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Deep Reinforcement Learning for Edge Service
Placement in Softwarized Industrial

Cyber-Physical System
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Abstract—Future industrial cyber-physical system (CPS)
devices are expected to request a large amount of delay-
sensitive services that need to be processed at the edge
of a network. Due to limited resources, service placement
at the edge of the cloud has attracted significant atten-
tion. Although there are many methods of design schemes,
the service placement problem in industrial CPS has not
been well studied. Furthermore, none of existing schemes
can optimize service placement, workload scheduling, and
resource allocation under uncertain service demands. To
address these issues, we first formulate a joint optimization
problem of service placement, workload scheduling, and
resource allocation in order to minimize service response
delay. We then propose an improved deep Q-network
(DQN)-based service placement algorithm. The proposed
algorithm can achieve an optimal resource allocation by
means of convex optimization where the service placement
and workload scheduling decisions are assisted by means
of DQN technology. The experimental results verify that the
proposed algorithm, compared with existing algorithms,
can reduce the average service response time by 8–10%.
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I. INTRODUCTION

THE industrial cyber-physical system (CPS) technology
promises to ensure seamless connectivity of industrial

physical and cyber worlds [1]. With the growing number of
wireless sensor devices, CPS will continue to play a crucial role
in the integration of complex sensing, including delay sensi-
tive and computationally intensive services such as real-time
communication monitoring and control. As data generated by
wireless sensor devices continue to expand, offloading them to
the cloud for processing may not only causes a long delay but
can also lead to network congestion [2].

To address this, it is essential to enhance the computing
capability at the edge of network, where servers are deployed
close to sources. Using edge cloud, not only rapid processing
and analyzing for sensor data can be realized, but the load of
the backhaul link can also be reduced [3], [4]. Furthermore,
security and privacy requirements of the industrial CPS are also
important that need to be addressed. For example, data generated
by wireless devices are private and should be handled with a high
degree of confidentiality at the edge of the network [5].

In practice, however, due to limited computing and storage
resources that would require processing a massive amount of
data, the entire operation of the industrial CPS at the edge
cloud requires the adoption of an efficient service placement [6],
[7]. To address these challenges, Chen et al. [8] proposed fog
configuration to minimize delay and energy consumption in
the industrial Internet of Things. Wang et al. [9] designed a
deployment of service entity with the lowest energy consump-
tion. Zhang et al. [10] proposed an efficient service placement
scheduling using distributed clouds. However, none of these
works take into account the impact caused by heterogeneity
in service requests among multiple edge clouds (i.e., service
requests on edge clouds are unbalanced in spatial and temporal).

In view of the imbalances in service requests and to reduce
service delay, a joint optimization of service placement and
workload scheduling problems has been investigated by a num-
ber of researchers. For instance, Poularakis et al. [11] designed a
service placement and request scheduling scheme in cases where
there are insufficient communication, computing, and storage
resources on the edge cloud. With regards to delay-sensitive
tasks, Ma et al. [12] proposed cooperative service placement
and workload scheduling scheme to minimize the service re-
sponse time and overall outsourcing traffic to the cloud. Farhadi
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et al. [13] proposed a submodular-based optimization scheme for
service placement and request scheduling for data-intensive ap-
plications in edge clouds. In all these joint optimization schemes,
it is assumed that the service demand is known, i.e., uncertain
service demand has not been taken into consideration in these
joint optimization schemes.

In this article, we focus on the service placement and workload
scheduling problem in industrial CPS. We propose a deep Q-
network (DQN)-based algorithm to tackle the uncertain service
demands of the edge cloud. This is indeed a challenging prob-
lem [14], because when a service placement is carried out, the
service request at the time is unknown, which will lead to unrea-
sonable placement and consequently cause greater latency in the
service requests of wireless sensor devices. In addition to service
placement and workload scheduling, we also need to consider
the allocation of computing resources as the edge cloud needs
to decide how much computing resources should be allocated to
execute the service. Thus, for the first time, we analyze the joint
optimization problem of service placement, workload schedul-
ing, and resource allocation under the demand uncertainties.

