NISTIR 8378

Model of Operational Control
of Discrete Event Logistics Systems
(DELS)

Timothy Sprock
Conrad Bock

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8378

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

NISTIR 8378

Model of Operational Control
of Discrete Event Logistics Systems
(DELS)

Timothy Sprock
Conrad Bock
Engineering Laboratory

Systems Integration Division

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8378

July 2021

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology
James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce
for Standards and Technology & Director, National Institute of Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to

imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology
Interagency or Internal Report 8378
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8378, 40 pages (July 2021)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8378

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Abstract

Operations management systems manage flows of work, resources, and information through
production and logistics systems, ensuring the correct and efficient execution of requested
work. They can leverage recent advances in data availability, analytical capabilities, and in-
dustrial automation to substantially improve overall system performance. They can stream-
line flows of work, resources, and information across functionally heterogeneous compo-
nents of production and logistics systems, which often have their own planning, execution,
and data management systems. These smart manufacturing capabilities can improve sys-
tem performance, but add complexity its design and operation.

This paper proposes a model of operational control enabling an integrated approach to
design, analysis, and operation across heterogeneous systems, classified as discrete event
logistics systems. The model identifies and formalizes operational control decision-making
and actuation functions required by smart systems. The model is applied to define logical
components that can be reused, specialized, and assembled into operational control system
models. These components can be linked and integrated with other views of the system as

part of an overall model-based engineering effort.

Key words

Operations Management; Control; Discrete Event Logistics Systems (DELS); Production

and Logistics; Smart Manufacturing; System Modeling.

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Table of Contents

Introduction

Modeling Framework

2.1 Operational Control Functions

2.2 Pattern For Modeling Operational Control Functions
2.3 Defining Control Functions

2.4 Decision Support Interfaces to Analysis Methods
2.5 Libraries of Reusable Model Components

2.6 Actuator Modeling for Operational Control

Model of Operational Control

3.1 Which tasks to serve? (Admission)

3.2 When, or in what order, is an admitted task is serviced? (Sequencing)

3.3 Which resource(s) is assigned to serve a task? (Assignment)

3.4 Which process does the task required next? (Dynamic Process Planning)

3.5 Which state should a resource be in? (Changing State)

3.6 Joint Control Decisions
3.6.1 Which task next, and which resource will service it? (Scheduling)
3.6.2 For a task: which process next and which resource will execute it?

(Routing)
Operational Control Model Libraries for Modeling DELS

Conclusion

il

~N 3 O N W -

N NN = = = =
W NN O ok~ LW O @

24
29
31

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Fig.

Fig. 2
Fig.
Fig. 4

Fig.
Fig. 6

Fig.

Fig.

List of Figures

A canonical set of operational control questions defines a comprehensive
functional specification of all decision-making mechanisms that a controller
needs to manage the flow of tasks and resources through the system. An
abbreviated sketch of this controller architecture can be found in [27] and a
longer discussion in [25].

Graphical views of a control function model in SysML (Admit).

Model views of control actuator using Admission Gate as an example.
Example of specializing admit behavior and implementing it by specifying
a sequence of steps required to bring an accepted task into the system.
Specialized resource acquisition behaviors

The control processes and actuators are extended from the process and re-
source elements also used to model the system.

This pattern demonstrates one way that the actuators (components of the
system) can be configured to control the flow of tasks and resources through
the system.

The decision support component of the controller has access to methods for

each control function, each supported by its own interface definition.

il

10

12
17

29

30

31

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

1. Introduction

Discrete Event Logistics Systems (DELS) transform discrete things flowing through a net-
work of interconnected resources [17, 29]. DELS include systems such as supply chains,
manufacturing plants, transportation networks, and warehouses. Traditionally, each kind
of DELS relies on dedicated research and development and specialized software systems.
Improved performance requires increased integration and coordination among a variety of
systems. For example, manufacturing plants are composed of production systems inte-
grated with storage, fulfillment, and material handling systems. Supply chains seamlessly
integrate flows between warehouses, transportation systems, and manufacturing.

DELS depend on operational control systems to coordinate the production of products
or provision of services by manipulating the flow of items through the system, such as raw
materials, work in progress, and other resources. Recent technological advances, such as
inexpensive sensing and increased automation, are an opportunity for operational control
systems to significantly improve DELS performance and functionality. However, doing this
requires operational control systems to support higher levels of automated decision-making
and actuation, operational flexibility, and component interoperability.

Addressing these needs in operational control requires methods and technologies to
manage system complexity, maintain consistent control systems specifications, and inte-
grate those specifications into the overall system design. Model-based system engineering
(MBSE) methods are well-positioned to help with these challenges by translating stake-
holder requirements for system functionality and performance into designs that can be
linked to testing and verification methods [9]. Model libraries and reference architectures
capture best practices, reusable artifacts, and design patterns that simplify assembly of new
system models [8]. Model libraries supporting discrete event logistics systems build upon
product, process, and resource abstractions [29].

This paper proposes a DELS operational control model library that aligns and integrates
a controller’s decision support analysis models with actuators executing prescribed control
actions. These models extend the classification of control functions in a companion survey
paper [28] by representing them as modeling components that can be assembled into new
system specifications. The models complement design methodologies, such as the produc-
tion control design methodology in [4] and more general MBSE methods [9]. Section 2
summarizes the operational control decisions identified in the survey, introduces a model-

ing pattern linking decision support for each kind of control decision to the execution of

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

the corresponding control action in the base system, and describes a way to represent the

pattern in SysML. Section 3 applies the pattern to each control decision.

2. Modeling Framework

This section introduces a computer-interpretable representation for operational control func-
tions to address the needs described in section 1. Section 2.1 reviews these functions, as
detailed in [28]. Section 2.2 introduces a conceptual pattern for describing these functions
and section 2.3 discusses ways to define them. Section 2.4 covers the relationship of these
definitions to decision support. Section 2.5 reviews model-based methods for reusable

components and section 2.6 applies them to actuator functions and actuators.

2.1 Operational Control Functions

DELS share a common abstraction of systems being controlled (base systems) — products
transformed by processes executed by resources arranged in a facility (PPRF) [29]. Tasks
define a unit of work by authorizing execution of a process, such as jobs, orders, etc. DELS
specifications define what’s flowing and where things can flow, as the basis for specifying
control of those flows. Model-based operational control specifications must address four
aspects: 1) what kinds of operational control decisions must be made, 2) where, or when,
in the system control decisions need to be made, 3) how decisions aremade, or which
decision support methods are selected and configured to support decision-making, and 4)
how control choices are executed (desired effect realized). This paper and its companion
survey paper [28] argue that DELS share an abstraction of operational control functions
that manage the flow of tasks and resources through the system.

This paper proposes a library of model components that can be assembled to specify
aspects (2)-(4), building upon the operational control decisions identified in the companion
paper. These control decisions are summarized as: (1) ‘should a task be served?’ (admis-
sion); (2) if so, then ‘when should the task be serviced?’ (sequencing); and, (3) ‘by which
resource?’” (assignment); (4) finally, ‘what process step does the task require next?’” (dy-
namic process planning); (5) as well as the resource-related ‘in which state does a resource
need to be?’ (change-state). The order of questions indicate a typical decision-making
sequence for tasks flowing through a DELS (figure 1), but are not prescriptive. In this
framework, Scheduling and Routing are modeled as joint, rather than atomic control deci-

sions.

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

DELS Controller
Decision |.Question | pecision
Maker [o Support Controller
System i :COnlroi
Feedback ! ' Action
Interface
& &R EN 2 R 5K g
S IS ! W, V32 e
v §F El Bel V5 &% Interface
R S .‘i“: _::E: ‘\5% \9%)
OV g B! oAy S RN NS
2 A~ 7 < - 3 P 7
L ~ = = A \
. ~ o ~ Y]
Base
System

Scheduling Routing

Fig. 1. A canonical set of operational control questions defines a comprehensive functional
specification of all decision-making mechanisms that a controller needs to manage the flow of
tasks and resources through the system. An abbreviated sketch of this controller architecture can
be found in [27] and a longer discussion in [25].

The operational control models in section 3 are organized around these “what should I
do?” questions decision-makers pose to decision-support (figure 1), the answers to which
are appropriate control actions. The next section introduces a pattern for organizing the
related elements used to describe each control question or function, including decision
support, control actions, and actuators. These elements are combined to formalize an op-
erational control model for the operational control decisions summarized above. These

models, one for each operational control decisions, are described in section 3.

