different frequency components and one common average model 
is obtained for all operating conditions.  
 Therefore, all existing approaches assume that the FRF 
function is strictly restricted to one input frequency component 
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affecting only the same frequency component in the output 
response. In this manner, the FRF is linear and cannot include 
nonlinearities under different operating conditions. The 
approach proposed in this paper is dramatically different from 
previous work, as this paper proposes a vector regression 
algorithm using neural networks in the whole frequency range, 
which allows the cross-relationships between different 
frequencies to be established. Since the model is nonlinear and 
includes interactions between different frequencies, it allows 
different ratios between input spectrums and output spectrums at 
different operating conditions. In other words, the model 
provides a regression relationship between the vector space of 
input spectrum and output spectrum. Also, this paper uses 
practical sensor measurements from mechanical systems with 
potentially low signal-to-noise ratios. It can provide a robust 
approach for real-time classification of operating conditions 
using a real-time input spectrum. As a general vector regression-
based FRF identification approach, it can be applied to any 
system input and output spectrum measurements.  
 Next, related works in deep learning for vector regression 
will be reviewed. An encoder-decoder neural network is a special 
type of neural network that features dimension reduction during 
the encoding process and signal reconstruction during the 
decoding process. The most common application of encoder-
decoder networks is an autoencoder, where the training input and 
training output are identical. An autoencoder is often used for 
feature extraction as an unsupervised algorithm for dimension 
reduction purposes and has seen many applications [10]. 
Supervised and semi-supervised autoencoders have also drawn 
much research attention for concurrent feature extraction and 
classification tasks [11]. Lei et al. proposed that the autoencoder 
can be used for regression purposes if the input and output are 
set with different time series as regularizers [12]. Inspired by 
Lei’s work, this paper reveals an encoder-decoder structure for 
multivariate vector regression. Lei et al. used a supervised 
autoencoder for the classification task, and the encoding-and-
decoding network serves as a regularizer. In this paper, we 
consider the vectors fed to the outputs of the decoder networks 
as underlying labels in vector form in the target space of 
regression. Therefore, the encoder-decoder network will 
simultaneously learn the mapping relationship as well as the 
regression tasks for different input-output groups. 
 An encoder-decoder structure has also been applied to 
sequence-to-sequence learning for speech recognition [13]. 
However, the structure used for sequence-to-sequence 
recognition took a recurrent neural network/long short-term 
memory (RNN/LSTM) structure to consider time-dependent 
relationships with a sequential memory mechanism other than an 
autoencoder-like structure, which does not focus on temporal 
dependency. While our model shares a similar common ground 
with sequence-to-sequence models, the proposed approach 
distinguishes itself from the RNN/LSTM models. The proposed 
encoder-decoder network aims to learn the intra-class and inter-
class spatial relationship between RN to RN in vector space, while 
sequence-to-sequence models aim to model the dependency in 
temporal space inside the sequence vector and then perform 

regression tasks in the spatial space. Our model assumes a 
general regression relationship between two vectors without 
explicitly considering temporal dependency and therefore the 
application scenarios are different. 
 
3. BACKGROUND AND PROPOSED METHODS 
 As illustrated in the Introduction section, we formulated the 
identification of the generalized runtime FRF as a vector 
regression problem. The regression can be understood in two 
levels. The first level is that each frequency component in the 
output spectrum will be determined by a regression model that 
takes a vector of the whole input spectrum. The second level is 
that the regression relationship is learned in the vector space for 
inputs-outputs pairs under different operating conditions, which 
can be understood as regression in Hilbert space or function 
space. Such a regression problem can be solved by a deep 
encoder-decoder neural network. Next, we introduce encoder-
decoder networks and propose a customized model for FRF 
learning.  
 