To achieve this, we first design a softwarized-based industrial
CPS, and realize information exchange between edge clouds
through centralized software-defined network (SDN) [15] con-
trollers. Then, we formulate the joint optimization problem of
service placement, workload scheduling, and resource alloca-
tion to minimize service response time. Since this problem
is a nonlinear mixture of integer optimization, solving it is
a difficult task. Thus, we propose an improved DQN-based
service placement (DSP) algorithm. Although we have adopted
a DQN-based approach to solve this challenging problem, we
should point out traditional DQN network is not suitable for
the edge node due to the high computational complexity caused
by too many states and action spaces. Thus, in our approach
we propose to reduce the computational complexity by setting
offline training of the Q-network and online decision-making
for service placement and workload scheduling. In addition, we
evaluate the convergence of the DSP algorithm.

In summary, the main contributions of this article include the
following.

1) Service Placement in the Industrial CPS: To find out
which services should be placed on which edge node
to minimize service response time, we propose a joint
optimization approach that incorporates service place-
ment, workload scheduling, and resource allocation under
service demand uncertainty.

2) DQN-based Service Placement Algorithm: To solve the
optimization problem, we divide it into two subproblems:
a) Resource allocation of each edge cloud and b) service
placement and workload scheduling. For the former, we
adopt convex optimization to give the optimal allocation
scheme, whereas in the latter, we adopt DQN to solve the
problem through learning service requests.

3) Performance Evaluation: We conduct comprehensive
simulation experiments to verify the effectiveness of the
proposed DSP algorithm. The experiment results show
that, compared with traditional edge service placement
schemes, the DSP strategy can minimize latency dur-

ing service acquisition. For instance, in a scenario of
30 services, compared to other algorithms, our propose
algorithm can reduce the average latency by 8%–10%

The remainder of the article is organized as follows. In Sec-
tion II, we give a review of related work and present the system
model and problem formulation in Section III. In Section IV, we
present our algorithm to solve the problem. The simulation re-
sults and discussions are given in Section V. Finally, Section VI
concludes this article.

II. RELATED WORK

The industrial CPS generally includes a large number of
wireless sensor devices, which can generate and collect a large
amount of data. However, offloading them to a remote cloud for
further processing may lead to long delays [16]–[18]. Currently,
edge computing can provide high-reliability, high-bandwidth,
and low-delay computing services for sensor devices by de-
ploying servers at network edges (including wireless access
points, base stations, routers, etc.) [3], [19]. This is because
the edge server is closer to the mobile device, which can be
directly connected to edge cloud through a wireless network,
hence greatly reducing communication latency.

Currently, most investigations have concentrated on how to
offload data generated by wireless sensor devices onto the edge
cloud. This not only reduces the data processing delay but also
saves the energy consumption of wireless sensor devices [14],
[20]. For the edge cloud, according to prior knowledge of where
there is global information in the system, existing task offloading
schemes can be divided into centralized task offloading [18] and
the distributed task offloading algorithm [14], [16]. These works
show that the delay and energy consumption can be reduced
by designing a reasonable task offloading strategy. However,
these works assume that all services requested by wireless sensor
devices can be handled by the edge cloud.

In reality, however, the edge cloud has limited storage and
computing capacity and cannot support the operation of all
types of services. Thus, which services are to be placed on
the edge cloud (i.e., service placement) should be taken into
consideration [6]. To address this challenge, some existing works
have proposed service placement algorithms. For delay-sensitive
services, such as augmented reality (AR), many different service
placement strategies are proposed by researchers to reduce the
delay. For example, cost-aware service placement has been pro-
posed in [19]. Since different edge clouds have different service
requests, service placement and workload scheduling can be
jointly optimized to further improve network performance.

In [11] and [21], a joint optimization problem for service
placement and request routing is designed using submodular
optimization. These joint optimization schemes are based on
prior knowledge with service requests and without incorporating
resource allocation in order to further improve utilization of
resources. Thus, in contrast with existing works, we study the
optimization of service placement, workload scheduling and
resource allocation in the softwarized-based industrial CPS un-
der demand uncertainty, aiming to minimize service response
time.
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Fig. 1. System architecture of softwarized-based industrial CPS.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and problem
formulation. Our goal is to minimize the delay when wireless
devices in industrial CPS obtain services.