2.2 Pattern For Modeling Operational Control Functions

The operational control model described here links a controller’s decision support to ac-
tuators in a base system that execute prescribed control actions. A formal definition of
each control function threads together multiple aspects of control described in the follow-
ing modeling pattern. The patterns support a modeling methodology implementing system
modeling best practices, such as separating function, behavior, and structure [12]; as well
as, base system behavior from controller functions. The pattern is populated for each con-
trol function in subsequent sections of the paper. The resulting control function descrip-
tions are an unifying abstraction for building conceptual models and logical architectures
of DELS operational control. These abstract model library components provide a base

description for creating concrete implementations in systems.

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

. Name: Colloquial identifier of the control function being addressed, though the lit-

erature uses various names for control decisions.

. Question: Domain-independent, informal “what should I do?” kind of question that

a decision-maker poses to decision-support and the answer to which is an appropriate

control action.

. Decision Function: Mapping of system objects and their state data (input space) to

control action alternatives (action space). This transformation formalizes the infor-
mal control question/answer interface between decision-making and decision support

in a controller.

. Actuator Function: Expected effect of an actuator in the base system, or desired

outcome of executing a control behavior. This is how the control function (action

selected by controller) is carried out by the base system (actuator).

. Decision Expression: An exemplar mathematical formulation of the decision func-

tion in terms of one or more decision decision variables representing the decision,

for use in an optimization analysis model.

. Decision Support Interface: The functional interface, or signature, of conforming

analysis models that answer this particular control question. These are modeled as
UML/SysML classes in this paper.

. Actuator Function - Model Library Component: Control Process that embod-

ies the actuator function of actuator. The actuator function is implemented with a
behavior that specifies how the actuator function (“expected effect”) is accomplished
by the actuator. It is abstract and implemented during the design process. These
components are modeled as SysML activities, which are an extension of UML activ-
ities, one of its ways of specifying behavior that is most suitable for flows between

actions.

. Actuator - Model Library Component: System Resource capable of carrying out

the actuator function. These components are modeled as SysML blocks, an extension

of UML classes, its way of specifying structure.

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

2.3 Defining Control Functions

It is a challenge to discover decision-support analysis models for operational control and
integrate them with system specifications. The operational control literature organizes anal-
ysis models and solution methods by the name of the control function being investigated.
However, the same function or method may go by many names, often domain-specific.
In addition, existing terms are vague and ambiguous. Some control problems, such as
scheduling, involve multiple decisions and require executing multiple actions to achieve
the desired effect. In this paper, we select a single identifier for each control function. This
section explores alternative ways to identify and define each control function.

One approach to resolve ambiguous terminology is to define each control function with-
out naming it. Instead, we propose identifying each control function using informal “what
should I do?” questions. This question, and its answer, begin to define an interface between
the decision-maker and decision support. It is a convenient natural language approach to
identify the required decision. However, formal definitions for each control function are
needed to resolve the remaining ambiguity.

Formal definitions for each control function articulate the decision that must be made
or action that can be taken (decision function), and the effect of that choice, or prescribed
action, on the system (actuator function). The decision function is about decision support
in a controller. The actuator function is related to behavior of the base system. Decision
functions map system objects, such as tasks and resources and their state data, to executable
control actions [4, 20, 21, 31, 33]. They are an abstraction of decision variables, policies,
rules, and other formulations for making control decisions. The range of a control decision
function is the set of alternative control actions (decision or action space). The actuator
function maps input objects and their state to the expected effect on those objects in the
base system.

The decision function is implemented with decision support analysis methods (section
2.4). These methods can be designed to take advantage of the structure of each decision
problem. That is, analysis methods should conform to the functional definition and are
expected to output the same type of control action. The actuator function is implemented
by concrete behaviors allocated to and executed by system components (see actuators in
section 2.6).

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

2.4 Decision Support Interfaces to Analysis Methods

Interfaces to decision support methods are necessary for interoperable operational control
decision support. Software engineering best practices recommend putting decision sup-
port methods behind standard interfaces in order to make the algorithms interchangeable.
Analysis algorithms for each kind of control function support an interface conforming to
decision function definitions. This simplifies use of decision support by putting a vari-
ety of specific algorithms behind a small number of predefined definitions. For example,
placing many scheduling algorithms under a single definition of scheduling. Systems en-
gineers configure operations management controllers by selecting from libraries of algo-
rithms based on their strengths and weaknesses, such as trade-offs between run-time and
guaranteed solution quality. A controller selects the most appropriate algorithm depending
on its decision-making circumstances. Each decision support interface defines inputs to
the algorithms for its particular control function, how the algorithms can access system
information, and expected output (decision choice).

Analysis algorithms that implement decision support interfaces can be formulated with
one or more decision variables (in expressions) that also conform to the decision func-
tion, ensuring that the algorithm can be used via the interface. A decision expression
implements the decision function by specifying decision variables used by optimization
formulations of the operational control decision problem, guiding construction of analysis
models that conform to the decision function. Explicit decision expressions enable solu-
tions from analysis models to be mapped directly into executable actions, by using single
unique variable for each control decision and each required action. For example, an opti-
mization model may specify the expression xf = l if resource R € Z is assigned to execute
the next process step of task /, or xﬁt = 1 if the assignment is for future time period ¢ € T'.

Explicit decision expressions contrasts with implicit analysis formulations commonly
used in practice to reduce solution time. For example, policies and decision rules, such as
production switching curves and (s, .S) inventory policies, are implicit formulations created
from analysis models structured to conform to decision functions. In these kinds of models,
the solution to an aggregate decision problem is used to make dynamic, on-line choices for
each decision. For example, off-line analysis may determine the percentage of production
capacity that should be dedicated to producing product 1. A controller uses that output to
guide dynamic acceptance of requests to produce product 1. Another approach addresses
control functions indirectly. For example, if a resource is assigned to a task to produce

product 1, but is setup to produce product 2, then another setup or change-over is implied.

6

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

However, the output of analysis models needs to be actionable. This can be achieved by

transforming solutions to implicit formulations into explicit decisions.

2.5 Libraries of Reusable Model Components

Libraries of reusable model components and design patterns enable system designers to
produce candidate system designs by assembling predefined model components according
to the patterns. This reduces the burden of (re-)design efforts. Object-oriented and model-
based systems engineering methods (OOSEM, MBSE) guide the definition of system com-
ponents and their behavior, which can be refined and composed to execute required sys-
tem functions [9, 10]. Model-based system specifications developed using general-purpose
modeling languages such as the Systems Modeling Language (SysML) are more expressive
and less constrained by analysis-specific concepts or artifacts [18].

SysML provides many modeling capabilities essential to designing operational control
systems. These include: modeling hardware and software components; separating compo-
nent function, structure, and behavior; and creating model libraries. Model-based system
specifications can be integrated into more comprehensive system architecture models. The
system design can be linked to business cases, stakeholder needs, and design requirements.
We use SysML in this paper to define model library components for software decision

support (section 2.4) and abstract actuator functions, behavior, and structure (section 2.6).

2.6 Actuator Modeling for Operational Control

Actuators for operational control define requirements, constraints, properties, and inter-
faces that are implemented by concrete system designs. Abstractions for these in model
libraries provide reusable aspects of behaviors and structural elements associated with each
control function.

Actuator functions define expected effects of an actuator on their base systems. They
are modeled as SysML activities that type (are used by) actions (steps) in other activities),
as described in this section. Actuators are modeled as SysML blocks defining structural
features to handle flows when executing the corresponding control function. Actuators
in this paper draw inspiration from discrete event simulation and discrete event dynamic

system modeling components [6].

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Modeling Actuator Functions as SysML Activities

SysML includes multiple, not exactly equivalent, graphical views for showing model li-
brary components for actuator functions (figure 2). The model tree view available in most
SysML tools (showing Admit in figure 2a) displays an actuator function activity with its
parameters and parameter nodes indented under it, as well as relationships with other ac-
tivities, such as the abstract Control activity. An activity diagram (figure 2b) is associated
with each actuator function, showing parameter nodes as rectangles on the border of the
diagram (each corresponding to an activity parameter). It is empty inside to act as template
filled in or implemented with system specific actions (or instructions) on how to execute the
function, as shown in the Accept Job into Workcell activity in figure 4 (section 3.1).
Finally, the actuator function activity (Admit) is used as the type of actions in other activity
diagrams (figure 2c, showing only an action, omitting the the activity it is in, see example
referred to above). Actions are sometimes called “usages” of an activity that is defined
elsewhere (as in the 2b diagram). Usages of parameters are shown as small squares (pins)
on the border of actions. Pins are connected by flows to other actions in the same activity,
as in the example above. The rest of the paper shows this view for actuator function model
library components corresponding to control functions, because the view is similarity to
discrete event simulation model blocks (not to be confused with SysML blocks, see, e.g.,

Arena, SimEvents, etc.).