3.1 Background Introduction and Proposed Encoder-
Decoder Network 
 An encoder-decoder is a type of neural network that first 
encodes the inputs to a low dimensional space, and then decodes 
the data back to high dimensional space. One example of 
encoder-decoder network is an autoencoder, where the inputs 
and outputs are the same, and it works as an unsupervised 
dimension reduction model. A more general form of an encoder-
decoder network can take different data as inputs and outputs, 
and serve as a vector regression model.   
 In this paper, a partially-tied-weight deep encoder-decoder 
network for vector regression between the input and output 
spectrums is proposed. The structure of the deep network is 
shown in Figure 1. In the proposed structure, tied weights are set 
for the embedded space learning for both the input spectrum and 
output spectrum, and an independent output embedding layer is 
added to allow different coordinates in the embedding space for 
the inputs and outputs, as shown in the red box in Figure 2. Then, 
the input and output embedding layers are fully connected to 
learn the mapping relationship between the input and output 
embeddings. The number of nodes in each layer are: 200, 100, 
50, 50, 100, and 200 with a symmetric layout. Layer 1 and Layer 
2 share the same weights with Layer 5 and Layer 4, respectively. 
 

 
FIGURE 2. PROPOSED ENCODER-DECODER STRUCTURE 
FOR FRF LEARNING. 
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 The whole network can be represented by the following 
equations: 

 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓1(𝑋𝑋) (2) 

 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓2(𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒) (3) 

 𝑌𝑌 = 𝑓𝑓1−1(𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒), 𝑜𝑜𝑜𝑜 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑓𝑓1(𝑌𝑌)  (4) 

 
where X is the input of the neural network, Y is the output of the 
neural network, 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒 is the embedded coordinates for X, and 
𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒 is the embedded coordinates for Y. The proposed encoder-
decoder network includes a tied symmetric layer for the learning 
of input and output embeddings, as well as a fully connected 
layer from the input embedding to the output embedding, to 
enable learning of the mapping relationship between the two 
spectrums. 

4. EXPERIMENTAL SETUP 
 
4.1 Test Rig and Sensor Deployments 
 To validate the proposed FRF learning model, experiments 
were conducted on a high-pressure hydraulic pipeline system, as 
shown in Figure 3. For the given hydraulic system, the excitation 
force comes from the distributed dynamic pressure of the 
flowing liquid imposed on the inner surface of the pipeline. 
Measurement of such a distributed dynamic pressure would be 
physically infeasible. Therefore, in order to measure the 
excitation force on the pipeline, the dynamic strains on the outer 
surface of the pipeline were measured with fiber Bragg grating 
(FBG) sensors. The dynamic strains measured by FBG sensors 
serve as an indirect measurement of the dynamic pressure inside 
the pipeline. Using strain sensors for static pressure 
measurements is a common practice. Dynamic pressure 
measurements with strain gauges has been recently reported [14]. 
In this study, since the interested frequency range is about 0 Hz 
to 1000 Hz, which are the limits of the data collection 
capabilities, it can be assumed that the strain is linearly related 
to the dynamic pressure, which is the excitation to the pipeline. 
Therefore, the strain spectrum was considered to be the input 
spectrum of the hydraulic system and the FRF learning model, 
while the vibration spectrum was considered as the output 
spectrum. 
 In order to validate the proposed method for learning a 
generalized runtime FRF under different operating conditions, 
three sets of experiments were conducted under different 
operating pressures, namely, 4.62 MPa, 5.65 MPa, or 9.3 MPa. 
Vibration data and strain data over a section of straight pipeline 
were collected. A total of about 40 minutes of data were 
collected. Vibration data were collected using a tri-axial 
accelerometer and strain data were collected using FBG sensors. 
There are a total of five sensor measurements: X, Y, and Z 
accelerations, circumferential strain, and axial strain. For the 
vibration coordinates, the X axis points down to the ground, the 
Y axis points axially, and the Z axis points transversely, as 
shown in Figure 4. The sampling rate for vibration signals is 
10240 Hz, and the sampling rate for FBG strains is 2000 Hz. 

