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Abstract. We describe an algorithm to extract the complex refractive index of a material from broadband reflectance
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1 Introduction

Polydimethylsiloxane (PDMS) is a silicone elastomer with demonstrated uses in numerous optical

technologies such as lenses,1, 2 mirrors,3 waveguides,4, 5 and filters.6 These technologies have pri-

marily focused on applications involving visible light, and are enabled by the well studied optical

properties of PDMS in the visible portion of the electromagnetic spectrum. In recent years PDMS

has emerged as a promising material in passive radiative cooling (PRC) technology,7–9 a different

class of optical technology which seeks to engineer the emittance profile in order to optimally

radiate heat at select wavelengths.

PRC leverages devices which selectively emit thermal energy within the atmosphere’s infrared

transmission window, between approximately 8 µm and 13 µm.10, 11 Due to the broadband nature

of radiative heat transfer, a complete simulation of daytime PRC requires knowledge of extremely

spectrally broad optical properties, ranging from the shortest wavelengths in the solar spectrum to
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the long wavelength tail of a blackbody spectrum at terrestrial temperatures. Unfortunately, most

works in the literature do not span sufficiently large spectral ranges (see Fig. 3 and Sec. 4).

The goal of this work is threefold: first, to report a direct method of analyzing spectrophoto-

metric measurements to extract the complex refractive index of a material over a broad spectral

range; second, to validate the method against other works in the literature for a material used in

PRC technology (in this case, PDMS); and third, to demonstrate the broad spectral data the method

can provide is both convenient to obtain and necessary to use in radiative cooling calculations. The

structure of this work is as follows. In Sec. 2, we will outline an algorithm to compute complex

refractive index using direct methods. We will cover a method of inverting measured reflectance

and transmittance and a method of applying Kramers-Kronig analysis to first surface reflectance

data. These two methods combine to form Algorithm 1, which we use in this work. Then in Sec.

3 we will detail the fabrication and measurement of PDMS samples, as well as compare the result-

ing optical properties to existing works in the literature. Finally, in Sec. 4 we demonstrate that the

broadband optical properties, such as those determined in this work, are necessary to accurately

compute passive radiative cooling performance.

2 Direct Determination of Optical Constants

Throughout this work, we will define the complex refractive index, ñ, as ñ = n + iκ where

the real part, n, is commonly referred to as the refractive index and the imaginary part, κ, is

the extinction coefficient. A number of methods exist for determining the complex refractive index

from measurements of reflectance and/or transmittance.12–20 Most attractive for their simplicity are

direct methods, i.e., those which may be written ñ = f(R, T ), where R and T are measured values

of reflectance and transmittance. The function f varies from method to method but is a known
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function of R, T , and perhaps other easily measurable variables. Many direct methods involve

inverting Fresnel equations, but they are often extremely sensitive to noise in the measurands.21 In

this work, we will utilize two direct methods which are less susceptible to measurement noise: an

analytical solution recently put forth by Nichelatti22 and the Kramers-Kronig relations.23–28

2.1 Nichelatti’s Method

Nichelatti examined the case of a thick slab of material with two smooth, parallel faces (see Fig.

1(A) for a schematic).22 The material of interest, labeled 2, has thickness h and is embedded

between two regions labeled 1 and 3. For the purposes of this work, regions 1 and 3 will be taken

as vacuum. A ray of light, depicted by an arrow, impinges on the interface between regions 1

and 2. Subsequent reflections and transmissions are shown by the various daughter rays. If the

initial ray is taken to have unity intensity, then the first surface reflectance is shown as R12. The

reflectance including all contributions from internal reflections is shown as R123. Similarly, the

total transmittance taking into account all internal reflections is shown as T123.