Modeling Actuators as SysML Blocks

Similar SysML views apply to model library components for actuators (figure 3). The
model tree view in most SysML tools (showing AdmissionGate in figure 3a) displays an
actuator block with its properties, ports, and operations indented under it, as well as rela-
tionships to other blocks. A more graphical view of blocks is available in block definition
diagrams (BDD). These show blocks as rectangles marked with «block »at the top (show-
ing AdmissionGate in figure 3b, omitting the diagram frame), with ports as small squares
on the border, and compartments for properties and operations (properties omitted here).
Finally, the actuator block Admission Gate is used as the type of parts in other blocks
(figure 3c showing only a part, omitting the block it is in). Parts are sometimes called
“usages” of a block defined elsewhere (as in figure 3b), to construct other system compo-
nent specifications. This applies the same definition-usage pattern as activities and actions

for actuator functions, but the rest of the paper shows block definition views for actuator

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Admit 28X

B2 wQ & -

[E-@3 Admit(incomingTasks : Task [1], availableTasks
P

E-+;/ Relations
+ " Generalization[Admit -> Control]
2 Admit
£ Admit
© in incomingTasks : Task [1] o N :
© out availableTasks : Task [0..1] (SVSML Activity Diagram [Admit]))
© in admissionDecision : Boolean [1] | «block»
O out rejectedTasks : Task [0..1] admissionDecision : Boolean
& admissionDecision : Boolean availableTasks : Task
@] availableTasks : Task | T
&1 incomingTask : Task «block» «block»
@3 rejectedTasks : Task incomingTasks : Task rejectedTasks : Task
< > N J

(a) Admit activity in a model tree view (b) Admit activity diagram view with parameter nodes
available in most SysML tools. displayed on the diagram frame.

admissionDecision : Boolean[1]

incomingTasks : Task[1] H
availableTasks : Task[0..1]
L rejectedTasks : Task[0..1]

(c) Admit activity used as the type of a SysML action,
with usages of its parameters displayed as pins on the
action.

Fig. 2. Graphical views of a control function model in SysML (Admit).

model library components corresponding to each control function (as in figure 3b). The
block definition and usage views are both similar to discrete event simulation modeling,
but the definition view is preferred in SysML to define a model library elements.
Operational control system modeling starts with architecture by selecting abstract actu-
ators and actuator functions in model libraries, then implements specialized, concrete sys-
tem components. This elaborates actuator functions with concrete behaviors and allocates
them to system components implementing the function. In some systems, the concrete
actuator implementing a control function might be software. For example, resource as-
signment actions might be implemented by generating an auxiliary task requesting another
resource, such as an automated guided vehicle (AGV), to move workpieces, raw materials,
etc. to the assigned resource. In other cases, one structural resource might be allocated
multiple functions. For example, a robotic arm might implement acceptance or resource
assignment decisions through a sequence of get/move/put behaviors that place a workpiece

in a machine.

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

P& AdmissionGate
AdmissionGate 28 x
Hz ESwQ & -
ER =] imissionGate]
B} Relations
O canExecute : Admit [1]
]I incomingTask : inDELSTask [1..%]
T availableTask : outDELSTask [1..¥]
T rejectedTask : outDELSTask [1..*]
B} O admit(incomingTasks : Task [1], availableTasks

incomingTask : inDELSTask [1..*] availableTask : outDELSTask [1..*]

«block»
AdmissionGate T .. tedTask : outDELSTask [1..%]
operations

admit()

< >

(a) Admission Gate represented in (b) Admission Gate viewed as a block with ports for
the model tree, the model without handling flows into and out of the block.

graphics.
incomingTask : inDELSTask [1..*] : AdmissionGate availabIeTask : outDELSTask [1..*]
rejectedTask : outDELSTask [1..*]

(c) Admission Gate object “usage” as a part of another
block.

Fig. 3. Model views of control actuator using Admission Gate as an example.

3. Model of Operational Control

Decision support methods should be designed to produce answers (recommended control
actions) that base systems can execute. To ensure this, each control function, defined by
decision and actuator functions, is linked to its decision support, actuator behavior, and
actuator. This establishes consistency among disparate software and hardware components
that act together to effect optimal change in the system. The output from decision support
(a selected action) is communicated to the actuator. The actuator has a behavior that carries
out the selected action. Modeling these three pieces of operational control — decision
support, actuator behavior, and actuator — from consistent functional definitions, such as
those proposed in this paper, enables them to be designed separately with more assurance
that the pieces will work together when assembled. Sections 3.1 through 3.5 do this for
the control functions outlined in section 2.1, while section 3.6 shows how to combine them

into more complex functions.

3.1 Which tasks to serve? (Admission)

When arequest for a service (task) arrives at a system, the controller must decide whether to
serve it. This is the admission decision. This decision controls the rate of work introduced

into the system by accepting or rejecting tasks [13]. However, rejecting tasks may incur

10

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

monetary penalties, lost sales, or lost goodwill. Admission decision-making processes may
also evaluate system state, including available production capacity, raw material inventory
on-hand, operator availability, etc.

The Admission decision function maps (—) a task to a Boolean value (true/false),
providing a yes/no answer on whether to admit the task into the system (table 1). The
decision support interface (Admission) captures this decision function in the signature
of its admission() operation, which defines the types of inputs and outputs to the behavior
implementing the function, in this case, an analysis method. Decision-support models can
be formulated with binary decision variables (x;), where x; = 1 if task / € 2 is admitted
into the system. However, some analysis methods may implement the decision function
indirectly. For example, an indirect policy may give conditions for acceptable tasks, such
as posting a menu of prices and lead-times, and admit any task that agrees to the conditions.
These policy-based or rule-based methods must conform to the decision function to ensure

they recommend actionable control choices.

Table 1. ‘“Which tasks to serve?’ (Admission)

Decision

. Admission : Task — Bool
Function

Actuator

. Admit(Task) = System.taskSet <— System.taskSet U Task
Function

Decision

) x; =1, if arriving task [€ 2 is accepted
Expression =5 £ < P

Decision Admission

operations
Support admission(incomingTask : Task [1..*], admit : Boolean [1..*])
Interface

Actuator admissionDecision : Boolean[1]
Function - incomingTasks : Task[1]

System Model
Library
Component

availableTasks : Task[0..1]

rejectedTasks : Task[0..1]

Actuator - incomingTask : inDELSTask [1..*] 'f_a «block» #availableTask : OUtDELSTask [1..*]
System Model AdmissionGate

lerary admai?éy(e)rar/ons —
Component

rejectedTask : outDELSTask [1..*]

11

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

The actuator function (Admit) takes the admission decision from the controller as in-
put to transform incoming tasks into either available tasks (into the system) or rejected
tasks (out of the system). The corresponding model library component models the actu-
ator function as a SysML activity Admit. The admission control decision and incoming,
available, and rejected tasks are modeled as input/output activity parameters. This activity
serves as a template for creating conforming behaviors capable of implementing the actua-
tor function. For example, specialized material handling behaviors that implement Admit
specify the sequence of steps required to bring an accepted incoming task into the system
and add it to the system’s collection of available tasks (figure 4). Likewise, alternative

steps might specify what to do with rejected tasks.

SysML Activity Diagram [AcceptlobIntoWorkCell])

| e P] «decisionInputFlow»

toWIPStorage :
MoveTaskToResource
ablock» =] Get ScanTask |
incomingTask : Task i .
9 LStructuraI Feature = [WinstancelD | toOutgoingQueue :
NOTN] MoveTaskToResource |}

«centralBuffer»
WaitForDecision

«block» =
P| availableTasks : Task
«block» Q
rejectedTasks : Task

«readStructuralFeature»

In The Controller:

getAdmission

incomingTask : Task[1..*] DecisionFrom

Controller

admission
(Admission::)

admit : Boolean[1..*]

Fig. 4. Example of specializing admit behavior and implementing it by specifying a sequence of
steps required to bring an accepted task into the system.

Behaviors implementing the actuator function Admit are executed by an Admission
Gate resource, modeled as a SysML block. It is the structural component associated with
the Actuator Function. It conforms to the functional definition by defining interfaces for
handling the flow of incoming, available, and rejected tasks. The interfaces are modeled as
SysML ports, the white boxes with arrows on the edge of the Admission Gate block. The
ports are typed by inDELSTask and outDELSTask, which represent abstract placeholders
for structural features that support the flow of tasks. The actuator for the admit control
function could be more appropriately named “Admitter”, but Admission Gate seems to be
more familiar.