While the sampling frequency for the FBG sensors (limited by 
the data acquisition system) falls a little short to cover 0 Hz to 
1000 Hz, it would not significantly affect our validation process, 
due to the lower spectral amplitudes near 1000 Hz.   
 

 
FIGURE 3. EXPERIMENTAL HYDRAULIC SYSTEM. 

 

 
FIGURE 4. SENSOR LOCATIONS. 

 
 Based on experimental research under different pressures 
and quantitative calibration, it was found that the circumferential 
FBG is more sensitive to the pressure of the pipeline and presents 
a nearly linear relationship to the hydraulic pressure. Therefore, 
the FBG 2 sensor was selected for the FRF learning. For 
vibration, the Z-axis acceleration, which represents the 
transverse vibration in the horizonal plane and perpendicular to 
the axial direction of the pipeline, is chosen as the output 
corresponding to the FBG input. 

4.2 Data Preparation 
 In order to provide rich enough data for FRF learning, each 
signal collected over about 40 minutes was segmented into 
multiple samples and then the Fast Fourier Transform (FFT) was 
used to yield the frequency spectrum of each segment. Since our 
vibration data and strain data were collected separately with 
different hardware and software systems asynchronously 
(misaligned by 10 s of seconds to a few minutes), in order to 
overcome the synchronization error and obtain more spectrums 
for training, the original data under the same operating condition 
was segmented with 50 percent overlap, which means adjacent 
data segments overlap by 50 percent with each other. Each data 
segment contains signals collected over 0.2 s, corresponding to 
2024 data points for acceleration data and 400 data points for the 
FBG strain data, in the time domain. Both FFTs for acceleration 
and strain have a frequency resolution of 5 Hz, which provides 
201 spectral data points for the frequency range of 0 Hz to 

Vibration 
sensor 

FBG 1 - Axial 

FBG 2 - Circumferential 

-X 

-Z 

-Y 
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1000 Hz. The first FFT point, which is for 0 Hz, is removed, 
which yields 200 frequencies for learning purposes. A total of 
23 254 pairs of sample segments for the training and test is 
obtained, where a strain spectrum and an acceleration spectrum 
form one pair of sample segments. The whole data sets are 
summarized in Table 1, in which each sample is a sample 
segment, a group of sequential data points, collected over 0.2 s. 

TABLE 1. NUMBER OF SAMPLES FOR FRF LEARNING. 
No. of 
samples 

4.62 MPa 5.65 MPa 9.3 MPa Total No. 

FBG Strain 5242 12 011 6001 23 254 
Vibration 5242 12 011 6001 23 254 

 
 During the model learning and testing process, about 85 
percent of data was used for training and 15 percent was used for 
testing. Since the samples include overlap, which may help the 
testing processing if a similar sample with overlap has been seen 
in the training datasets, a random pool of datasets was not 
selected for training. Instead, for each of the operating conditions 
in Table 1, the first 85 percent of the data collected over time was 
used as training data and the latter 15 percent of data was used 
for testing. For example, for 4.62 MPa, the first 4500 samples 
out of the total 5242 samples were utilized for training. The rest 
of the samples served as testing datasets. A total of 20 000 
samples from three different operating conditions were used for 
training and 3254 samples were used for testing. 

4.3 Model Setting 
 This section provides the setting of our models for the deep 
encoder-decoder network. Since there exists a hybrid setting for 
the weight parameter, the total number of parameters for the 
network is 22 840. This is compared to 44 840 parameters if an 
un-tied encoder-decoder would have been used. Therefore, the 
partially-tied weights significantly reduced the number of 
parameters in the model. A batch optimization algorithm was 
adopted with a batch size of 100 samples, and the learning rate 
was set as 0.008. Twenty (20) epochs were performed to have 
the training process converge when the training loss and 
validation loss stopped decreasing. A quick overfit check with a 
20% validation dataset over 50 epochs indicated that more 
epochs do not introduce overfitting since the accuracy on the 
validation set did not change, while the validation loss stayed 
relatively low after about 20 epochs. 
 The learning process was conducted on a MacBook Air 
computer with a 1.8 GHz Intel i5 processor and 8 GB of memory. 
On average, learning took about 11.8 s for 20 epochs, which is 
about 0.59 s for each epoch. Therefore, the training process is 
quite efficient. 