Nichelatti determined a direct method of inverting Fresnel’s equations for reflectance and trans-

mittance to extract the complex refractive index. The solution is valid for thick slabs (i.e., those in

which the multiple reflections of light between the parallel faces add incoherently). The key results

of Nichelatti’s work are

κ =
λ

4πh
ln

(
R12T123

R123 −R12

)
(1)

n =
1 +R12

1−R12

+

√(
1 +R12

1−R12

)2

− 1− κ2 , (2)
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Fig 1 Schematic of measurement geometries. (A) Thick slab of material with thickness h, labelled 2, surrounded my
materials 1 and 3. First surface (R12) and total (R123) reflectance are depicted schematically with total transmittance
(T123). (B) Wedge of material 2 surrounded by material 1. First surface (R12) reflectance is depicted schematically.

where

R12 =
2 + T 2

123 − (1−R123)
2 −

√
(2 + T 2

123 − (1−R123)2)2 − 4R123(2−R123)

2(2−R123)
(3)

and λ is the wavelength. Though not explicitly written here, it is important to note that n, κ, R123,

T123, and R12 are all functions of λ. Following Nichelatti’s methodology, we may also compute

R123 when only R12 and T123 are known. Doing so, we get

R123 =
(R2

12 + 2R12 − 1) +
√

(2R12T123)2 + (1−R12)4

2R12

. (4)

Explicit formulas for the propagation of experimental uncertainty in Eqs. (1)-(4) are given in

Appendix A.
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2.2 Kramers-Kronig Analysis

Kramers-Kronig analysis is a mathematical technique which takes advantage of the link between

the real and imaginary parts of certain analytic functions. The theory, application, and limitations

of Kramers-Kronig analysis have been documented thoroughly by various researchers.23–34 In

this work, we will apply Kramers-Kronig analysis to the Fresnel reflection coefficient. At normal

incidence, the Fresnel reflection coefficient is related to both R12 and ñ by

r =
√
R12 exp (iδ) =

ñ− 1

ñ+ 1
, (5)

where δ is the phase angle of r. Applying Kramers-Kronig analysis to Eq. (5), we get

δ(ω) =
−ω
π
P
∫ ∞
0

ln (R12(ω
′))

ω′2 − ω2
dω′ , (6)

where ω′ is an arbitrary integration variable, ω = 2πc/λ is the angular frequency, c is the speed

of light in vacuum, and P indicates the Cauchy principal value. Equation (6) has two important

characteristics to note at this time. First, the value of the integrand is not finite for ω′ = ω. Indeed,

that is exactly why we must take the Cauchy principal value of the integral. Second, the value of

the phase at any single frequency is impacted by the value of reflectance at all frequencies. To

evaluate Eq. (6), for an arbitrary sample, even over a finite range, we would need to measure the

value of R12 at every frequency.

To overcome these two challenges, we draw on innovations from past works. First, we use

an integral which evaluates to the same value but has an integrand which is always finite. The

5



alternative integral has previously been described by Yamamoto and Masui35 and is given by

δ(ω) =
−ω
π

∫ ∞
0

ln (R12(ω
′))− ln (R12(ω))

ω′2 − ω2
dω′ . (7)

Second, we apply a technique innovated by Roessler32–34 to address the finite measurement

range of their data. Many past works have used extrapolation procedures to artificially extend the

range of their data, such as assuming the value of R12 is constant outside the measured range36

or fitting a model to the ends of the measured data and extrapolating it outward.37–40 Roessler’s

technique, however, requires only data within the measurement range. Although the integral for δ

used by Roessler was not identical to Eq. (7), their technique may be applied to Eq. (7) as well.

Roessler broke the integral into three parts and treated each separately. Doing so, we get

δ(ω) = α(ω) + β(ω) + γ(ω) , (8)

where

α(ω) =
−ω
π

∫ ωlower

0

ln (R12(ω
′))− ln (R12(ω))

ω′2 − ω2
dω′ (9)

β(ω) =
−ω
π

∫ ωupper

ωlower

ln (R12(ω
′))− ln (R12(ω))

ω′2 − ω2
dω′ (10)

γ(ω) =
−ω
π

∫ ∞
ωupper

ln (R12(ω
′))− ln (R12(ω))

ω′2 − ω2
dω′ (11)

and ωupper and ωlower are the upper and lower frequency bounds of the experimental data, re-

spectively. Equation (10) may be evaluated directly from the experimental data using numerical
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integration. Integrating by parts, we evaluate to Eq. (9) and (11) to get

α(ω) =

[
Cα(ω) +

ln [R12(ω)]

2π

]
ln

(
ω − ωlower

ω + ωlower

)
(12)

γ(ω) =

[
Cγ(ω)−

ln [R12(ω)]

2π

]
ln

(
ωupper − ω
ωupper + ω

)
, (13)

where Cα(ω) and Cγ(ω) are weakly varying functions within [ωlower, ωupper].

