
Volume 126, Article No. 126002 (2021) https://doi.org/10.6028/jres.126.002 

Journal of Research of National Institute of Standards and Technology 

Optbayesexpt: Sequential Bayesian 
Experiment Design for Adaptive 

Measurements 

Robert D. McMichael1, Sean M. Blakley1,2, and Sergey Dushenko1,2 

1National Institute of Standards and Technology, 
Gaithersburg, MD 20899 

2Institute for Research in Electronics and Applied Physics, 
University of Maryland, College Park, MD 20742 

rmcmichael@nist.gov 

Software DOI: https://doi.org/10.18434/M32230 

Key words: automation; Bayesian; experiment design; measurement; parameter estimation; particle flter; python; sequential Monte 
Carlo. 

Accepted: January 18, 2021 

Published: February 3, 2021 

https://doi.org/10.6028/jres.126.002 

1. Summary 

Optbayesexpt is a public domain, open-source python package that provides adaptive algorithms for 
effcient estimation/measurement of parameters in a model function. Parameter estimation is the type of 
measurement one would conventionally tackle with a sequence of data acquisition steps followed by ftting. 
The software is designed to provide data-based control of experiments, effectively learning from incoming 
measurement results and using that information to select future measurement settings live and online as 
measurements progress. The settings are chosen to have the best chances of improving the measurement 
results. With these methods optbayesexpt is designed to increase the effciency of a sequence of 
measurements, yielding better results and/or lower cost. In a recent experiment, optbayesexpt yielded an 
order of magnitude increase in speed for measurement of a few narrow peaks in a broad spectral range [1]. 

Figure 1 illustrates a possible use scenario where an instrument control program interacts with 
optbayesexpt functions in a python server script. The server script runs in the background, and the two 
programs communicate via TCP sockets. For each of N measurements, the controller program prompts the 
server script to recommend high-utility settings based on the parameter probability distribution. The 
controller then makes measurements and reports the new data back to the server script, which uses Bayesian 
inference to refne the parameter distribution for use in the next iteration. 

1 How to cite this article: 
McMichael RD, Dushenko S, Blakley SM (2021) optbayesexpt: Sequential Bayesian Experiment 

Design for Adaptive Measurements. J Res Natl Inst Stan 126:126002. https://doi.org/10.6028/jres.126.002. 

https://doi.org/10.6028/jres.126.002
rmcmichael@nist.gov
https://doi.org/10.18434/M32230
https://doi.org/10.6028/jres.126.002
https://doi.org/10.6028/jres.126.002


Volume 126, Article No. 126002 (2021) https://doi.org/10.6028/jres.126.002 

Journal of Research of National Institute of Standards and Technology 

Fig. 1. Flowchart showing how optbayesexpt works with a user’s instrumentation program. The instrumentation 
program (left) starts a python script (right) that runs in the background as a server. The instrumentation program issues a 
command to set up for a run by creating an OptBayesExpt object. The program then enters a measurement loop, asking 
for recommended settings, and reporting measurement data. The optbayesexpt server refnes the parameter 
distribution using Bayesian inference and selects high-utility settings “live” based on the accumulated measurement 
data. The instrumentation program can be written in any language capable of TCP socket communication. 

The value of optbayesexpt involves a tradeoff between measurement cost and computation cost, so 
the most promising applications are those where data is expensive and computation is cheap. However, the 
effciency of a pre-existing conventional measurement is also an important consideration. If an existing 
measurement protocol has been heavily optimized, there might be room for only small effciency gains with 
optbayesexpt. 

The intent of optbayesexpt is to provide sequential Bayesian experiment design tools to statistics 
non-specialists. The project adopts a “runs good” philosophy: 

• If it’s a struggle to use, it can’t run good. 

• If technical jargon is a barrier, it can’t run good. 

• If the user fnds it useful, it runs good. 

• If it runs good, it is good. 

2. Background 

This section gives a brief overview of Bayesian experiment design, with citations to selected literature. 
For a more thorough introduction to the methods, the interested reader is referred to the project manual and 
to the supplemental information for ref. [1]. 