A. System Architecture

In our investigation, we consider an industrial CPS ecosystem
scenario, which includes a mass of wireless sensors devices,
multiple edge clouds, and a remote cloud. In this scenario,
wireless sensor devices communicate with edge clouds through
wireless channels, while edge clouds are connected to the remote
cloud through wired link. Moreover, we adopt SDN in order to
realize the distributed management of the edge cloud according
to the system architecture shown in Fig. 1.

Specifically, the softwarized-based industrial CPS includes
the wireless sensors devices plane, the data plane, and the cen-
tralized control plane. The devices plane is composed of wireless
sensor devices in industrial CPS, which is responsible for data
collection. The data plane consists of access points and their
corresponding edge clouds, and is responsible for processing
the data services collected by the sensors. The interconnection
among multiple edge clouds is based on the centralized control
plane. Moreover, the centralized control plane can realize service
placement and workload scheduling on edge clouds. Thus, with
the SDN technology, a centralized control of industrial CPS on
distributed edge clouds can be realized.

Let us consider a softwarized industrial CPS system that
consists of N edge clouds where each can provide data analysis
and processing services for wireless sensor devices. We denote
a set of edge clouds by N = {1, 2, . . . , N}. Also, let F edge

i

and M edge
i be the computation capacity and storage capacity of

edge cloud i, respectively. Compared with limited storage and
computing resources on the edge cloud, as in [19], we consider
the remote cloud has sufficient computing and storage capacities
and has all the service requests in industrial CPS.

Moreover, we consider the service placement operates in
discrete time slotsT = {1, 2, . . . , T}, whereT denotes the finite
time horizon and each time slot has a duration. In each duration,
the SDN controller needs to place services, schedule workload,
and to do resource allocation. In the following, we present our

TABLE I
SUMMARY TABLE OF IMPORTATION NOTATIONS

proposed service placement, workload scheduling, and resource
allocation model. For the sake of clarity, the main notations used
in this article are shown in Table I.

B. Service Placement

Since industrial wireless node may collect wide ranging data,
different data processing and analysis should be carried out
for different services. We assume that there are K services
in industrial CPS, indexed by K = {1, 2, . . . ,K}. Moreover,
the edge cloud consumes computing and storage resources to
handle requests of wireless sensor devices. As in [11], we assume
that ωk (in CPU cycle) is the computing resource required for
processing service k, and sk (in bits) is the storage capacity
required to place service k. Considering that an edge cloud has
limited computing and storage resources, only finite services can
be placed upon it. So, the issue is to find the best possible service
to utilize the edge cloud resources. To address this challenge, we
analyze service placement, workload scheduling, and resource
allocation problem in edge clouds.

First, for service placement problem on edge cloud, let binary
variable xi,k(t) ∈ {0, 1} denote whether service k is placed on
the edge cloud i at time slot t. We set xi,k(t) = 1 (or 0) if the
service is placed on the edge cloud i (or not). Accordingly, we
define X (t) = {xi,k(t)|i ∈ N , k ∈ K} to represent the service
placement decision. Furthermore, we assume that the storage
capacity on the edge cloud is limited, thus, in any time slot t,
the size of services placed on the edge cloud i cannot be larger
than the storage capacity of the edge cloud, i.e.,

K∑
k=1

xi,k(t)sk ≤ M edge
i , ∀t. (1)

As for the resource allocation problem of the edge cloud and
in consideration of heterogeneity in computing resources on it,
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we know that the computing capacity of edge cloud i is F edge
i .

Let denote yi,k(t) ∈ [0, 1] as the fraction of computing capacity
F edge
i allocated to the service k. When yi,k(t) is equal to 0, it

means that the service k is not placed on the edge cloud, so the
computing resources allocated at this time are 0. Accordingly, we
defineY(t) = {yi,k(t)|i ∈ N , k ∈ K} as all resource allocation
decisions.