By approximating Cα(ω) and Cγ(ω) as constant within the measurement range, the problem of

needing information from all frequencies outside the measurement range is reduced to a problem

of needing the value of the phase of r at two frequencies within the measurement range. With

that information, we may solve for Cα and Cγ directly. For any sample which transmits at two

frequencies and meets the assumptions of the method, we may apply Nichelatti’s method to obtain

the values of n and κ and thus obtain δ at those two frequencies from Eq. (5).

2.3 Numerical Algorithm

In this work, we propose the Algorithm 1 for measuring the complex refractive index.

3 Refractive Index of PDMS

3.1 Sample Fabrication and Measurement

PDMS was prepared using a SYLGARD 184 Silicone Elastomer Kit.1 The pre-polymer base and

curing agent were combined in a 10-to-1 ratio by weight and mixed vigorously by hand. Next,

portions of the uncured PDMS mixture were poured into three separate polystyrene Petri dishes

which served as molds. The remaining uncured PDMS was poured into a wedge-shaped mold with
1Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the exper-

imental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST,
nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
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Algorithm 1 Refractive index extraction algorithm

1. Confirm your samples and instruments are suitable for this method. The materials should
have isotropic optical properties. Surfaces should be smooth, specular reflectors. Samples
used to measure R12 should be non-transmitting or have back surfaces which will reject
multiply-reflected light from re-entering the path of the measured light. Samples used to
measureR123 and/or T123 should have two, parallel planar surfaces. They should have at least
two transmission bands which enclose the portion of the spectrum being investigated with
Kramers-Kronig analysis. The transmission bands should be fairly broad so that the edges
of the spectrum being investigated with Kramers-Kronig analysis are redundantly analyzable
with Nichelatti’s method. The instruments used to measure R123 and/or T123 must be able
to capture all significant internal multiple reflections. Their spectral resolutions, along with
thicknesses of samples, must together result in measurements of incoherently adding internal
reflections (see Chapter 7 of Ref. 41).

2. Measure two of the three following quantities over as broad of a spectral range as is feasible:
R12, R123 and T123.

3. Use Eq. (3) or (4) to compute the third unknown quantity.

4. Apply Nichelatti’s method to directly solve for n and κ at all frequencies for which the value
of T123 is statistically distinguishable from zero, as determined by the uncertainty of the
measurement.

5. Compute the phase of r using n and κ at two frequencies enclosing the portion of spectrum
which T123 is statistically equivalent to zero.

6. Compute β(ω) using Eq. (10) and numerical integration.

7. Solve for Cα and Cγ using Eqs. (8), (10), (12), (13), and the two known values of phase.

8. Compute δ for all values of frequency. Use Eq. (5) to solve for ñ.

9. For any frequency for which the value of n and κ has been computed redundantly, choose
the value with a smaller uncertainty. In many cases, this tends to mean choosing values of κ
from Nichelatti’s method and values of n from Kramers-Kronig analysis. See Appendix A
for discussion of uncertainty for each method.
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a smooth back surface. The PDMS in the Petri dishes and wedge-shaped mold were allowed to

cure at ambient temperatures for approximately 48 h, at which point they were removed from their

molds. The PDMS in the polystrene Petri dishes cured into slabs with smooth parallel sides (see

Fig. 1(A)). Those three samples henceforth will be referred to as Samples 1, 2, and 3 and they had

thicknesses of (1.68 ± 0.02) mm, (0.30 ± 0.02) mm and (0.11 ± 0.02) mm, respectively (k = 2

expanded uncertainty), respectively. The PDMS in the wedge-shaped mold cured into a PDMS

wedge (see Fig. 1(B)).