5. RESULTS AND DISCUSSION 
 
5.1 Results with the Proposed Model 
 In this section, the entire learning process is visualized, 
starting with the raw data and ending with the predicted output 
response from the learned FRF model. Figure 5 shows plots of 
the raw acceleration and FBG strain signals, and Figure 6 shows 

examples of FFTs of sample segments used for model learning. 
Note that many of the amplitudes in the strain spectrum are about 
25% of the peak amplitude shown around 250 Hz. In contrast, 
the noise floor in the vibration spectrum is about 1% or less of 
its peak amplitude around 250 Hz; the vibration sensor has a 
much higher signal-to-noise ratio. Also, there is one dominant 
frequency component, which is suspected to be the first natural 
frequency of the pipeline structure that should capture the 
majority of vibrational displacements. The strain spectrum 
contains more noise and is flatter compared with the vibration 
spectrum. Yet, both spectrums share the same dominant 
frequency. 

 
FIGURE 5. SAMPLE STRAIN AND VIBRATION SIGNALS. 

 

 
FIGURE 6. EXAMPLE FFTS OF STRAIN AND VIBRATION 
SIGNALS. 
 
 Without further processing of the data before use in the 
neural network, the peak frequency components would dominate 
over all other frequency components with regards to training 
errors. During the training process to map strain (the input) to 
vibration (the output), the low-amplitude spectral components 
would be neglected, since the error contributions from smaller 
amplitudes are much lower than those for higher amplitudes. 
Thus, the natural log of vibration FFT amplitude is set as the 
output for the neural network, which enables network learning to 
be influenced by all frequency content. A similar approach has 
been used in another method to allow all frequency content to 
influence the FRF-based solution [15]. Figure 7 shows the same 
sample spectrum as in Figure 6, except that the vibration 
spectrum is the natural log of its original spectrum. As one can 
see from Figure 7, the vibration spectrum is flattened by the log 
operation and shows more details for the lower-amplitude 
frequency components. The spectrums are then normalized to [0, 
1] to eliminate scalings and were fed into the deep neural 
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network model. The normalization process rescales the data to a 
common range. Also, since Sigmoid is used as the activation 
function in this work, output of the neural networks needs to be 
normalized to [0,1]. 
 Next, the learning results with the proposed encoder-
decoder regression model are discussed. Figure 8 shows an 
example of the predicted outputted acceleration spectrum tested 
with the inputted strain spectrum for a sample segment. It can be 
seen that the predicted vibration spectrum closely follows the 
actual vibration spectrum corresponding to the testing data. 
However, the actual spectrum has more fluctuations, while the 
predicted spectrum is smoother. While it can be expected that the 
predicted spectrum presents an ‘averaging’ effect, it is surprising 
to find that output spectrums calculated for all test samples under 
the same operating condition are almost identical. This indicates 
that the trained deep encoder-decoder networks have excellent 
denoising capability. We are further interested in evaluating 
whether the predicted spectrums correctly reflect and separate 
with different operating conditions, which can help us evaluate 
the generalization capability of the trained deep neural network.   

 
FIGURE 7. STRAIN SPECTRUM AND LOG-OF-VIBRATION 
SPECTRUM. 
 