The methods implemented in this software are known by several names, including “sequential Bayesian 
experiment design,” “optimal Bayesian experimental design,” and “Bayesian optimal design.” A thorough 
review of Bayesian experiment design would include examples from medicine, biology, geology, 
astrophysics, social sciences, physics and more. Despite this broad applicability, the available software has 
been fragmented, and has required statistical expertise. 

The methods have their roots in the work of Bayes [2], Laplace [3]. A 1995 review article by Chaloner 
and Verdinelli [4] describes developments that included information theory and decision theory to choose 

2 https://doi.org/10.6028/jres.126.002 

https://doi.org/10.6028/jres.126.002
https://doi.org/10.6028/jres.126.002


Volume 126, Article No. 126002 (2021) https://doi.org/10.6028/jres.126.002 

Journal of Research of National Institute of Standards and Technology 

measurement settings with high utility. Most commonly, utility is defned as the average predicted decrease 
in the information entropy of the parameter distribution [5]. 

While the core principles of sequential Bayesian experimental design are well-established, recent 
progress has focused on computation. A recent review article by Ryan [6] provides an overview of 
computational methods. The representation of the parameter probability density is particularly important for 
Bayesian methods. Approximate Bayes computing (ABC), Markov chain Monte Carlo (MCMC) and 
sequential Monte Carlo (SMC) are three alternatives. The ideas and algorithms implemented in 
optbayesexpt are largely drawn from Huan and Marzouk [7] and Granade [8]. 

Optbayesexpt uses sequential Monte Carlo (SMC) methods to represent the parameter distribution. 
First introduced in 1993 as a bootstrap flter, [9] and also known as particle flters [10] or swarm flters, 
SMC methods are used in many diverse felds. SMC methods represent a distribution as a collection of 
random samples, like points in parameter space, each with an associated weight. A key advantage of this 
representation is its fexibility: probability density is represented by a combination of particle density and 
particle weights. Probability density can be directly adjusted through weights, and a resampling step ensures 
effcient computation, essentially by reassigning computational resources from low-weight particles to 
high-probability regions of parameter space. 

3. Requirements 

The hardware requirements for optbayesexpt are met by many modern desktop and laptop computers 
capable of running Python 3.x. The demo programs have been tested on a variety of desktops and laptops 
with Windows1 and Linux operating systems. 

Package: Optbayesexpt requires numpy and scipy packages for computation. 

Package: Sample scripts require matplotlib for plotting. 

Setup: A parametric model of the measurement. The model is analogous to a ”ft function” that would be 
used with least-squares regression. It is important that the model is able to reproduce all of the 
features that are likely to appear in measurement data. Optbayesexpt used a model with 7 
parameters in reference [1]. 

Setup: Arrays of allowed experimental setting values. 

Setup: Parameter values as arrays of random draws from the prior parameter distribution. Parameters 
correspond to the unknowns of a least-squares ft. 

Input: Measurement values with corresponding measurement settings. 

Some of these requirements are intentionally vague. The measurement in the cycle depicted in Fig. 1 could 
be as simple as recording a single value, or more complex like an average of repeated measurements or like 
a sequence of values corresponding to a swept setting value. 

1Certain commercial equipment, instruments, or materials are identifed in this paper to foster understanding. Such identifcation does 
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials 
or equipment identifed are necessarily the best available for the purpose. 

3 https://doi.org/10.6028/jres.126.002 

https://doi.org/10.6028/jres.126.002
https://doi.org/10.6028/jres.126.002


Volume 126, Article No. 126002 (2021) https://doi.org/10.6028/jres.126.002 

Journal of Research of National Institute of Standards and Technology 

4. Software Specifcations 

NIST Operating Unit Physical Measurement Laboratory 

Category Experiment design, Adaptive measurement 

Targeted Users Experimenters, measurement automators 

Operating Systems Windows, Mac, Linux. Any python compatible OS. 