Like the actuator function model library component above, the Admission Gate is
an abstraction (or template) for specifying concrete system components capable of imple-
menting the Admit function. The Admission Gate actuator might be implemented, for

example, by a robotic arm that retrieves the incoming task from the material handling sys-

12

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

tem (MHS), such as a conveyor or automated guided vehicle (AGV). This robotic arm is a
specialization of the abstract Admission Gate and implements the admit() operation with
a specialized getMovePut() behavior suited to moving tasks into a queue. Alternatively, the
material handling system might bring tasks to the system via a conveyor, whereupon the
Admission Gate might be implemented by a pneumatic pusher that moves tasks from the
centralized conveyor onto the system’s local conveyor (or local queue).

Conceptually, an incoming task arrives to the system, flows into the Admission Gate’s
incoming task port, and triggers the Admit actuator function. The actuator function inter-
acts with the Admission decision support, which returns a Boolean admit decision. This
decision is used by the actuator function Admit() and structural actuator Admission Gate,
which implements the behavior and physical structure/capabilities, respectively, required to

turn the incoming task into either an available task or rejected task flowing out of the gate.

3.2 When, or in what order, is an admitted task is serviced? (Sequencing)

Sequencing decisions specify the order, or partial order, that available tasks are serviced
by the system. Sequencing includes decisions such as prioritizing some customers’ tasks
over others, coordinating tasks for things sent to the same customer, batching similar tasks
together for efficient processing or transport, delaying service of a task until a future period
(back-ordering), and splitting tasks into smaller lots to be processed over time.

The sequencing decision function (/ndex) maps each task to its position (in N) to be
served, providing an order in which to serve waiting tasks. Its associated decision expres-
sion specifies decision variables (x; ;) denoting whether a particular task / is served 7™ (s in
the j' position). The decision support interface Sequencing captures this decision func-
tion in the signature of its sequencing operation. Decision support methods implementing
this function might be exact and heuristic. Heuristic methods, including priority rules such
as earliest due date (EDD) or shortest processing time (SPT), are common decision support
methods for sequencing work in a queue (mapping tasks to service position).

The actuator function Sequence sorts the available tasks (physically or virtually)
by the index output by decision support. The sequencing actuator returns an ordered set
of tasks or the just the next task. These sequencing behaviors are executed by Queue-
like actuators where the available tasks are waiting for service. This is denoted by the
sequence() operation on the Queue actuator block. The Queue defines by two ports: one
for handling the input of tasks (inZask) and another for handling the return of selected tasks

(outTask). The actuator for the sequencing control function could be more appropriately

13

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Table 2. ‘“When, or in what order, an admitted task is serviced?’ (Sequencing)

Decision Func-

] Index : Task — N
tion

Actuator ~ Func- Sequence(Index) := System.taskSet <— sort(System.taskSet, Index)

tion
Decision) .)
Expression x;j=1, iftask/is served j™
Decision Sequencing
operations
Support sequencing(availableTask : Task [1..*¥], out index : Integer [1..¥])
Interface
Actuator
Function - index : Integer[1..*]
availableTasks : Task[1..*] []] deredTasks : Task[1..*
System Model == orderedTasks : Task[1..*]
Library
Component
Actuator - e 1 «block» .
System Model inTask : inDELSTask [1..*] Queue outTask : OUtDELSTask [1..*]
. operations
L1brary sequence()
Component

named “Sequencer”, but queue seems to be more familiar.

A range of technologies with varying capabilities might sequence tasks in complex
control behaviors. Some non-automated storage solutions might only be capable of simple
control behaviors. For example, a gravity-fed conveyor is only be capable of enforcing a
First In First Out (FIFO) discipline. Some technologies are not be capable of enforcing any
sequencing discipline at all. For example, a simple storage rack requires the operator to ex-
ecute the desired sequencing discipline, possibly with the aid of pick lights or other simple
technology. Simple storage technologies might be augmented with automated technology,
such as a robotic arm capable of picking specific items, creating an automated storage and

retrieval systems (ASRS).

3.3 Which resource(s) is assigned to serve a task? (Assignment)

Resource assignment refers to many closely related decisions focused on matching scarce

resources to tasks (units of work) based on resource capacity and capability. In manufac-

14

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

turing systems, resources might include labor, critical processing equipment, or material
handling equipment. Tasks might also require auxiliary resources such as tools, fixtures,

and storage locations to enable process execution.

Table 3. “‘Which resource is assigned to serve a task?’ (Assignment)

Decision Func-

don Assign : Task x Resource(s) — Resource(s)

Actuator Func- Acquire(Task,Resource(s)) =

tion Task.nextProcessStep.requiredInput Resource <— Resource(s)
Decision xf ;= 1, ifresource R € Z is assigned to execute process step Oy ;,
Expression the j'* process step of task
DeCiSiOIl ResourceAssignment
SuppOI‘t assignment(availableTask : Task [1..*], availabIeResourgéesyfyf;gsource [1..*], out resourceAssignment : Resource [1..*])
Interface
Actuator resourceAssignment : Resource[1..*]

[
Function - targetTask : Task[1] i ResourceAcquire acquiredResources : Resource[1..*]
System Model
Library Kl
Component availableResource : Resource[1..*]

ACtuatOI’ - availableResource : inDELSResource [1..%] = «blocks acquiredResource : outDELSResource [1..¥]
>| —>
ResourceAcquirer
SyStem Model

O/JEfBUOHS
1 i i acquireResource() .
L1brary inTask : iNDELSTask [1] outTask : OUtDELSTask [1]

Component

The decision function Assign maps a Task (/) and set of Resources (%) to the subset
of resources (R € #) that will serve the task (table 3). Resources required to serve a task
are defined by the Process authorized by the task. When a resource is assigned to a task, in
most cases, that resource is assigned to execute the next process step of that task’s required
process. However it may be advantageous for the decision support to assign resources
to multiple tasks and process steps at once to minimize conflict for scarce resources, but
this is an extension of the base function. As with most decisions, the more choices made
concurrently, the better the overall solution.

This resourceAssignment choice is executed by an actuator function Acquire that ac-
quires the assigned availableResources to satisfy the requiredInputResources of the task’s

nextProcessStep. The actuator function reflects the association between Tasks and Re-

15

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

sources, and both objects are affected by the assignment.

In this framework, Tasks authorize the execution of a Process which is composed of
processSteps (typed by a Process). In this notation, Task.nextProcessStep.requiredInputResource
denotes that nextProcessStep is a property of Task and requiredInputResource 1s a property
of Process, which types the property nextProcessStep. The variable assignment operator
(+) indicates that Resource is being assigned to satisfy the requiredInputResource slot of
nextProcessStep.

The Resource Assignment decision support takes an available task and available
resources and then returns a resourceAssignment specifying the selected resources assigned
to serve the task. This is indicated by Resource [1..x*], the type and multiplicity of the
output resourceAssignment. The decision variable xf ; specifies if resource(s), or resource
group, R € Z is assigned to execute the j/* process step of task / (Oy,). In this notation, Oy ;
is the a process step of process plan &7;. Explicit assignment formulations define decision
variables for each possible match between resources and tasks. This enables the solution to
the optimization problem (“which specific, identifiable resource should be acquired?”) to
be mapped directly to an executable action.

In many cases, process steps require multiple resources to be assigned in order to co-
ordinate resources’ availability and reserve capacity. The decision expression xf f incor-
porates the capability to assign resources to multiple process steps at once, as well as,
assigning resource groups (multiple resources) to one or more process steps. For multiple
resources, R is defined as a resource group containing multiple resources and & is a set
of resource groups, which can be constructed, for example, by enumerating valid com-
binations of resources and identifying each group as a single resource group that can be
assigned to a process (Mati and Xie [16]). Second, the assignment can be made for any
process step in the task’s process plan. Ozgiiven et al. [19], for example, allows resources
to be assigned to any step in a flexible process plan.

Many assignment formulations abstract, or simplify, the control problem by only as-
signing the bottleneck resource and/or only the next process step required by a task (dy-
namic assignment). For example, x}* = 1 if resource m € .# is assigned to execute the next
process step of task /. In these simplified assignment problems, .#Z C % is a subset of re-
sources, such as critical machines, bottleneck resources, etc. Practically, Task.nextProcessStep
either stores the index (/) of the next process step or stores a pointer/reference to Oy ;, how-
ever you want to view it.