The samples were characterized on three separate measurement systems in the Sensor Science

Division at the National Institute of Standards and Technology. The reflectance (R123) and trans-

mittance (T123) of Samples 1, 2, and 3 were measured using the NIST transfer spectrophotometer.

The NIST transfer spectrophotometer is a commercial dispersive spectrophotometer which mea-

sures between 0.25 µm and 2.5 µm. The measurements were taken using a sintered polytetrafluo-

roethylene (PTFE) integrating sphere accessory.

The samples were also measured in the NIST Fourier transform infrared spectrophotometry

facility using two Fourier transform infrared spectrophotometers. A custom Fourier transform in-

frared spectrophotometer system equipped with an integrating sphere42–46 measured the reflectance

(R123) and transmittance (T123) of Samples 1, 2, and 3 between approximately 2 µm and 18 µm.

A commercial Fourier transform infrared spectrophotometer capable of making measurements un-

der vacuum measured the reflectance of the wedged sample (R12) and the transmittance (T123) of

Samples 1, 2, and 3 between approximately 0.8 µm and 100 µm. The reflectance of the wedge was

measured using a commercial “V/W” absolute reflection accessory. The accessory was used in a

relative mode by fixing it in the “W” position and placing a gold mirror on the sample position

such that light would reflect once off the PDMS wedge and once off the gold mirror. The PDMS
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Fig 2 First surface reflectance of PDMS as a function of wavelength and k = 2 expanded uncertainty.

wedge was then replaced by a reference mirror to take a relative measurement. This was done due

to the relatively low level of reflectance of PDMS. The angle of the back surface of the wedge was

determined such that no light which reflected off the back surface could make it back into the path

of the light reflected off the first surface.

The broadband spectrum of R12 is shown in Fig. 2. The spectrum was formed by extending

the data measured from the wedge-shaped sample with values of R12 computed from Eq. 3 and

the measured values of R123 and T123 on the NIST transfer spectrophotometer. Also shown is

the k = 2 expanded uncertainty of R12. The apparent discontinuities in the uncertainty result from

merging data from the different instruments and different combinations of beamsplitters, detectors,

and sources within the Fourier-transform instrument.
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3.2 Comparison to Literature

The spectrum of R12 shown in Fig. 2 was then used as an input to the Kramers-Kronig algorithm.

As discussed in Sec. 2.2, the algorithm also requires known values of the complex refractive at two

wavelengths. Equations (1)-(4) were used with measured values of reflectance and transmittance

(see Fig. 5) to obtain ñ = (1.390±0.005)+ i(0.0003458±0.0000041) and ñ = (1.508±0.010)+

i(0.008327± 0.00010) (k = 2) at λ = 3.03 µm and 61.72 µm, respectively.

Applying the algorithm, we get the desired values of n and κ between 0.25 µm and 100 µm.

Data from key intermediate steps of the algorithm can be seen in App. B. The values and the

k = 2 expanded uncertainties on the values are shown in Fig. 3. Also plotted are the results

of numerous other works which measured PDMS in spectral ranges which overlap the present

work.4, 47–57 Qualitatively, the results of this work match well to most existing works. There are

exceptions, however. The values of n from Refs. 49 and 54 are both visibly higher than the

present work and other works in the literature. Values of κ all vary significantly below 2 µm. The

present work is unable to determine κ between approximately 0.5 µm and 0.6 µm. This is due to the

extremely weak absorption at those wavelengths. While a thicker sample could be used to better

discern κ, special care needs to be taken to either fully capture or exclude internal reflections.