 Since there are three different operating conditions, it is 
shown next whether the predicted output response correctly 
reflects the changing operating conditions, which represent the 
regression performance in the vector space. Figure 9 shows the 
predicted spectrums for three different operating conditions, 
a.k.a. 4.62 MPa, 5.65 MPa, and 9.3 MPa. Again, extensive 
examinations reveal that all predicted spectrums for one 
particular operating condition are almost identical even if 
different sample segments are used as the testing input. However, 
as Figure 9 shows, the learned generalized FRF captured the real 
difference between different operating conditions. Figure 9 
shows that the predicted spectrum of 9.3 MPa clearly separates 
itself from those for 4.62 MPa and 5.65 MPa. The results for 4.62 
MPa and 5.65 MPa can hardly be separated from each other. The 
reason is explained in that the data for 4.62 MPa and 5.65 MPa 
were collected from the same hydraulic system with a setting of 
5 MPa. On the other hand, for 9.3 MPa, the control parameter 
was actually set to 10 MPa. 

 
FIGURE 8. EXAMPLE OUTPUT SAMPLE SPECTRUM AND 
ITS PREDICTED SPECTRUM. 

 
FIGURE 9. PREDICTED VIBRATION SPECTRUMS FOR THREE 
OPERATING CONDITIONS. 
   
 To further validate the results, the averaged spectrum for 
each of the three operating conditions are shown in Figure 10. 
The averaged spectrum is the average over all training and 
testing data. It is perhaps surprising to see that the learned 
spectrums approximate the average spectrums. Note that the 
amplitude of the averaged spectrum is slightly lowered due to the 
averaging effect over non-strictly aligned data, which is typical 
for averaging of FRFs with noise. Once again, the actual 
spectrums of 4.62 MPa and 5.65 MPa are very close to each other. 
Considering that the strain FRFs (the inputs) are extremely noisy 
with minor differences in the training targets fed to the model, 
the model cannot learn discriminative outputs for 4.62 MPa and 
5.65 MPa. To better explain the averaging and denoising effects 
of the proposed model for FRF learning, examples of testing 
input spectrums and the corresponding output spectrums are 
plotted in Figure 11. 
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FIGURE 10. AVERAGE SPECTRUM FOR EACH OF THE THREE 
SEPARATE OPERATING CONDITIONS. 

 
FIGURE 11. SPECTRUMS FOR AN ACTUAL SAMPLE USED 
FOR TESTING. 
 
 It can be seen from Figure 11 that the input spectrums are 
extremely noisy and the actual corresponding vibration 
spectrums are relatively noisy, as well. Furthermore, the 
vibration FFT amplitudes for 4.62 MPa are slightly lower than 
those for 5.65 MPa, and both are clearly separated from the FFT 
for 9.3 MPa. Note the differences of the average predicted 
spectrums in Figure 10 with the actual vibration spectrums in 
Figure 11; the noise-related fluctuations are filtered during the 
learning process, which justify the robustness of the proposed 
deep encoder-decoder network. 
 
5.2 Comparison with Shallow Neural Networks 
 Next, the accuracy of the generalized runtime FRF is 
quantified. For various samples, the intra-group predictions 
under the same operating condition should be very close to each 
other, since they are sampled from the same process. In contrast, 
the inter-group predictions should be distinguishable in order to 
separate responses due to different operating conditions. 
Therefore, it is expected that the learned model could correctly 
predict discriminative results under different operating 
conditions. 

 
FIGURE 12. RESULTS COMPARISON FOR DIFFERENT TEST 
SAMPLES UNDER THE SAME OPERATING CONDITIONS FOR 
THE PROPOSED DEEP MODEL. 

 
FIGURE 13. RESULTS COMPARISON FOR DIFFERENT TEST 
SAMPLES UNDER THE SAME OPERATING CONDITIONS FOR 
THE SHALLOW NEURAL NETWORK. 
 
