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ABSTRACT 
Industrial robots play important roles in manufacturing 

automation for smart manufacturing. Some high-precision 

applications, for example, robot drilling, robot machining, robot 

high-precision assembly, and robot inspection, require higher 

robot accuracy compared with traditional part handling 

operations. The monitoring and assessment of robot accuracy 

degradation become critical for these applications. A novel 

vision-based sensing system for 6-D measurement (six-

dimensional x, y, z, yaw, pitch, and roll) is developed at the 

National Institute of Standards and Technology (NIST) to 

measure the dynamic high accuracy movement of a robot arm. 

The measured 6-D information is used for robot accuracy 

degradation assessment and improvement. This paper presents 

an automatic calibration method for a vision-based 6-D sensing 

system. The stereo calibration is separated from the distortion 

calibration to speed up the on-site adjustment. Optimization 

algorithms are developed to achieve high calibration accuracy. 

The vision-based 6-D sensing system is used on a Universal 

Robots (UR5) to demonstrate the feasibility of using the system 

to assess the robot’s accuracy degradation. 

 

INTRODUCTION 
Industrial robot systems are very complex, containing sub-

systems and components that interact within manufacturing 

work cells. It is a challenge to determine their specific influences 

on performance when an unexpected break down happens in a 

work cell [1, 2]. There is increasing interest to enable the ability 

to leverage prognostic data to monitor the system’s health status 

[3, 4]. Data analysis may generate actionable intelligence in 

maintenance plan optimization. The monitoring of robot health 

conditions may also help to detect potential faults and failures. It 

helps to eliminate the unexpected maintenance shutdowns that 

are expensive.   

To monitor the health condition of an industrial robot, low-

level data can be extracted from robot controllers. Information 

from controllers may include joint current, positions, velocities, 

accelerations, etc. The controller’s low-level data can be used to 

capture and monitor the abnormal changes of signals [5]. But this 

method is suitable for repeating operations, where signals 

usually have fixed patterns at normal conditions. Moreover, 

some non-geometric errors, for example, squareness errors 

between axes and deflections of the structure cannot be reflected 

from joint data. An individual joint’s data cannot determine the 

overall robot's health condition, that is, the accuracy degradation 

of the robot’s tool center position (TCP). To monitor a robot’s 

absolute accuracy changes, a sensor that can measure the 6-D 

information of the robot TCP is needed.  

Many sensing systems in the market can measure 6-D 

information, including laser trackers [6], theodolite 

measurement devices [7], probing coordinate measuring 

machines (CMM)  [8, 9], and optical tracking systems [10, 11]. 

Laser trackers and theodolites have the line-of-sight issue for 

moving objects. CMM measurement is slow, not suitable to 

measure the robot arm’s dynamic movements. Also, laser 

trackers and CMM measurements are expensive. Optical 

tracking systems are vision-based instruments. The major 

challenge to optical tracking lies in measurement accuracy. Since 

they use infrared (IR) cameras and reflective spheres as targets, 

ambient light has a strong influence on measurement 

uncertainties [10]. A novel vision-based 6-D sensing system 

(patent pending) has been developed at the National Institute of 

Standards and Technology (NIST). The system contains a smart 

target (Fig. 1a)) and a vision-based measurement instrument (Fig 

1b)). The smart target has three-color light pipes. It is motor-

driven and can constantly rotate toward the measurement 

instrument. There is an orientation sensor mounted on the 

elevation shaft. An initial pose is defined by the user. When the 

smart target rotates away from the original pose, motors on the 

azimuth and elevation shaft rotate the elevation shaft back to its 
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original pose driven by the orientation sensor’s feedback. The 

novel design enables high accuracy (within 0.1mm) and high 

speed (at a minimum of 30 Hz) in measurement. The design of 

the smart target system is detailed in [12, 13]. This paper focuses 

mainly on the automatic calibration technology to achieve the 

high accuracy of the vision-based 6-D sensing system.  

This paper is organized as follows: the next section 

describes the automatic distortion calibration development. Then 

refinement algorithms are discussed that use iteration 

calculations to handle tilt images and imperfect calibration 

boards. Next, the verification method for the calibration result is 

described. The last section presents the establishment of an 

automatic stereo calibration procedure. 

CAMERA AUTOMATIC CALIBRATION DEVELOPMENT 
Traditional camera calibration methods compute camera 

intrinsic parameters from a set of target features with known 

geometries. The most common target is a checkerboard.  

Calibration usually requires users to select corners and areas on 

the checkerboard images manually. The manual process has 

several problems:  

1) Time consuming. Users must manually click four corners 

on each checkerboard image to define the region of interest. 

When there are multiple images, this process is very time-

consuming.   