4 Application to Radiative Cooling Calculations

To demonstrate the utility of the measured complex refractive index data, we will examine the

emissive power (per unit area) of a radiative cooler over a hemisphere, Pemit. This quantity is

the sole term in typical passive radiative cooling calculations which depends only on the optical
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Fig 3 (A) Real part of complex refractive index from various works. The result of the present work and its k = 2

expanded uncertainty are shown with the solid and dashed black lines, respectively. (B) Imaginary part of complex
refractive index from various works. The result of the present work and its k = 2 expanded uncertainty are shown
with the solid and dashed black lines, respectively. The legend in (B) is common to both plots.
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properties of the cooler and is given by

Pemit(T ) =

∫ ∞
0

πLBB(T )

[
2

∫ π/2

0

sin θ cos θε(θ, λ)dθ

]
dλ (14)

where T is the temperature of the radiative cooler, LBB = 2hc2λ−5(exp (hc/λkBT )− 1)−1 is the

spectral radiance of a blackbody, h is the Planck constant, kB the Boltzmann constant, and ε is the

spectral direction-hemispherical emittance of the radiative cooler at angle θ. θ is defined in relation

to the surface normal of the radiative cooler.7

We examine the case of a 100 µm thick layer of PDMS deposited on an aluminum substrate

at 288K. This structure was previously examined in Ref. 9. The radiative cooler was assumed

to be a non-transmitting specular reflector with ε(θ, λ) = 1− 1
2
[rs(θ, λ) + rp(θ, λ)], where rs and

rp are the s- and p-polarization Fresnel reflection coefficients of the layered structure (computed

using the transfer matrix method58). The reflection coefficients were computed using the complex

refractive indices of PDMS from this work and aluminum from a Brendel–Bormann model59 as

inputs. Reference 59 did not provide uncertainty data so the uncertainty of the spectral emissive

power was obtained by a Monte Carlo simulation which only accounted for the uncertainty in the

optical properties of PDMS.

The spectral emissive power (integrand of Eq. 14) of the PDMS passive radiative cooler and a

blackbody are shown in Fig. 4. The k = 2 expanded uncertainty of the spectral emissive power of

the PDMS passive radiative cooler is shown in the inset. Numerically integrating the curves shown

in Fig. 4, we predict an emissive power of 388.04W/m2 for the blackbody. That corresponds

to 99.5% of the emissive power predicted by the Stefan-Boltzmann law. Turning attention to the

PDMS passive radiative cooler, we predict an emissive power of (330.27 ± 0.13) W/m2 (k = 2
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Fig 4 Spectral emissive power of a blackbody (dashed curve) and PDMS passive radiative cooler (solid curve). Inset:
k = 2 expanded uncertainty.

expanded uncertainty). If instead we had access only to data out to the mid-infrared wavelength

of λ = 25 µm, we would predict an emissive power of (278.09 ± 0.13) W/m2. One natural

method of extrapolating limited spectral data would be to assume the radiative cooler’s emittance

is constant at longer wavelengths, taking the value and uncertainty at 25 µm. Using that strategy,

we would predict an emissive power of (339.89± 0.13) W/m2. The wide range of these estimates

demonstrates that far infrared optical properties are crucial for an accurate prediction of radiative

heat transfer of passive radiative coolers.

5 Conclusion

We implemented an algorithm for determining the complex refractive index of a material over

a broad spectral range from spectrophotometric measurements. We validated the algorithm by

computing the complex refractive index of PDMS between 0.25 µm and 100 µm and comparing
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the results against existing literature, providing evidence that the algorithm is a powerful tool for

analyzing commonly measured reflectance and transmittance measurements. While our results

are similar to the existing literature for most wavelengths, we are the first to present continuous,

broadband properties of PDMS with uncertainties which are well-suited to passive radiative calcu-

lations. Further, we demonstrated that broadband optical properties such as ours are necessary to

accurately predict the performance of passive radiative cooling devices.