Since the computing capacity on the edge cloud is limited,
the size of computing resources allocated for service k cannot
exceed its maximum computing resources, i.e.,

K∑
k=1

yi,k(t) ≤ 1, ∀t. (2)

In addition to edge cloud, the computing capacity of remote
cloud is much larger than that of the edge cloud.

C. Service Response Time

To analyze service response time, we assume that at time
slot t, the number of requests for service k on edge cloud i by
wireless sensor devices are λi,k(t). Due to the heterogeneity
of data collected by wireless sensor devices and the dynamic
nature of the service requested, λi,k(t) changes dynamically. It
should be noted that when the requested service is not placed
on this edge cloud, the service can be operated on a cloud or on
another edge cloud if the service is placed through scheduling.
Therefore, we give the workload scheduling scheme for services.
Let pi,k(t) ∈ [0, 1] denote the workload ratio, where service
k is operated on edge cloud i. Accordingly, we can define
P(t) = {pi,k(t)|i ∈ N ∪ {o}, k ∈ K} as all service scheduling
decisions, and po,k(t) represents the proportion where service k
is operated on the cloud. We assume that each requested service
needs to be executed, i.e.,∑

i∈N∪{o}
pi,k(t) = 1, ∀t. (3)

Moreover, the total number of requests for service k in indus-
trial CPS at time slot t can be obtained as: λk =

∑N
i=1 λi,k(t).

Thus, we can obtain the overall computation workload Wi,k(t)
and data sizeSi,k(t) required when service k is operated on edge
cloud i at time slot t as

Wi,k(t) = pi,kωkλk(t)

Si,k(t) = pi,kskλk(t).

We note if Wi,k(t) ≤ ωkλi,k(t), the computation workload
required by services k is from edge cloud i; otherwise, the
excessive workload (Wi,k(t)− ωkλi,k(t)) corresponds to the
nearby edge clouds.

Next, we analyze the specific service response time and reduce
the outsourcing service to remote cloud. For instance, at the point
where xi,k(t) = 1, the edge cloud i should be able to handle
service request k. Under these conditions, we first obtain the
computing delay when service k is handled on edge cloud i as

Dcomp
i,k (t) = xi,k(t)

Wi,k(t)

yi,k(t)F
edge
i

. (4)

In terms of transmission delay, since wireless sensor devices
are often very close to the access point, therefore, as in [11], we
ignore the transmission delay between these devices and edge
cloud. In addition, considering that neighboring edge clouds are
not far away from each other (similar to [13]), by assuming that
the transmission rate is redge(t), the transmission delay of the
edge cloud can be obtained as

Dtran
i,k (t) = xi,k(t)

max{(pi,kskλk(t)− skλi,k(t)), 0}
redge(t)

. (5)

In the case where xi,k(t) = 0, outsourcing some services to
a remote cloud would be required. Based on [12], the service
response time is mainly from the transmission delay in the core
network. So, we assume that the rate of the core network when
service k is transmitted at time slot t is rk(t). Under these
conditions, the processing delay of service k on the cloud can
be obtained as

Dc,k(t) =

N∑
i=1

[
(1 − xi,k(t))

p0,k(t)λk(t)sk
rk(t)

]
. (6)

Thus, we can obtain the average response time of service k
as the weighting of all edge clouds to computation delay and
transmission delay, as follows:

dk(t) =
N∑
i=1

(Dcomp
i,k (t) +Dtrans

i,k (t)) +Dc,k(t). (7)

Our goal is to reduce the outsourcing service to remote cloud
while minimizing the service response time, as follows:Dk(t) =
dk(t) + p0,k(t)λk(t)sk.

D. Uncertain Service Demand

Existing service placement strategies are based on the as-
sumption that service requests on the edge cloud are known
or subject to a specific distribution (e.g., Poisson distribution).
More specifically, the service provider is aware of requested
services when making a service placement. However, in practice,
for industrial CPS each edge cloud covers different regions
where system environment changes dynamically. This situa-
tion causes uncertainty in requesting services in each region.
Under these conditions, we need to design the algorithm that
can deal with time changing environments (such as the arrival
of a new service demand) and find an optimal solution in
which the service placement, resource allocation, and workload
scheduling under uncertain service demands can be efficiently
handled. Thus, we first use the idea of software definition to
realize the centralized control of distributed edge cloud. Then,
we utilize deep reinforcement learning to learn the service
request.