The output from the decision support (resourceAssignment) is passed to the Resource

16

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Acquire actuator function which is executed by the Resource Acquirer actuator to
acquire the required / assigned resources. The Resource Acquire «Activity» uses the
resourceAssignment choice and specifies an implementation for how the assignment is ex-
ecuted to transform available resources into acquired resources, resources that are ready to
execute the require process of the input task.

Selecting and implementing appropriate Resource Acquirer actuators usually de-
pends on factors such as the relationship between the requesting and requested resource,
the types of resources assigned, and whether the task is being brought to the resource or
if the resource is being brought to the task. Note that implementing actuators also encom-
passes specifying actuator behaviors, and both conform to the actuator function definition.
Common approaches to acquire or seize a resource include: move/flow task to resource
(stationary resources), seize (consumable or passive), or asynchronous request (mobile au-
tonomous). When the resource is stationary, the assignment can be executed by a switch
that directs the flow of the task to the resource using material handling to bring workpiece
to machine. Another approach is to seize the resource and bring it to the task. Resources
such as fixtures or inventory can be executed by seizing the resource from a pool/stocking
point. Finally, for resources that are autonomous and mobile, the system can request that
resource come to task. These acquisition behaviors have a big impact on the way system
and analysis models are constructed. These three kinds of acquire behavior can be modeled
either as specializations of Resource Acquire and/or as optional steps within a Resource

Acquire behavior (figure 5).

class ResourceAcquire [ResourceAcquireSubtypeSteps]J

«activity»

ResourceAcquire
=~

move [0..* seize [0..* request|0..*

«activity» «activity» «activity»
MoveTaskToResource SeizeResourceForTask RequestResourceForTask

Fig. 5. Specialized resource acquisition behaviors

Most systems must implement a combination of these behaviors and actuators. For
example for stationary equipment in a work cell, the assignment mechanism might direct
a task into the equipment’s queue via pneumatic switch on a conveyor. For resources in

a central pool of available units, e.g., input materials, fixtures, or tools, the assignment

17

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

actuator might be implemented as a robotic arm or automated guided vehicle (AGV) that
“seizes” the resource and transports it from the central buffer to the work station. For
autonomous resources such as human operators or resources belonging to another system,

the resource may be requested, but then may require assistance to get to the desired location.

3.4 Which process does the task required next? (Dynamic Process Planning)

Process plans are processes that organize the execution of other processes as process steps
connected by sequencing and timing constraints. Process plans often specify multiple ways
that a requested process may be executed. These flexible process plans contain alternative
paths, or sequences, of process steps that result in the same outcome. Examples of these
flexibilities include alternative sequences to put parts into an assembly or create features
on a part, alternative processing methods, alternative paths to move and/or store work in
process (WIP). They may also simply contain multiple independently-crafted plans that
can be selected from prior to the start of processing. Dynamic, or near-real-time, process
planning functions are related to tactical process planning functions defining how products
are made or orders are assembled. Process planning does not need to be the last control
function, and it may not require a designated physical actuator.

The decision function Dynamic Process Planning maps a Process Plan (£7)) to the up-
dated process plan (Process Plan’) (table 4). The dynamic process planning control func-
tion focuses on resolving flexibility in the process plan ‘on-the-fly’, pruning unnecessary
alternative paths and augmenting process plans with additional steps as needed. Process
plans for a product typically only contain the primary transformation (Make) process steps.
This function may also augment declarative process plans, containing only primary trans-
formation (Make) process steps, with auxiliary steps, such as moving tasks (Move) to a
new location or placing it in temporary storage (Store). Additional details on process plan
representation and notation are discussed in section 6 of [26], but an overview of required
background is provided here.

The base process planning model consists of a set of tasks .Z, each having a process
plan p; = (Oy1,...,0;,,) defined as an sequence of p; process steps required to com-
plete the task. Linear process plans specify a single, complete sequence of process steps.
They can be extended to include process plans that specify precedence constraints between
process steps and allow the analysis method to define execution sequences [14]. Network-
based representations of flexible process plans capture execution options (flexibility) using
AND/OR digraphs [32].

18

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

Table 4. “Which process does the task required next? (Dynamic Process Planning)

Decision Func-

ton DynamicProcessPlanning : ProcessPlan — ProcessPlan’

Actuator Func- U pdateProcessPlan(Task,ProcessPlan’) :=

tion Task.processPlan < ProcessPlan’
Decision . .
) x;,; = 1, if process step O; ; € &7 is the next process step of task /
Expression ' :
Decision DynamicProcessPlanning
operations
Support processPlanning(task : Task [1], out updatedProcessPlan : Process [1])
Interface
Actuator
Function - updatedProcessPlan : Process[1]
. 11
System Model inTask : Task[1] q: UpdateProcessPIan}EOUtTaSk : Task[1]
Library
Component
Actuator - <block»
System Model inTask : inDELSTask [1..*] ReadWriteProcessPlan | i1ask : outDELSTask [1..%]
—>| operations I_—>
1 readProcessPlan()
L1brary updateProcessPlan()
Component

The decision expression may produce an updated process plan (implement the decision
function) by selecting just the next process step or resolving every flexibility, or option,
stored in the process plan. When the set of linear process plans is represented as a single
flexible process plan, the decision variable (x; ;) selects the next process step (O ;) from
process plan & for task /. Selecting the next process step results in an updated process plan
(and/or marking of the original) containing the selected and/or pruned path and augmented
process steps. The decision support interface Dynamic Process Planning implements
the decision function in its processPlanning() operation, accepting a fask and returning an
updated process plan.

The actuator function Update Process Plan implements the process plan selection
(ProcessPlan’ by “marking” the process plan on the task denoting selected and pruned
paths. As noted above, Task.nextProcessStep either stores the index (j) of the next pro-

cess step or a reference to the process step O; ;. The actuator function is modeled with

UpdateProcessPlan and ReadWriteProcessPlan. The physical actuator ReadWriteProcessPlan

19

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

reads the process plan from the task (readProcessPlan()) and triggers decision support pro-
cessPlanning(), an operation on DynamicProcessPlanning). The decision support re-
turns an updatedProcessPlan to the actuator function UpdateProcessPlan. The actuator
function model library component UpdateProcessPlan “writes” the updated process
plan to the task.

Often, process planning is combined with solicitation and selection/assignment of re-
sources, including external ones, to create the more familiar routing function discussed in

section 3.6.2.

3.5 Which state should a resource be in? (Changing State)

Resource assignment (section 3.3) introduced the idea that executing the resource-to-task
assignment may depend on the kind of resource being assigned, with how much work may
be assigned to and executed by a resource also depending on the kind of resource. For
example, there are many differences between assigning an item in inventory vs a machine
or operator to a task. One classification that captures this distinction is discrete state vs
capacitated resources [24]. For discrete state resources, work can only be assigned if the
resource is in the correct state, e.g. available and set-up to execute a particular process
(provide a particular Service). For capacitated resources, resource objects can only be
assigned to a task when one is available, e.g. tools or parts in inventory can only be assigned
if one is in stock.

State-based abstractions are common in analysis modeling. The control function for
changing the current capability or capacity of a resource uses an abstraction of state that
unifies this class of control decisions. Resources might provide multiple services (capa-
bilities), but only one at a time. For example, a machine could be capable of executing
multiple types of process or producing several types of parts, but only one type at a time.
Resource capability state describes the function, process, or service that a discrete state
resource is currently configured to execute and/or a geographic location that the resource
can provide its service. A discrete-state resource’s capability set defines one state space,
where its capability it can currently offer (its capability state) is a component (subset) of its
current state (Resource.state). Changing the capability of a resource includes actions such
as changing set-ups or tooling for machines; anticipatory movement and pre-positioning
of inventory, tools, or vehicles; and maintenance to preserve availability and capability.
Resource capacity describes the amount of work that can be assigned to a particular re-

source. Changing the capacity of resources includes inventory replenishment of input ma-

20

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

terial stocks, maintenance to preserve availability, and turning on additional machines or

increasing the processing rate.

Table 5. ‘Which state should a resource be in? (Changing State)

Decision Func-

tion ChangeState : Resource.state — State

Actuator Func-
ChangeState(Resource, NewState) := Resource.state «<— NewState

tion
Decision) . .