2) Prone to error. The corner detection relies on the accuracy 

of the user clicking that is prone to error.   

3) Difficulty for stereo camera calibration. Using the dual 

camera as an example, stereo camera calibration needs to find 

correspondence between the left and right camera.  Users either 

have to make sure both cameras contain the full checkerboard 

image, or count and align the same corners for both left and right 

images manually. This process is tedious and time-consuming.  

 A method for automatic camera calibration was developed.  

This method doesn’t involve user clickings to define the region 

of interest. Images are processed in batch. The key to the 

automatic method is to enable auto-counting and auto-alignment. 

As shown in Fig. 2a), the calibration board used at NIST has two 

long rectangle makers in the center. The special markers are 

utilized as the indicator of the checkboard’s orientation and the 

center position. If the marker features are correctly detected, any 

corner in the image can find the correspondence to the center. 

Users may customize their markers on their checkerboard, for 

example, adding extra dots or special shapes as indicators. The 

automatic procedure for calibration board corner detection is as 

follows. 

1. Obtaining reverse images 

The original image of the calibration board has white 

rectangles as the markers shown in Fig 2a). If the white rectangle 

is used as the indicator, false detections have a large chance to 

happen because the edge of the calibration board is white. To 

solve this problem, a reverse calculation is implemented to 

reverse the white rectangle to black color, as shown in Fig. 2b) 

Then the contours of the two black rectangles are detected.  

2. Obtaining binarized image 

Images need to be filtered before further processing based 

on a threshold to obtain a binarized image. Two methods are 

developed to identify a proper threshold for the image. The first 

method is the adaptive thresholding based upon the Otsu 

Binarization method [14].  This is a well-established threshold 

method and we used an algorithm from the OpenCV library. This 

method is less robust and prone to false thresholding but runs 

faster. An improved method is developed by adding the 

calculation of image histogram, histogram smoothing, 

calculation of histogram gradient, and smart gradient divide 

thresholding. This new method is more robust compared with the 

first method. Because the algorithm is more complex, the 

calculation takes more time.   

3. Squares and rectangles detection  

Given the binary images, an algorithm is needed to detect 

the contours of black blobs. The method to find the contours can 

be simplified to finding four lines by using iteration and area 

approximation. The result is shown in Fig. 3.  The detected long 

a) Smart target (mounted on 
the end effector of UR5) 

 Figure 1. Vision-based 6-D measurement 

system 

b) Vision-based 
measurement instrument 

 

a) Original calibration board 

 Figure 2. Calibration board 

b) Reverse image of calibration board 

 

Figure 3. Illustration of the valid contours  
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rectangles are drawn in red color. Other detected squares are 

drawn in random colors. To remove noise and false detection, all 

the contours are arranged in a multi-level hierarchy-tree structure 

(parents and children) for further cleanup.  In the end, the squares 

on the calibration board and the two long rectangles (drawn in 

red color in Fig. 3) are identified. The two long rectangles are 

further analyzed to determine the orientation. Corners are used 

as the ‘anchor’ to map the rest of the squares to a grid. 

4. Recursive algorithm development for corner mapping 

The left top corner of the long rectangle is treated as the 

anchor. The other square corners’ positions are defined relative 

to the anchor. Then recursive searches are performed to find the 

nearest squares one-by-one. Grid coordinates are assigned to 

these square corners. By doing that, the so-called ‘position 

awareness’ is achieved. As a result, the corner correspondence 

from different images can be found automatically. Fig. 4 shows 

the assigned grid coordinates.  

5. Subpixel edge detection 

The detected corners are passed through a subpixel edge 

detection algorithm. The algorithm runs in iterations to find the 

location of corners or radial saddle points in sub-pixel accuracy 

as shown in Fig. 5.  

During the development, multiple algorithms are 

implemented. It is found that the subpixel corner detection 

algorithms sometimes give the wrong location, as shown in Fig. 

6a). The detected corners are marked with red crosses. When the 

corner is not a ‘saddle’ point, where near the anchor, the 

checkerboard conner becomes a white corner surrounded by the 

black background. The detected corner has deviated from the real 

corner locations. This problem is addressed by combining the 

current saddle point detection algorithm with a Harris corner 

localization approach [15].  Fig. 6b) shows that the results are 

more accurate using the new algorithm. 

6.  Alignment of the detected corners to calibration board 

coordinate frame 

After the corners are detected precisely, an iterative 

recursive neighbor search is performed to align the corners to a 

grid. We define the left top corner of the calibration board to the 

coordinates (0,0). The right bottom corner coordinate is (26, 26) 

because the current calibration board has 26 x 26 grid size.   

There are some requirements for taking calibration pictures.  