E. Problem Formulation

In softwarized-based industrial CPS, our goal is to minimize
Dk(t) through service placement, resource allocation, and work-
load scheduling under uncertain service demands. Thus, the

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on May 06,2021 at 11:12:49 UTC from IEEE Xplore.  Restrictions apply. 



5556 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 8, AUGUST 2021

Fig. 2. Illustration of DQN-based service placement method.

problem can be expressed as

P1 : min
X ,Y,P

1
T

T∑
t=1

K∑
k=1

Dk(t) (8)

s.t. C1 :

K∑
k=1

xi,k(t)sk ≤ Medge
i , ∀t (9)

C2 :

K∑
k=1

yi,k(t) ≤ 1, ∀t (10)

C3 :
∑

i∈N∪{o}
pi,k(t) = 1, ∀t (11)

C4 : xi,k(t) ∈ {0, 1}, k ∈ K, i ∈ N (12)

C5 : yi,k(t) ∈ [0, 1], k ∈ K, i ∈ N (13)

C6 : pi,k(t) ∈ [0, 1], k ∈ K, i ∈ N . (14)

In the above, the objective function (12) aims to compute the
minimal service response time and reduce the outsourcing ser-
vice to remote cloud. The first constraint condition (C1) indicates
that placed services cannot exceed the storage capacity of the
edge cloud. Constraint (C2) ensures that resource allocation on
the edge cloud cannot exceed the computing capacity of the edge
cloud. Finally, the value of variables are given in constraint (C3),
(C4), and (C5).

For the optimization problem P1, we note that X is an
integer variable, Y and P are continuous variables, and the
objective function is nonlinear. Thus, the optimization problem
P1 is a mixed integer nonlinear programming, which is NP-hard
problem. In order to address this, we adopt DQN for solving the
problem where an optimal scheme will be can be developed
through a learning service demand.

IV. DQN-BASED SERVICE PLACEMENT ALGORITHM

Fig. 2 illustrates our proposed DQN-based service placement
method. Specifically, we adopt convex optimization and DQN to
solve the optimization problem P1. Considering that resource
allocation is processed on the edge node, whereas the SDN con-
troller handles the service placement and workload scheduling,
problem P1 can be divided into two subproblems: 1) resource
allocation and 2) service placement and workload scheduling.

A. Resource Allocation Problem

First, we assume that the optimal service placement X∗(t)
and workload scheduling P∗(t) at time slot t have been handled
by a centralized SDN controller. Then the optimization P1
is converted into the following optimization problem P2 with
respect to yi,k:

P2 :min
Y

1
T

T∑
t=1

K∑
k=1

Dk(t) (15)

s.t. C1 :

K∑
k=1

yi,k(t) ≤ 1, ∀t (16)

C2 : yi,k(t) ∈ [0, 1], k ∈ K, i ∈ N . (17)

By analyzing Dk(t), we conclude that given the optimal
x∗
i,k(t) and p∗i,k(t), there is only Dcomp

i,k (t) for the service re-
sponse time that relates to edge cloud i. As resource allocation
should be conducted at each edge cloud i within a time slot t and
in a distributed manner, the objective function can be converted
into

f(Yi(t)) =

K∑
k=1

Dcomp
i,k (t). (18)

Therefore, we can obtain that the optimal resource allocation
scheme as shown in the following lemma:

Lemma 1: When the optimal service placement x∗
i,k(t) and

workload scheduling p∗i,k(t) are given, the optimal resource
allocation y∗i,k(t) can be obtained as

y∗i,k(t) =

√
μi,k(t)∑N

i=1

√
μi,k(t)

(19)

where μt
i,k = (x∗

i,k(t)Wi,k(t))/F
edge
i .