Programming Language Python 3.x + 

Inputs/Outputs Setup: model function, allowed settings and initial parameter distributions 

Inputs: measurement data with corresponding settings 

Outputs: settings, posterior parameter distribution and statistics 

Documentation https://pages.nist.gov/optbayesexpt 

Accessibility Public 

Disclaimer https://www.nist.gov/director/licensing 

5. Methods for Validation 

The package is provided with a suite of unit tests that check the basic functionality of the software. Also 
included is an inference test using a trivial measurement simulation that checks that the true value falls 
within the distribution’s 95 % credible range approximately 95 out of 100 times. Optbayesexpt is also 
provided with a suite of demonstration simulations that can be run to check functionality. 

The experiment model and parameter distribution form the core of the calculations, and both are under 
the user’s direct control, so reliability, numerical stability and speed have not been thoroughly tested. We 
strongly urge users to test their own programs using measurement simulations. In simulation, the user can 
compare results of measurement runs with known, true model parameter values and verify the reliability and 
speed of the program. The package includes a MeasurementSimulator() method to facilitate simulation. 

6. Behavior Monitoring 

A good way to monitor a run (real or simulated) is to follow a standard deviation of the parameter 
distribution. Typical behavior during a run involves three phases. In the frst phase, the standard deviations 
fuctuate, but remain close to initial values. In a second phase, standard deviations drop rapidly as the 
algorithm focuses on a neighborhood of high-probability parameters and rules out other regions of 
parameter space. Although the general trend in this phase is a rapid decrease, the standard deviation tends to√ 
fuctuate dramatically. In the third phase, the standard deviations exhibit a smoother 1/ N behavior with 
iteration count N. In this stage, a few choice settings tend to be repeated as the system suppresses noise 
through averaging. 

In the third phase, a sudden drop in a standard deviation may be a sign of particle impoverishment [11]. 
This condition is a recognized pitfall of SMC probability distribution methods having too few particles. Low 
probability regions can become completely empty during resampling, effectively eliminating those 
parameter combinations from further consideration. Simulations show that particle impoverishment causes 

4 https://doi.org/10.6028/jres.126.002 

https://doi.org/10.6028/jres.126.002
https://pages.nist.gov/optbayesexpt
https://doi.org/10.6028/jres.126.002


Volume 126, Article No. 126002 (2021) https://doi.org/10.6028/jres.126.002 

Journal of Research of National Institute of Standards and Technology 

errors, i.e. in parameter distributions that disagree with the true values. The remedy for particle 
impoverishment is to increase the number of particles in the distribution. 

Optbayesexpt comes with no promise of accurate or reliable results. It is the user’s responsibility to 
verify the quality of their own results. Modeling with tests of different particle numbers and comparing 
results with known parameter values is highly recommended. 

Acknowledgments 

S.D. and S.B. acknowledge support under the Cooperative Research Agreement between the University 
of Maryland and the National Institute of Standards and Technology Physical Measurement Laboratory, 
Award 70NANB14H209, through the University of Maryland. R.M. acknowledges helpful conversations 
with Adam Pintar of NIST. 

7. References 

[1] Dushenko S, Ambal K, McMichael RD (2020) Sequential Bayesian Experiment Design for Optically Detected Magnetic 
Resonance of Nitrogen-Vacancy Centers. Physical Review Applied 14(5):054036. 
https://doi.org/10.1103/PhysRevApplied.14.054036. Available at https://link.aps.org/doi/10.1103/PhysRevApplied.14.054036 

[2] Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc London 53:370. 
https://doi.org/10.1098/rstl.1763.0053. Available at https://royalsocietypublishing.org/doi/10.1098/rstl.1763.0053 

[3] Laplace PS (1986) Memoir on the Probability of the Causes of Events. Statistical Science 1:364–378. 
https://doi.org/10.1214/ss/1177013621. Available at https://projecteuclid.org/euclid.ss/1177013621 

[4] Chaloner K, Verdinelli I (1995) Bayesian Experimental Design: A Review. Statistical Science 10(3):273–304. 
https://doi.org/10.1214/ss/1177009939. Available at https://projecteuclid.org/euclid.ss/1177009939 