1) Both of the rectangle markers must be seen in the image; 2) 

the calibration board cannot be rotated more than 45 degrees 

otherwise the algorithm may be confused by the location of the 

left top corner; 3) the calibration board (at least the two rectangle 

boards) occupies both cameras’ field of view (FOV).  Once the 

above procedures are followed, the calibration can be performed 

automatically and robustly. There is no need for a user to mouse-

click hundreds of times which significantly reduces the problems 

caused by human errors.   

CALIBRATION REFINEMENT APPROACH 
Camera calibration accuracy is affected by the corner 

detection accuracy. Many calibration images are not fronto 

parallel (it means the calibration board is parallel to the image 

sensor). The titled calibration board image may cause non-linear 

distortion when localizing the subpixel corners [16]. A 

calibration refinement approach is developed to rectify the 

calibration images and refine the calibration with an iterative 

approach. 

The refinement approach is described as follows. 

• Corner detection: Detect the calibration board corners 

in the input images. 

• First calibration: Use the detected corners to estimate 

camera parameters.   

• Do iterations until convergence.  
• Perform undistortion: Use the camera parameters to 

undistort and correct the input images to a frontal 

canonical pattern. 

• Redo corner detection: Relocalize calibration pattern 

control points in the fronto parallel pattern. 

• Re-project: Reproject the control points using the 

estimated camera parameters.  
• Re-calibrate: Use the projected control points to re-fine 

the camera parameters. 

Figure 4. Labeled corners  

 

Figure 5. Subpixel edge detection algorithm from OpenCV 

library 

  

a) Corner detection with errors 

 
Figure 6. Corner detection improvement 

 

b) Improved corner detection 
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Fig. 7 shows the original calibration images (left) and the 

fronto corrected images (right). Then the corner detection 

algorithms are applied to the fronto corrected images. The 

calibration procedure is performed for two iterations in our test. 

The calibration results show an improvement of about 5%. When 

the tilt angles of the calibration images are large, the 

improvement will be more significant with the benefit of the 

detection on fronto images.   

Another algorithm is also implemented to handle the 

imperfect calibration board issue using an iterative approach 

[17]. Since the calibration board used at NIST is a high precision 

certified target, the existing test did not show significant 

improvement in calibration results. However, if users are using 

an imperfect calibration board, the developed algorithms are 

robust to handle the imperfect target condition.   

VERIFICATION OF CALIBRATION RESULTS 
After the calibration method is established, the calibration 

results need to be verified. A test method is developed using the 

straightness of line features to verify the distortion correction 

effects. An aluminate plate was machined to achieve surface 

flatness under 30 um. Three straight lines were precisely printed 

and applied on the top, middle, and bottom of the plane, as shown 

in the left picture of Fig. 8. The purpose of this test method is to 

evaluate the straightness of the lines that are detected by the 

camera after distortion correction. An unsuccessful calibration 

will result in curved lines with patterns. On the contrary, a 

successful calibration will result in a straight line. Thus, this is a 

good measure to verify the distortion correction of a calibration.   

Multiple line detection algorithms were tested to construct 

the line from the image. The traditional Hough line detection 

method has a problem in the test [18]. The way of finding the 

rising peak from the line edges does not perform very well in this 

case due to 1) saturation in the center of line; and 2) broken 

segment due to distortion. A robust line detection algorithm with 

sub-pixel level precision is desired. After tests, an algorithm 

based upon the approach by Trujillo-Pino et. al. [19] is 

implemented. The edge is located accurately based on 

orientation, intensity difference at both sides, subpixel position, 

and curvature. The detection results are shown in the right 

picture of Fig. 8. Once the edges are detected, we use the average 

location for both edges as the center and find the line.   

Once lines are detected, a linear fit is performed to evaluate 

the straightness. Fig. 9 shows the linear fit of one of the lines 

before applying lens distortion correction to the image. Fig. 10 

shows the residual errors of the line fitting before and after 

applying distortion correction. The horizontal axis draws the 

point numbers on the line. The tested line has about 600 points. 

The vertical axis is the residual error of each point in pixel units. 

Before the correction, as shown in Fig. 10a), there is a strong 

bending pattern and the residual error range is from -0.25 to 0.15 

(in pixels). Fig. 10b) shows the improved results after correction. 

The residual error is significantly reduced. The residual error 

range is from -0.05 to 0.05 (in pixels) after distortion correction. 

The bending pattern is removed as well. The test demonstrates 

the effectiveness of the calibration results. This can also be used 

as a quick check of the vision-based system’s accuracy before 

performing measurements. 