Proof: First, we can obtain the second-order derivative of
f(Yi(t)) as

∂2f

∂yi,k(t)2
=

2μi,k(t)

yi,k(t)3
≥ 0. (20)

Considering that if a service is not placed on the edge cloud,
yi,k is equal to 0. So we can conclude that the Hessian matrix of
f(Yi(t)) is positive and f(Yi(t)) with respect to yi,k is convex.
Based on the Karush–Kuhn–Tucker (KKT) condition adopted
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in [22], the optimal resource allocation scheme yi,k(t) can then
be obtained. �

B. Service Placement and Workload
Scheduling Problem

According to the above analysis, we conclude that given the
service placement and workload scheduling scheme, optimal
resource allocation can be handled by each edge cloud i at time
slot t. Next, we introduce a solution for the service placement
and workload scheduling problem under uncertain service de-
mands. We design a service placement and workload scheduling
algorithm based on DQN [23], [24].

Specifically, DQN modeling is often conducted based on the
Markov decision processes (MDP), which includes intelligent
agent, environment, state, action, and reward elements. The basic
idea is as follows: An intelligent agent observes the environment
at time slot t to obtain the current state. Then, the agent makes
a corresponding action as an observed state and reward will be
given after the action is accepted by the environment before pro-
ceeding to the next state. An intelligent agent finally maximizes
the sum of its rewards through continuous interactions with the
environment.

Thus, we first need to describe the service placement and
workload scheduling optimization problem as an MDP. Bear in
mind that MDP consists of three components: State space S ,
action space A, and reward function R. In order to apply this to
the edge computing scenario, we need to specifically design
different components of reinforcement learning as described
below.

State Space: The SDN controller is responsible for observing
the state of each edge cloud, which includes service demand and
the information of the edge cloud. Specifically, the state of edge
cloud i at time slot t can be obtained as

si(t) = {λi,k(t),M
edge
i , F edge

i , y∗i,k(t)}. (21)

Thus, the state of edge cloud i can be obtained by the SDN
controller through local observation at the beginning of each
time slot t.

Action Space: We begin with service placement xi,k(t),
by assuming that there are N edge clouds, K services, and
xi,k(t) ∈ {0, 1}. Thus, the action space of the service placement
is 2K×N . Then, we consider the workload scheduling scheme.
From the optimization problem P1, we can observe that the
workload scheduling scheme pi,k(t) is continuous. If a modeling
is conducted with usual continuous action space, the action
space would be too large, which is not suitable for deployment
on the edge node. To address this issue, we consider that, in
practice, workload scheduling is usually done with blocks. Thus,
we assumed that the minimum processing unit is Δpi,k(t).
Therefore, the value of the workload scheduling scheme can
be obtained as

pi,k(t) ∈ {Δpi,k(t), . . . ,mΔpi,k(t), . . . , 1}. (22)

Thus, we can obtain the action space A(t) of edge cloud i at
time slot t as

ai(t) = {xi,k(t),mΔpi,k(t), k ∈ K}. (23)

Fig. 3. Deep reinforcement learning based service placement and
workload scheduling scheme.

Reward: Bear in mind that our goal is to minimize service
response time through service placement, workload scheduling,
and resource allocation. Thus, we can then obtain the reward
function as

R(t) =

K∑
k=1

Dk(t). (24)

To minimize the reward function, we first define Q(s, a) as the
action value. We can then show the expected total sum of future
rewards for T time steps, as

Q(s, a) = E

(
T∑
t=1

γtRt|st = s, at = a

)
(25)

where γ ∈ [0, 1] is the discount factor and E[] is the expectation
with respect to the time-varying system environments. Thus, we
can express the original optimization problem P1 as finding
the optimal service placement and scheduling strategy a∗ to
minimize the action-value Q(s, a)

a∗ = argmina∈AQ(s, a) (26)

where A is the action space.

C. Deep Q-Network-Based Service Placement and
Workload Scheduling Algorithm

Based on the components defined above, our goal is to design
the optimal service placement decisionX and workload schedul-
ing P according to the request of the service. Our algorithm
architecture is shown in Fig. 3. Specifically, considering the
limited computing and storage capacity of the edge cloud, we
adopt the strategy, which is based on offline training of Q-
network parameter θ and online service placement and workload
scheduling decision at. The offline training refers to the Q
network parameter θ, where the θ = (W1,W2), describes the
nonlinear relationship among service request information and
the reward of Q-network. The online decision-making refers
to the service placement and workload scheduling strategy at.
Moreover, the DSP algorithm is shown in Algorithm 1 with the
following specifications.
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Fig. 4. Impact of the edge cloud storage capacity for different service
placement schemes.