Future work on this algorithm should determine the conditions for the optimal locations of

ωlower and ωupper, determine the best integration algorithm for computing β(ω), examine further

the approximation as constants for Cα(ω) and Cβ(ω), and, if necessary, develop better approxima-

tions. Future work on the optical properties of PDMS should measure κ at visible wavelengths and

investigate the differences between works to determine if they result from true material property

differences or weaknesses in the measurements and analyses.
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Appendix A: Uncertainty analysis

A.1 Nichelatti’s Method

Starting from the measurement equations

κ =
λ

4πh
ln

(
R12T123

R123 −R12

)
(1 revisited)

n =
1 +R12

1−R12

+

√(
1 +R12

1−R12

)2

− 1− κ2 , (2 revisited)

R12 =
2 + T 2

123 − (1−R123)
2 −

√
(2 + T 2

123 − (1−R123)2)2 − 4R123(2−R123)

2(2−R123)
,

(3 revisited)

R123 =
(R2

12 + 2R12 − 1) +
√

(2R12T123)2 + (1−R12)4

2R12

, (4 revisited)

we can write the Taylor approximation for uncorrelated parameters as

u (R123) =

√(
∂R123

∂R12

)2

u2 (R12) +

(
∂R123

∂T123

)2

u2 (T123) (15)

u (R12) =

√(
∂R12

∂R123

)2

u2 (R123) +

(
∂R12

∂T123

)2

u2 (T123) (16)

u (κ) =

√(
∂κ

∂R123

)2

u2 (R123) +

(
∂κ

∂T123

)2

u2 (T123) +

(
∂κ

∂h

)2

u2 (h) +

(
∂κ

∂λ

)2

u2 (λ)

(17)

u (n) =

√(
∂n

∂R123

)2

u2 (R123) +

(
∂n

∂T123

)2

u2 (T123) +

(
∂n

∂h

)2

u2 (h) +

(
∂n

∂λ

)2

u2 (λ) ,

(18)
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where u (x) is the standard uncertainty of any variable x. Evaluating the partial derivatives in Eqs.

(16)-(18), we get

1

R12

∂R12

∂R123

=
(1−R123)

3 + (1−R123)T
2
123 +

√
(1−R123)4 + 2(1 +R123(2−R123))T 2

123 + T 4
123

R123(2−R123)
√

(1 + T 2
123 +R123(2−R123))2 − 4R123(2−R123)

(19)

1

R12

∂R12

∂T123
=

−2T123√
(1 + T 2

123 +R123(2−R123))2 − 4R123(2−R123)
(20)

∂κ

∂R123

=
λ

4πh

R123

(
1
R12

∂R12

∂R123

)
− 1

R123 −R12

 (21)

∂κ

∂T123
=

λ

4πh

R123

(
1
R12

∂R12

∂T123

)
T123 + (R123 −R12)

(R123 −R12)T123

 (22)

∂κ

∂h
= −κ

h
(23)

∂κ

∂λ
=
κ

λ
(24)

∂n

∂R123

=

(
2R12

(1−R12)2

)(
1

R12

∂R12

∂R123

)
+

(
1+R12

1−R12

)(
2R12

(1−R12)2

)(
1
R12

∂R12

∂R123

)
− κ ∂κ

∂R123√
2
(

2R12

(1−R12)2

)
− κ2

(25)

∂n

∂T123
=

(
2R12

(1−R12)2

)(
1

R12

∂R12

∂T123

)
+

(
1+R12

1−R12

)(
2R12

(1−R12)2

)(
1
R12

∂R12

∂T123

)
− κ ∂κ

∂T123√
2
(

2R12

(1−R12)2

)
− κ2

(26)

∂n

∂h
= −

κ∂κ
∂h√

2
(

2R12

(1−R12)2

)
− κ2

(27)

∂n

∂λ
= −

κ∂κ
∂λ√

2
(

2R12

(1−R12)2

)
− κ2

. (28)
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A.2 Kramers-Kronig Analysis

The uncertainty of δ is dependent on the integration algorithm and the form of the integral used.

i.e. using Eq. (6), Eq. (7), or some other equivalent integral. Here we will examine the propagation

of the uncertainty of δ into values of n and κ.