Figure 10. Residual error of the line fitting 

before and after distortion correction 

a) Before 

 
b) After 

 

Figure 9. Linear fit of the line to evaluate 
straightness 

Figure 7. Original images and the fronto 

corrected images 

 

Figure 8. Image with lines used for distortion 

verification 
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ESTABLISH STEREO CALIBRATION PROCEDURE  

In previous sections, an automatic camera calibration 

procedure for automatic corner detection and single camera 

calibration is presented. In this section, the stereo camera 

calibration procedure is presented.  

The task of developing an automatic stereo camera 

calibration method is more challenging than the method for 

automatic single camera calibration. During stereo calibration, 

operators have to fit the calibration board into both cameras’ field 

of view (FOV). Sometimes the calibration board looks smaller 

in the image, more tilted, and having more background, as shown 

in Fig. 11. These conditions present more problems. Stereo 

calibration requires more robust corner detection algorithms to 

handle the complicated background. Fig. 12 shows all the 

contours detected from the image. The two rectangles inside the 

red circles are what we used for the ‘anchor’. Fig. 13 shows the 

contour detected for an image in the single camera calibration 

case, which shows the levels of challenges stereo auto-

calibration is facing compared with Fig. 12. It is a challenging 

task to pick out all the calibration board corners from all the 

detected contours.  

Significant improvements to the algorithms are developed 

for corner auto-detection in stereo calibrations.  One of them is 

the square and rectangle detection algorithm. Because all the 

squares and rectangles do not appear perfect when the board 

looks smaller, the new algorithm relaxes the detection criteria 

and implements a new concept of “two-point contour” to better 

detect the rectangle. The iteration procedure for corner searching 

is also modified in the final step to remove the remaining false 

detections. Fig. 14 shows the detected corners using the 

improved algorithms. Results show significant improvements 

compared with the results shown in Fig. 12.  

Since no need to calibrate distortion, the checkerboard is 

placed parallel to the two camera's centerline. About 3-6 

positions are needed to be placed from the near to far range. 

Even with the improvements, some extreme cases may fail 

auto-detection when images are very blurry. To address this 

issue, an algorithm is developed to detect the condition and 

remove the blurry images automatically. These low-quality 

images are highlighted to users. They can be used to train users 

in understanding the image quality and improving skills when 

taking measurements to provide better quality calibration 

images.   

The calibration final results are saved in both xml and yaml 

format for easy export/import between Python, C++, or Matlab 

code. The saved information includes: left camera matrix, right 

camera matrix, left camera distortion coefficients, right camera 

distortion coefficients, 3x3 rotation matrix between two cameras, 

1x3 translation matrix between two cameras, fundamental 

matrix, essential matrix, and the projection error.   

In summary, automatic camera calibration methods are 

developed using a calibration board with markers. The auto-

calibration procedure includes both single camera calibration 

and stereo camera calibration. Advanced algorithms are 

developed to improve calibration accuracy via improving corner 

detection in sub-pixel accuracy. Improvements are also made for 

algorithm robustness to enhance the handling of the complex 

Figure 11. One pair of images from left and right 

cameras used for stereo calibration 

Figure 12. Detected contours from the stereo 

calibration image 

Figure 13. Detected contours from the single 

camera calibration image 

 

Figure 14. Improved detected corners from the stereo 

calibration image 
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background. This auto-calibration procedure eliminates the need 

for users to click hundreds of times and significantly reduces the 

problems caused by human errors.   
 
CONCLUSION  

Manufacturers are facing challenges in the robot’s accuracy 

assessment and accuracy improvement. NIST’s development of 

the vision-based 6-D sensing system enables the capture of the 

robot’s dynamic movements in high accuracy. This sensing 

technology provides a solution to allow the robot system’s health 

monitoring and assessment. As the foundational supporting 

technology, a high-efficiency and high-accuracy vision-based 

system calibration procedure is critical for real applications. The 

developed sub-pixel corner extraction and iteration 

improvements enable the high accuracy of sensing system 

calibration. The automatic procedure and the separation of the 

distortion calibration with stereo calibration significantly reduce 

the time for on-site adjustment. The verification method enables 

the quick check of the system accuracy. The 6-D sensing system 

was used on a Universal Robot (UR5) to monitor and assess the 

robot accuracy degradation with different payloads, speeds, and 

temperatures. The test data set was published in [20]. NIST is 

actively seeking to develop additional industrial use cases using 

the 6-D sensing system for further applications. 

 

NIST DISCLAIMER 
Certain commercial entities, equipment, or materials may be 

identified in this document in order to illustrate a point or 

concept. Such identification is not intended to imply 

recommendation or endorsement by NIST, nor is it intended to 

imply that the entities, materials, or equipment are necessarily 

the best available for the purpose. 
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