. xR =1, ifresource R is changed to state j
Expression J
Decision ChangeState

operations

Support changeState(resource : Resource [1], out newState : State [0..1])
Interface
Actuator

newState : State[1]

Function - .

targetResource : Resource[0..1] []] overheadTask : Task[0..*]
System Model 5 :ChangeState
Library

Component
Actuator - _ <lock>
targetResource : inDELSResource [0..1] releasedResources : outDELSResource [0..*]
System Model Changestate
operations

.) o . x
lerary auxillaryResources : inDELSResource [0..%] ChangeState() overheadTask : OUtDELSTask [0..*]
Component

The decision function ChangeState maps the state of the resource (Resource.state) to

States that it can transition to (capability or capacity) (table 5). The decision expression

R —
J

for capability or capacity. Here we assume that to some degree that the ability to transition

X 1 specifies a choice to transition resource R to state j, where state is an abstraction
to the new state is not dependent on the current state, but that for execution purposes the
current state of the resource (Resource.state) can be determined. The decision support
interface ChangeState implements the decision function in its changeState() operation,
taking a resource as input and returning a newState.

The actuator function (ChangeState) then changes the resource’s state (Resource.state)
to the prescribed newState. The actuator function is implemented in the model library as the
ChangeState activity. In cases where additional resources are needed to support the tran-

sition of the resource from one state to the prescribed state, the controller may generate one

21

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

or more overhead Tasks authorizing those resources to execute the ChangeState process,
including the target resource receiving or accepting the state change. Examples of overhead
tasks include inventory orders, maintenance tasks, set-up tasks, etc. These overhead tasks
must be accepted, scheduled, and executed by their respective systems, €.g. maintenance,
material handling, or procurement. The model library actuator function ChangeState ac-
tivity can be specialized to directly support changing capability and capacity. These spe-
cialized behaviors are modeled after set-up (changeService) and replenishment behaviors
(increaseCapacity), respectively.

The actuator ChangeState provides an interfaces (ports) for inputting auxiliaryRe-
sources and, when execution is complete, outputting those resources as releasedResources.
The ChangeState actuator function may be implemented as a behavior of the resource
itself, e.g. machine setup/repair, or as an external actuator, e.g. a maintenance system. This
is modeled as an optional targetResource input (which is self when implemented as a
behavior of the target resource). Finally there is a port for outputting overhead Tasks when

they are required to summon auxiliary resources to support executing the state change.

3.6 Joint Control Decisions

The previous sections modeled atomic control decisions that typically only have one ef-
fect on the system. However, some common operational control problems are in fact joint
control decisions. That is, joint control functions require making two (or more) separate
decisions and executing two (or more) separate actions. For example, flexible jobshop
scheduling problems with process plan flexibility (FJSP-PPF) are modeled as the compo-
sition of the following decision sub-problems [19]: (i) select a process plan for each task
from a pre-determined set of process plans, (i1) assign a machine to each process step in
the plans, and (iii) sequence tasks assigned to each machine. The three atomic functional
components described above (sequencing, assignment, process planning) are obvious from
the decomposed sub-problems. While the choices may be selected by the same decision
support and executed by the same actuator, this is not necessarily always true. For ex-
ample, the decision-maker may make scheduling decisions, then sequence work into the
factory, but later make dynamic resource assignment decisions to accommodate changing
shop floor conditions.

This section models two common joint control decisions: scheduling and routing.
Scheduling determines “Which task will be serviced next (or the order of available tasks),

and which resource will service it?”. It is modeled as joint control decision of sequencing

22

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

and resource assignment. Routing determines “what is the next required process step, and
which resource will execute it?”. It is modeled as joint control decision of process planning

and resource assignment.

3.6.1 Which task next, and which resource will service it? (Scheduling)

As resources complete processing tasks, scheduling methods choose which tasks will be
processed next given available resources and/or which available resource should be as-
signed to the next waiting task. Scheduling decisions combines sequencing (section 3.2)
and resource assignment (section 3.3) Scheduling and its many variants have been studied
extensively. However, one challenge that remains is linking decision-making to shop floor
execution; that is, specifying how schedules actually get executed.

The decision function Scheduling is composed of the sequencing and resource assign-
ment decision functions, denoted Index o Assign (table 6). The decision function maps a
set of tasks and resources to a task sequence and their resource assignments. While the
decisions can be made in either order or concurrently, the operations are not necessarily
commutative. The scheduling decision expressions capture the resource assignment and
task sequencing formulations from [2], [30], and [15], respectively.

The decision support interface Scheduling is a subtype of both Sequencing and
Resource Assignment decision support interfaces. The Scheduling interface inherits
the sequencing() and assignment() operations from the atomic decision support interfaces.
Inheritance is denoted by the A next to the operation. The scheduling operation outputs both
a (sequencing) index as well as resource assignment choices. This approach has the benefit
of solving both problems simultaneously, potentially achieving a better overall solution.

Scheduling is the joint decision between two control decisions. Likewise, it requires
executing two separate behaviors: one to sort the tasks and retrieve the “next” one, and
a second behavior to move the task to the resource or the resources to task. The actu-
ator function Execute Schedule and actuator Scheduler model library components
are modeled as both a composition and subtype of the atomic actuator functions and com-
ponents. Composition is a whole-part relationship, shown in SysML by black diamond
associations between blocks, with the whole on the black diamond end and the part on
the other end. The generalization relationship denoted in SysML using a hollow-headed
arrow directed from the more specialized class, the subtype, to the more general class, the
supertype.

Subtyping requires the scheduling component to provide the interfaces of both atomic

23

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

components, with some reasonable expectation that the joint component can be substi-
tuted for the individual components. For example, the Scheduler may act as a Queue
in some contexts and a Resource Acquirer in others. Composition implies that one
way to achieve the required functionality and interface is construct the Scheduler out
of Queue and Resource Acquirer components and coordinate their individual behaviors
to achieved the required overall behavior.

The Execute Schedule activity combines the Sequence and Resource Acquire ac-
tivities. Likewise, the Scheduler is composed of Queue and the Resource Acquirer. The
Scheduler inherits the interface definition which includes the task and resources ports and
the sequence() and acquireResource() operations (inheritance denoted by A). These in-
terfaces enable the Scheduler to continue playing both Queue and Resource Acquirer
roles independently, when necessary. Effectively any component or set of components can
be considered a Scheduler that can Execute Schedules as long as they implement these
behaviors.

While the logical modeling appears to be a straight-forward composition of the two
decision functions, there may be more subtle concerns about implementing the actuation.
These concerns arise when designing how the actuators access the sequencing and assign-
ment choices separately (as needed for actuation), repeatedly, and over time. Addressing

these concerns is deferred to future work focused on implementation and deployment.

3.6.2 For a task: which process next and which resource will execute it? (Routing)

After completing a processing step, tasks have additional process steps and may need to
flow to another resource for the required processing. Selecting the task’s destination is a
function of both what needs to be done next (“which process type?”) and who is going to
provide that service (“which resource?”). The resource is often another DELS. Routing de-
cisions combine dynamic process planning (section 3.4) with resource assignment (section
3.3)[1, 5, 23]. In flexible manufacturing systems (FMS), process plan selection for a task is
done in conjunction with assignment of operations and tools to each machine [3, 7, 11, 22].

The Routing decision function reflects the composition of two functions Dynamic Pro-
cess Planning and Assign (table 7). This function maps a task’s Process Plan and available
Resources to a new or updated Process Plan’ and resources to perform the next process
step in Process Plan’.

The decision expression specifies two separate variables reflecting joint selection of

process planning and resource assignment. Some formulation use only the x}”j variable and

24

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

assume that if Oy ; is not assigned to machine, then it isn’t selected at all. The formulation
in [19] defines process plan selection variables explicitly. As mentioned previously, ex-
plicit formulations simplify the relationship between the decision support and the actuator
function.

The decision support interface Routing is a subtype of both Resource Assignment
and Dynamic Process Planning interfaces. It inherits the assignment() and process-
Planning() operations and defines a routing() operation reflecting the functional composi-
tion of the two inherited operations.

Routing is the joint decision between two control decisions and requires executing two
separate behaviors: one to update the task’s process plan to the reflect the selections and
one to acquire the required or assigned resources. The actuator function (Route) reflects
this functional composition of the Dynamic Process Planning and Resource Assignment
actuator functions. Composition here is denoted by the wedge/and (A\) operator.

The actuator function Route’s expected effect is that the actuator will direct a task to-
wards the resource that will execute the next required process step. These two functions,
process planning and resource assignment, are not necessarily executed in any particular
order. For example, candidate DELS can be solicited to perform each potential process be-
fore resolving alternative paths in the process plan, or alternatives or “flexibilities” can be
resolved and then seek suitable DELS. In practice (and analysis) there are several practical
methods for the actuator function to determine which DELS (resource assignment). For
example, this can be done using pre-determined static lookup tables, querying global data
sources, or soliciting DELS via contract net.

The actuator function Route is executed by a Router actuator that outputs the task to
a particular flow interface (outTask), connected to the selected target DELS. Routers, like
the other abstract actuators, may be implemented with complex components and behaviors,
e.g. which truck to place an order on, or which conveyor.