Starting from the measurement equations

n =
1−R12

1 +R12 − 2
√
R12 cos δ

(29)

κ =
2
√
R12 sin δ

1 +R12 − 2
√
R12 cos δ

, (30)

we can write the Taylor approximation for uncorrelated parameters as

u (n) =

√(
∂n

∂R12

)2

u2 (R12) +

(
∂n

∂δ

)2

u2 (δ) (31)

u (κ) =

√(
∂κ

∂R12

)2

u2 (R12) +

(
∂κ

∂δ

)2

u2 (δ) . (32)

Evaluating the partial derivatives in Eqs. (31) and (32), we get

1

n

∂n

∂R12

=
(1 +R12) cos δ − 2

√
R12√

R12(1−R12)(1 +R12 − 2
√
R12 cos δ)

(33)

1

n

∂n

∂δ
=

−2
√
R12 sin δ

1 +R12 − 2
√
R12 cos δ

(34)

1

κ

∂κ

∂R12

=
1−R12

2R12(1 +R12 − 2
√
R12 cos δ)

(35)

1

κ

∂κ

∂δ
=

(1 +R12) cos δ − 2
√
R12

sin δ(1 +R12 − 2
√
R12 cos δ)

. (36)

The explicit uncertainty formulas for n and κ reveal a weakness of the Kramers-Kronig ap-
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proach: it can amplify uncertainty of the measurands. For weakly absorbing materials (small κ

which implies small δ), the relative standard uncertainty of κ, u(κ)/κ, grows to infinity. For the

same case, the relative standard uncertainty of n can actually reduce that of R12. For δ → 0,

u(n)/n = [
√
R12/(1 − R12)][u(R12)/R12]. Therefore the relative standard error of n will be less

than that of R12 for all values of R12 less than 3/2 −
√
5/2 ≈ 0.38. That corresponds to highly

transparent materials with refractive indices less than approximately 4.24.

Appendix B: Additional data

Here we provide data from intermediate steps of Algorithm 1, described in Sec. 2.3. These data

are provided to assist readers in troubleshooting readers’ implementations of the algorithm and

reproducing the results of this work.

In Fig. 5, R123 was measured on the NIST transfer spectrophotometer and in the NIST Fourier

transform infrared spectrophotometry facility on a custom integrating sphere. The data are merged

into a single spectrum spanning between approximately 0.25 µm and 18 µm (orange curves with

square markers). T123 was measured similarly in that spectral range, and extended to 100 µm us-

ing a commercial Fourier transform infrared spectrophotometer capable of making measurements

under vacuum (blue curve without markers).

Figure 6(A) shows the phase angle, δ, computed using Eqs. (8)-(13). Readers should note the

values of α and γ [shown in Fig. 6(B)] are small but not insignificant contributions to δ.

Figure 7 shows the values of n and κ and their associated k = 2 expanded uncertainties ob-

tained via Nichelatti’s method and Kramers-Kronig analysis on the three planar samples and the

wedged sample. Values of κ smaller than their expanded uncertainties or smaller than Kramers-

Kronig analysis can discern are excluded to improve clarity of the figures.

19



0.00

0.25

0.50

0.75

1.00
R 1

23
 o

r T
12

3
(A) Sample 1

T123
R123

0.00

0.25

0.50

0.75

1.00

R 1
23

 o
r T

12
3

(B) Sample 2

100 101 102

Wavelength ( m)
0.00

0.25

0.50

0.75

1.00

R 1
23

 o
r T

12
3

(C) Sample 3

Fig 5 Measured values of R123 and T123 for (A) sample 1, (B) sample 2, and (C) sample 3. The legend in (A) is
common to all plots.
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Fig 6 (A) Computed phase angle δ. (B) Components of phase angle computed from Eqs. (12) and (13).
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Fig 7 (A) All computed values of n. (B) Expanded (k = 2) uncertainties of values of n. (C) All computed values of
κ. (D) Expanded (k = 2) uncertainties of κ. Legend in (C) is common to all plots. In the legend, curves ‘S1,’ ‘S2,’
and ‘S3’ refer to values computed by Nichelatti’s method when R123 and T123 are measured on samples 1, 2, and 3,
respectively. ‘S1 & Wedge,’ ‘S2 & Wedge,’ and ‘S3 & Wedge’ refer to values computed by Nichelatti’s method when
R12 and T123 are measured on samples 1, 2, and 3, respectively. ‘KK’ refers to values computed using Kramers-Kronig
analysis.
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