[5] Lindley DV (1956) On a Measure of the Information Provided by an Experiment. Annals of Mathematical Statistics 27:986–1005. 
https://doi.org/10.1214/aoms/1177728069. Available at https://projecteuclid.org/euclid.aoms/1177728069 

[6] Ryan EG, Drovandi CC, McGree JM, Pettitt AN (2016) A Review of Modern Computational Algorithms for Bayesian Optimal 
Design: A Review of Modern Algorithms for Bayesian Design. International Statistical Review 84(1):128–154. 
https://doi.org/10.1111/insr.12107. Available at http://doi.wiley.com/10.1111/insr.12107 

[7] Huan X, Marzouk YM (2013) Simulation-based optimal Bayesian experimental design for nonlinear systems. Journal of 
Computational Physics 232(1):288–317. https://doi.org/10.1016/j.jcp.2012.08.013. Available at 
https://linkinghub.elsevier.com/retrieve/pii/S0021999112004597 

[8] Granade CE, Ferrie C, Wiebe N, Cory DG (2012) Robust online Hamiltonian learning. New Journal of Physics 14:103013. 
https://doi.org/10.1088/1367-2630/14/10/103013 

[9] Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F 
Radar and Signal Processing 140(2):107. https://doi.org/10.1049/ip-f-2.1993.0015. Available at 
https://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015 

[10] Carpenter J, Clifford P, Fearnhead P (1999) Improved particle flter for nonlinear problems. IEE Proceedings - Radar, Sonar and 
Navigation 146(1):2. https://doi.org/10.1049/ip-rsn:19990255. Available at 
https://digital-library.theiet.org/content/journals/10.1049/ip-rsn 19990255 

[11] Li T, Bolic M, Djuric PM (2015) Resampling Methods for Particle Filtering: Classifcation, implementation, and strategies. IEEE 
Signal Processing Magazine 32(3):70–86. https://doi.org/10.1109/MSP.2014.2330626. Available at 
https://ieeexplore.ieee.org/document/7079001/ 

About the authors: R. D. McMichael is a project leader in the Nanoscale Device Characterization Division 
at the National Institute of Standards and Technology. S. Dushenko is a Post-doctoral Associate in the 
Cooperative Research Program in Nanoscience and Technology between the University of Maryland and the 
National Institute of Standards and Technology. S. M. Blakley is a National Research Council Postdoctoral 
Associate in the Nanoscale Device Characterization Division at the National Institute of Standards and 
Technology. The National Institute of Standards and Technology is an agency of the U.S. Department of 
Commerce. 

5 https://doi.org/10.6028/jres.126.002 

https://doi.org/10.6028/jres.126.002
https://doi.org/10.1103/PhysRevApplied.14.054036
https://link.aps.org/doi/10.1103/PhysRevApplied.14.054036
https://doi.org/10.1098/rstl.1763.0053
https://royalsocietypublishing.org/doi/10.1098/rstl.1763.0053
https://doi.org/10.1214/ss/1177013621
https://projecteuclid.org/euclid.ss/1177013621
https://doi.org/10.1214/ss/1177009939
https://projecteuclid.org/euclid.ss/1177009939
https://doi.org/10.1214/aoms/1177728069
https://projecteuclid.org/euclid.aoms/1177728069
https://doi.org/10.1111/insr.12107
http://doi.wiley.com/10.1111/insr.12107
https://doi.org/10.1016/j.jcp.2012.08.013
https://linkinghub.elsevier.com/retrieve/pii/S0021999112004597
https://doi.org/10.1088/1367-2630/14/10/103013
https://doi.org/10.1049/ip-f-2.1993.0015
https://digital-library.theiet.org/content/journals/10.1049/ip-f-2.1993.0015
https://doi.org/10.1049/ip-rsn:19990255
https://digital-library.theiet.org/content/journals/10.1049/ip-rsn_19990255
https://doi.org/10.1109/MSP.2014.2330626
https://ieeexplore.ieee.org/document/7079001/
https://doi.org/10.6028/jres.126.002

	Summary
	Background
	Requirements
	Software Specifications
	Methods for Validation
	Behavior Monitoring
	References