The outDELSTask interface block may be implemented very differently depending on
the system: a single outgoing order rack from which MHS selects what to move or a dock
with many dock doors from which the “switch” must select which dock door /truck to
place the task. Though in some cases the “routing/switch” block isn’t necessary, the DELS
simply places the task on its interface (or an outgoing queue) and ‘some how’ the task is
taken to its next destination.

Colloquially, routing seems to imply two things: the resource is an active resource

(DELS or equipment) and the assignment actuator executes a moveTaskToResource behav-

25

8.€8 1" LSIN/8209°01/610°10p//:sdRy :woly 861eyd jo aaly d|qe|ieAe si uonesijgnd siy |

ior. The moveTaskToResource can be passive (as is common in many simulation abstrac-
tions) or can be actively facilitated by material handling equipment.

Routing tasks from the system [the resource assignment component involves indepen-
dent DELS (specialized resources)] complements admission control and might rely on tech-
nologies similar to those that bring tasks into the system. However, in material handling
systems where an AGV (or non-automated worker) deliver the task, the routing behavior
must first summon an AGV to the system. Then a robotic arm, or similar mechanism to the

admission actuator, can place the task onto the AGV.

26

8.€8 1" LSIN/8209°01/610°10p//:sdRy :woly 861eyd jo aaly d|qe|ieAe si uonesijgnd siy |

Table 6. ‘“Which task next, and which resource will service it?’ (Scheduling)

Decision Func-

tion

Actuator Func-

tion

Decision
Expression

Decision
Support
Interface

Actuator
Function -
Model Library
Component

Actuator -
Model Library
Component

Scheduling = Index o Assign
N x Resource(s)

Task(s) x Resource(s) +

ExecuteSchedule(Task(s),Resource(s))
Sequence(Index(Resource.availableTasks)) A\
Task.requiredInputResources)

Acquire(Task,

vy =1, if task [is processed by machine m during period 7 [2]

y}’; =1, if task [is scheduled in the j** position for processing on
machine m [30]

yip =1, if task [precedes task I (not necessarily immediately) on
machine m [15]

ResourceAssignment

Scheduling
operations
~assignment(availableTask : Task [1..*], availableResources : Resource [1..*], out resourceAssignment : Resource [1..%])
Asequencing(availableTask : Task [1..*], out index : Integer [1..%])
scheduling(availableTask : Task [1..*], availableResources : Resource [1..*], out index : Integer [1..*], out resourceAssignment : Resource [1..%])

«activity»
ExecuteSchedule

sequence [0..* resourceAcquire [0..*

«activity» «activity»
Sequence ResourceAcquire

i . *
resourceAssignment : Resource[1..*] index : Integer[1..%]

availableResources : Resource[1..*] = : ExecuteSchedule orderedTasks : Task[1..*]

availableTasks : Task[1..*] acquiredResources : Resource[1..*]

inTask : inDELSTask [1..*] «block» acquiredResource : outDELSResource [1..*]

]

availableResource : inDELSResource [1..*]] Scheduler — outTask : outDELSTask [1..*]
~sequence()

~acquireResource()

executeSchedule()

(V]

=

queue|0..* resourceAcquirer [0..*

«block» «block»
Queue ResourceAcquirer

27

Table 7. For a task: ‘which process is next and who will execute it?” (Routing)

8.€8 1" LSIN/8209°01/610°10p//:sdRy :woly 861eyd jo aaly d|qe|ieAe si uonesijgnd siy |

Decision Routing := DynamicProcessPlanning o Assign :

Function ProcessPlan x Resource(s) — ProcessPlan’ x Resource(s)

Actuator Route := Task.processPlan < ProcessPlan’ \

Function Task.next ProcessStep.requiredInput Resource <— Resource(s)

Decision xj";=1, if machine m is selected for process step j of task [(O1)

Expression 71k =1, if process step O; ; € & is selected next for task /
ResourceAssignment

operations
assignment()

DeClSlOn DynamicProcessPlanning
operations
Support processPlanning()
Interface Routing
operations
Aassignment(availableTask : Task [1..*], availableResources : Resource [1..*], out resourceAssignment : Resource [1..*])
AprocessPlanning(task : Task [1], out updatedProcessPlan : Process [1]
routing(task : Task [1], availableResources : Resource [1..*], out updatedProcessPlan : Process [1], out resourceAssignment : Resource [1..*])

«activity»
Route

updateProcessPlan |0..*

resourceAcquire [0..*

«activity»
ACtuatOI‘ ResourceAcquire «activity»

< D) UpdateProcessPlan

+move : MoveTaskToResource [0..]

Function = +seize : SeizeResourceForTask [0.."]
+request : RequestResourceForTask [0..*]
System Model

Library assignedResource : Resource[1]
: 11
Component inTask : Task[1] E(: Route]EoutTask : Task[1]
[l

updatedProcessPlan : Process[1]

inTask : inDELSTask [1..*]5 «block» E]outTask : OUtDELSTask [1..*]
Router

operations

Route()
Actuator -
SyStem Model readWriteProcessPlan |0..* resourceAcquirer|0..*
Library «block» «block»
ReadWriteProcessPlan ResourceAcquirer

Component

«block»

SendTaskToResource

28

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

4. Operational Control Model Libraries for Modeling DELS

The model library components are used to develop control system specifications, which are
part of the broader system models. To effectively integrate the models, this section briefly
describes the link between the operational control model library and the DELS model li-
brary described in [29]. The DELS model library builds on product-process-resource (PPR)
ontology.

The actuator functions and actuators are linked to the PPR models by specializing them
from Control Process and Active Resource, respectively (figure 6). The operational
control components are modeled as specialized process and resources to enable an inte-
grated description of the base system. The goal is an integrated and consistent model of
products flowing through processes executed by resources, including control processes and

actuators controlling flows through the system.

SysML Block Definition Diagram Control [ControlProcessTaxonomy]J

«activity» «activity» «activity» «activity»
Admit Sequence ResourceAcquire Up
canExecute |1 canExecute |1 canExecuteTl canExscuteTl

«activity» «activity»
Route ChangeState
canExecuteTl canExecuteTl

«block»
AdmissionGate

«block»
ChangeState

«block»
Router

«block»
ReadWriteProcessPlan

«block»
ResourceAcquirer

v
«block»
Actuator
v
«block»
ActiveResource

«block»
Queue

Fig. 6. The control processes and actuators are extended from the process and resource elements
also used to model the system.

Model libraries often contain patterns for assembling the library components into sys-
tem models. The control flow pattern in figure 7 illustrates one way that actuator compo-
nents can be assembled into a logical model of a system’s flow control. This pattern can be
reused and extended in a few ways. First, the abstract actuator components described in this
paper need to be implemented by selecting concrete system components that can execute
the required actuation behaviors. For example, an automated storage and retrieval system
can be modeled as a specialized store and queue executing not only storage and retrieval

behavior but also sequencing behaviors. Second, the control behaviors are not required to

29

8.€8 1" LSIN/8209°01/610°10p//:sdRy :woly 861eyd jo aaly d|qe|ieAe si uonesijgnd siy |

appear in this rigid sequence or even constrained to appear only once. For example, a sys-
tem model may include additional control steps for handling flows of tasks that remain in
the system but require different processing and resources. Finally, control actuators may be
physically distributed across the system despite the logical model depicting them as “close”

to one another.

1
ibd [DELS] DELS[DEL: ontrolFlowPattern|BD) .
bd | Sl S SConteiic = JJ ioResource : ioDELSResource [1..*]
«proxy»
admitT ask : Boolean sequencelndex : Integer resourceAssignment
1 1
|-
«Resource» » «Resource» »- «Resource»
admissionGateway : Gate | Task | taskSet:Queue Task assignResources : Seize Task,
{Resouroe
inTask : Task - - = - = - — = 4 - - - =
- «Resource» 1T «Process» |
| resourceSet : Resource | | functionalCapability : Process |
outTask : Task [—_—) e — — — - - - =
; Resource

«Resource» . «Resource» < «Resource» =

roulin?;\sw itch < completedTaskSet : Queue | Task | releaseResources :Release T‘k

Task 1 ask,

L L Resource
nextNode : DELS sequencelndex : Integer

Fig. 7. This pattern demonstrates one way that the actuators (components of the system) can be
configured to control the flow of tasks and resources through the system.