Let us denote E as the epoch of this algorithm where in each
epoch, as shown in line 4, we choose an action at. Specifically,
in this article, we adopt the ε-greedy search strategy where an
action with possible probability ε (with uniform distribution) is
selected among all possible actions. For the purpose of exploita-
tion, the known best action can be selected by the probability of
1 − ε to be utilize. Subsequently, in line 5, we execute the service
placement and workload scheduling strategy of at to obtain the
corresponding reward Rt, and to change the state space from st
to st+1. We store the transitions (st, at, Rt, st+1) in the reply
memory D, as shown in line 6. Then, we use the data stored in
the reply memory to train the parameters θt in the Q-network,
where we select |D̃| data as a minibatch from the reply memory,
and train the network based on the following loss function:

L(θt)=
1

|D̃|

|D̃|∑
j=1

(
Rj + γmin

a′
Q(si+1, a

′; θ̄)−Q(si, ai; θt)
)2

.

(27)
The parameter θt can be solved by the gradient descent method
as

θt+1 = θt − η∇L(θt) (28)

where η is the learning rate. After the C step, we reset the θ.
Through the above steps, we can get the parameter θ in the
Q-network. Based on the above training model, we propose the
online service placement and scheduling strategy as shown in
lines 13–15.

D. Convergence Analysis

According to [24], when the system satisfies Markov property
and the learning rate is small enough, DQN method can gradu-
ally converge to the optimal decision-making strategy. Accord-
ing to the above analysis, our algorithm satisfies this condition.
Thus, the DSP algorithm proposed by us finally converges to the
optimal strategy.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the DSP algorithm to verify the
effectiveness of our algorithm.

Algorithm 1: DQN-Based Service Placement and Workload
Scheduling Algorithm.
Input:

State of edge system in industrial CPS;
Random initialization parameters;

Output:
Service placement decision and workload scheduling
scheme.

Offline training the Q-network
1: for epoch=1:E do
2: Obtain the initial state st.
3: for time slot t=1:T do
4: select an action at based on ε-greedy policy;
5: Deploy at, observe the reward Rt and obtain the

new state st+1;
6: Store transition (st, at, Rt, st+1) into replay

memory D;
7: Sample a mini-batch of transitions

D̃ = (st, at, Rt, st+1)
|D̃|
t=1 from replay memory;

8: Calculate the gradient L(θt) according to (27);
9: Update the parameters according to (28);

10: Every C steps, reset θ̄ = θ.
11: end for
12: end for

Online making service placement and scheduling
decision according to the service demand

13: Load the parameters θ;
14: Calculate action-value Q(st, a; θ);
15: Output at = argminQ(st, a; θ)

A. Experiment Setting

In this article, we assume the edge clouds are deployed near
the access point. Industrial CPS devices can be connected to
edge cloud via an access point. We consider the industrial CPS
includes 10 edge clouds and 15 services. According to [12],
we assume that the storage of each service required follows a
uniform distribution with a mean of [20,80] GB, and the amount
of computation required for each service follows a uniform
distribution with a mean of [10,50] gigacyles. Considering the
heterogeneity of storage and computing capacity of the edge
cloud, we assume that the storage capacity of the edge cloud
is randomly selected from [100, 200] GB, and the computing
capacity is randomly selected from [50, 100] GHZ. For edge
cloud network transmission, we assume that the transmission
rate between edge clouds is [20,40] Mbps. As for service request
demand, we use real datasets in [8].