 Figure 12 and 13 present the prediction results for the same 
two samples from the same operating conditions using the 
proposed deep neural network and a shallow neural network, 
respectively. It can be seen from Figure 12 and Figure 13 that the 
deep neural network performs much more robustly to produce 
almost identical results for the same process with noise filtering 
capability. However, the results from the shallow neural network 
present more fluctuations even if they come from the same 
process. For the prediction results of 9.3 MPa, the results from 
both the proposed deep model and the shallow network show 
fluctuations. However, the deep model still presents more 
robustness. 
 Also, Figure 9 shows that the deep neural network can 
predict clearly separable results for different operating 
processes. In order to quantify the performance of the proposed 
deep neural network and shallow neural network, we calculated 
and summarized the in-class fluctuations in terms of standard 
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deviation. Since the standard deviation (STD) is calculated over 
multiple vectors, the largest STD over all dimensions is used to 
indicate the fluctuation, as shown in Table 2. Similar results can 
be obtained for the average standard deviation as well. 
  
TABLE 2. ROBUSTNESS OF PREDICTION INDICATED BY IN-
CLASS STD. 

In-class STD Class – 1 
(4.62 MPa) 

Class – 2 
(5.65 MPa) 

Class - 3 
(9.3 MPa) 

Proposed deep NN 0.0083 0.0069 0.0238 
Shallow NN 0.0200 0.0145 0.0310 

 
 Next, we show the separation capability of predicted results 
from the proposed deep and shallow neural networks. The 
estimated FRFs using trained neural networks serve as 
underlying labels to each operating condition. However, since 
there are no true labels for them, a k-mean clustering task is 
performed over both networks to see whether the predicted 
results are discriminative with regards to the operating process 
or not. Therefore, we can evaluate whether the predicted results 
can detect a pressure change in the pipeline. 
 The k-mean clustering results are shown for all conditions 
in Table 3, but because Class – 3 corresponds to the 9.3 MPa 
operating condition and has more noise in the test data, Table 4 
shows the separation accuracy for only Class – 3. It can be seen 
in Table 3 and Table 4 that the proposed deep regression model 
based on encoder-decoder networks clearly outperforms the 
shallow neural network with both FRF prediction robustness and 
discriminative capability. 

TABLE 3. GROUPING ACCURACY FROM CLUSTERING 
RESULTS (ALL). 

Comparison of FRF 
prediction accuracy, All 

Deep Encoder-
decoder NN Shallow NN 

k-means clustering  
accuracy 98.59% 97.79% 

 
TABLE 4. GROUPING ACCURACY FROM CLUSTERING 
RESULTS (9.3 MPA). 

Comparison of FRF 
prediction accuracy, 

Class - 3 

Deep Encoder-
decoder NN Shallow NN 

k-means clustering  
accuracy 95.51% 92.91% 

 

6. CONCLUSION 
 In this paper, identification of a generalized runtime FRF 
under multiple operating conditions was proposed as a 
supervised vector regression problem. The proposed model was 
tested for regression performance in the vector space to classify 
different inputs under changed operating conditions. A deep 
encoder-decoder-based model was proposed for the learning task. 
The model features partially-tied weights for the encoding and 
decoding process. An added layer for the output embedding was 
proposed to store different coordinates under the embedded 
space. The output embedding is fully connected with the input 

embeddings, which creates the mapping/regression relationship 
between them in the embedded space. 
 The model was validated using experimental measurement 
data from a hydraulic system, in which the relationship to be 
learned is between the vibration response (measured by an 
accelerometer) and the pressure (measured by an FBG strain 
sensor). The results showed that the proposed model can 
effectively learn the FRF function between the input and output 
spectrums under different operating conditions. The learned 
model also demonstrated excellent denoising capability, which 
was not shown by other FRF approaches. The presented work 
was for learning and classification of a system under very 
controlled conditions, and as such, is the first step of a longer 
process that will result in the generalized runtime FRF for 
prediction purposes. 
 
NIST DISCLAIMER 
 Certain commercial equipment, instruments, or materials 
are identified in this paper in order to specify the experimental 
procedure adequately. Such identification is not intended to 
imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor is it intended to imply that the 
materials or equipment identified are necessarily the best 
available for the purpose. This material is declared a work of the 
U.S. Government and is not subject to copyright protection in the 
United States. Approved for public release; distribution is 
unlimited. 
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