For DQN algorithm, the network is realized through Tensor-
flow, whose network structure is a fully connected three-layer
network with a single hidden layer, and the number of nodes in
the hidden layer is set as 50. For the experience pool, circular
queue is adopted for implementation, and the size of the experi-
ence pool is 2000. Moreover, we adopt ε-greedy strategy for the
action selection strategy, where ε = 0.9. In the early stages of
network training and to encourage exploratory behavior, we set
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Fig. 5. Performance evaluation among random service placement algorithm, ISP algorithm, popular service placement algorithm and DSP
algorithm. (a) Impact of the number of service requests for different service placement schemes. (b) Impact of the number of service for different
service placement schemes. (c) Impact of the edge cloud computing capacity for different service placement schemes.

ε to start from 0, and increment as 0.0005. As for the batch-size,
after many tests, the optimal batch-size is chosen as 64. The
learning rate of the algorithm is set as η = 0.0001, and the
discount factor is set as γ = 0.9.

B. Comparison Algorithms

The DSP algorithm proposed in this article will be compared
with the following algorithms.

1) Random Service Placement Algorithm: In this algorithm,
services are placed on the edge cloud randomly. As for
workload scheduling and resource allocation, optimal
scheduling and resource allocation is conducted.

2) Independent Service Placement (ISP) Algorithm: In this
algorithm, each of the edge cloud carries out independent
service placement, and the workload of each edge cloud is
processed either locally or offloaded to the remote cloud.
For the edge cloud computing resources, optimal resource
allocation is carried out according to the placed service
and workload.

3) Popular Service Placement Algorithm: In this algorithm,
we perform service placement according to the number of
requests, i.e., the services with more requests are placed
on each edge cloud. According to the services placed
on the edge cloud, optimal workload scheduling, and
resource allocation is conducted.

C. Performance Evaluation

In order to avoid the noise data caused by exploration in the
experiment results, in our experiments averaging is conducted to
return values every 10 rounds. Furthermore, in the experiment,
we normalize the service response time.

Edge Cloud Storage Capacity: We first analyze the impact of
edge cloud storage capacity on the service response time. The
edge cloud storage capacity varies from 50 to 250 GB. From
Fig. 4, we can obtain that when the edge cloud storage capacity
increases, the service response time decreases. This can be
explained as a larger edge cloud storage capacity would allows
more services to be placed in edge cloud causing a reduction in
the service response time.

Number of Service Requests: Fig. 5(a) shows that as the
number of service requests increases, the service response time
increases. This is because a larger service request implies a
heavier workload on the edge cloud. In Fig. 5(a), we find that
when the number of service requests increase from 15 to 25,
the service response time of the DSP algorithm increases by
12.3 %, while the other algorithms increase by at least 18.2 %.
This shows that our proposed DSP algorithm is more suitable
for uncertain service demands. Moreover, with the increase of
service requests, the DSP algorithm keeps the lowest service
response time when compared with other algorithms.

Number of Services: From Fig. 5(b), we can see that when the
number of services increase, the service response time increase
of each algorithm. This is because with an increase of services,
the computing and storage capacity of the edge cloud is limited,
so more services are processed in the cloud, thus creating more
delays. Furthermore, when the number of services increases to
30, compared with other algorithms, the DSP algorithm can
reduce the service response time by 8–10%.

Computing Capacity of Edge Cloud: We have discussed the
impact of the computing capacity of the edge cloud on service
response time. From the Fig. 5(c), we can conclude that, with the
growth of the computing capacity of each edge cloud, service
response times of each algorithm decrease. This is because
more industrial services can be executed on the edge cloud.
Furthermore, we can also see from the figure that, compared with
other service placement schemes, our proposed DSP scheme
has less service response time, especially when the computing
capacity of the edge cloud is weak.

VI. CONCLUSION

In this article, we first propose softwarized-industrial CPS,
and analyze the problem of service placement in this scenario.
Then, in consideration of uncertain service demand, we for-
mulate the joint optimization problem of service placement,
workload scheduling and resource allocation to minimize la-
tency in service acquisition. Furthermore, in order to solve
the optimization problem, we propose a DSP algorithm using
convex optimization and DRL. To the best of our knowledge, this
is the first study of joint service placement, workload scheduling,
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and resource allocation under uncertain demands. Simulation
results show that our proposed DSP scheme is more efficient
compared to the existing schemes.
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