The decision support interface for each control function is integrated into the DELS
controller’s Decision Support component (figure 8). The decision support for a partic-
ular system is implemented by selecting the most appropriate analysis method(s) for each
control function. The controller accesses these analysis methods through a consistent, stan-
dardized interface. For example when an admission decision is required, the controller can
call admissionInterface.admission() without having to know the details of the admission

algorithm.

30

8.€8 1" LSIN/8209°01/610°10p//:sdRy :woly 861eyd jo aaly d|qe|ieAe si uonesijgnd siy |

Class Diagram DecisionSupport[DecisionSupportInterfaces])

DecisionSupport

contextInterface()

operations

admissionInterface

Admission

1.%

sequencingInterface,

admission()

Sequencing

@)

1.%

assignmentInterface,

sequencing()

ResourceAssignment

@)

1..%

processPlanningInterface

assignment()

DynamicProcessPlanning O

1.%

processPlanning()

changeStatelnterface, ChangeState O
1. * |changeState()
schedulingInterface Scheduling O
0..* |scheduling()
. Routing O
routingInterface -
0.* routing()

Fig. 8. The decision support component of the controller has access to methods for each control
function, each supported by its own interface definition.

5. Conclusion

The model library described in this paper provides a foundation for improving operational
control specifications of discrete event logistics systems. It is designed to explicitly link
controller’s decision support to system (plant) actuation. Logical models built up from
these libraries provide consistent specification of operational control across functionally
heterogeneous systems. Ultimately, the model library along with suitable design and anal-
ysis methods leveraging it enable more efficient and higher quality design and operation of
integrated production and logistics systems.

Further work is required to demonstrate how to specialize model library elements to
cover specific cases. This also includes further development of methods for elaborating
logical model components into software and hardware components of robust cyber-physical
production systems. Also, opportunities remain for additional formalization that could
bridge current gaps between optimal control theory in modeling real-time systems and

operational control models of shop floor and material flow. Effective formal verification

31

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

would support integrated design and testing from enterprise to equipment-level control.
Finally, there is an opportunity to refine analysis methods and tools supporting control
behaviors required by smart, automated production and logistics systems. That is, design
and analysis tools need greater capabilities to provide required fidelity to design, test, and

operate complex systems.

Acknowledgements

Commercial equipment and materials might be identified to adequately specify certain pro-
cedures. In no case does such identification imply recommendation or endorsement by the
U.S. National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

[1] Umit Bilge, Murat Firat, and Ering Albey. A parametric fuzzy logic approach to dy-
namic part routing under full routing flexibility. Computers & Industrial Engineering,
55(1):15-33, 2008.

[2] Edward H Bowman. The schedule-sequencing problem. Operations Research, 7(5):
621-624, 1959.

[3] Paolo Brandimarte. Exploiting process plan flexibility in production scheduling: A
multi-objective approach. European Journal of Operational Research, 114(1):59-71,
1999.

[4] Stefan Bussmann, Nicolas R Jennings, and Michael Wooldridge. Multiagent systems
for manufacturing control: a design methodology. Springer Science & Business Me-
dia, 2013.

[5] Mike D Byrne and Parames Chutima. Real-time operational control of an fms with
full routing flexibility. International Journal of Production Economics, 51(1-2):109—
113, 1997.

[6] Christos G. Cassandras and Stephane Lafortune. Introduction to discrete event sys-
tems. Springer, 2008.

[7] FTS Chan, TC Wong, and LY Chan. Flexible job-shop scheduling problem under
resource constraints. [International Journal of Production Research, 44(11):2071-
2089, 2006.

[8] Robert Cloutier, Gerrit Muller, Dinesh Verma, Roshanak Nilchiani, Eirik Hole, and
Mary Bone. The concept of reference architectures. Systems Engineering, 13(1):
14-27, 2010.

32

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

[9] Jeff A Estefan. Survey of model-based systems engineering (mbse) methodologies.
Incose MBSE Focus Group, 25:8, 2007.

[10] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, 2014.

[11] Mansour Abou Gamila and Saeid Motavalli. A modeling technique for loading and
scheduling problems in fms. Robotics and Computer-Integrated Manufacturing, 19
(1):45-54, 2003.

[12] John S Gero and Udo Kannengiesser. The situated function—-behaviour—structure
framework. Design studies, 25(4):373-391, 2004.

[13] Mikhail Yu Kitaev and Vladimir V Rykov. Controlled queueing systems. CRC press,
1995.

[14] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under prece-
dence constraints. Operations Research, 26(1):22-35, 1978.

[15] Alan S Manne. On the job-shop scheduling problem. Operations Research, 8(2):
219-223, 1960.

[16] Yazid Mati and Xiaolan Xie. Multiresource shop scheduling with resource flexibility
and blocking. IEEE transactions on automation science and engineering, 8(1):175—
189, 2011.

[17] Lars Monch, Peter Lendermann, Leon F McGinnis, and Arnd Schirrmann. A survey
of challenges in modeling and decision-making for discrete event logistics systems.
Computers in Industry, 62(6):557-567, 2011.

[18] OMG SysML 1.5. OMG Systems Modeling Language (OMG SysML) version 1.5.
Standard, Object Management Group (OMG), 2017. URL http://www.omg.org/spec/
SysML/1.5/.

[19] Cemal Ozgiiven, Lale Ozbakir, and Yasemin Yavuz. Mathematical models for job-
shop scheduling problems with routing and process plan flexibility. Applied Mathe-
matical Modelling, 34(6):1539-1548, 2010.

[20] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of com-
putational agents. Cambridge University Press, 2010.

[21] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

[22] SC Sarin and CS Chen. The machine loading and tool allocation problem in a flexible
manufacturing system. International Journal of Production Research, 25(7):1081—
1094, 1987.

33

http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/SysML/1.5/

8/€8 41" 1 SIN/8209°01/640°10p//:sd)Yy :woJ) sbieyo Jo 8al) a|qejieAe S| uoleoalignd siy |

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Nanua Singh and Bhaba Krishna Mohanty. A fuzzy approach to multi-objective rout-
ing problem with applications to process planning in manufacturing systems. The
International Journal of Production Research, 29(6):1161-1170, 1991.

Stephen F Smith and Marcel A Becker. An ontology for constructing scheduling
systems. In Working Notes of 1997 AAAI Symposium on Ontological Engineering,
pages 120-127, 1997.

Timothy Sprock. A Metamodel of Operational Control of Discrete Event Logistics
Systems (DELS). PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2015.
Timothy Sprock. Patterns for modeling operational control of discrete event logistics
systems (dels). In Disciplinary Convergence in Systems Engineering Research, pages
875-884. Springer, 2018.

Timothy Sprock and Leon F McGinnis. A conceptual model for operational control
in smart manufacturing systems. IFAC-PapersOnLine, 48(3):1865-1869, 2015.
Timothy Sprock, Conrad Bock, and Leon F McGinnis. Survey and classification of
operational control problems in discrete event logistics systems (dels). International
Jjournal of production research, 57(15-16):5215-5238, 2019.

Timothy Sprock, George Thiers, Leon F. McGinnis, and Conrad Bock. Theory of
Discrete Event Logistics Systems (DELS) Specification. NIST Interagency/Internal
Report (NISTIR) 8262, National Institute of Standards and Technology, 2020. URL
https://doi.org/10.6028/NIST.IR.8262.

Harvey M Wagner. An integer linear-programming model for machine scheduling.
Naval Research Logistics Quarterly, 6(2):131-140, 1959.

Abraham Wald. Basic ideas of a general theory of statistical decision rules. In Pro-
ceedings of the International congress of Mathematicians, volume 1, pages 308-325,
1950.

Richard A Wysk and Jeffrey S Smith. A formal functional characterization of shop
floor control. Computers & Industrial Engineering, 28(3):631-643, 1995.

Nevin Lianwen Zhang and David L Poole. Stepwise-decomposable influence dia-
grams. In Bernhard Nebel and Charles Rich, editors, Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third International Conference (KR
'92), pages 141-152, 1992.

34

https://doi.org/10.6028/NIST.IR.8262

	Introduction
	Modeling Framework
	Operational Control Functions
	Pattern For Modeling Operational Control Functions
	Defining Control Functions
	Decision Support Interfaces to Analysis Methods
	Libraries of Reusable Model Components
	Actuator Modeling for Operational Control

	Model of Operational Control
	Which tasks to serve? (Admission)
	When, or in what order, is an admitted task is serviced? (Sequencing)
	Which resource(s) is assigned to serve a task? (Assignment)
	Which process does the task required next? (Dynamic Process Planning)
	Which state should a resource be in? (Changing State)
	Joint Control Decisions
	Which task next, and which resource will service it? (Scheduling)
	For a task: which process next and which resource will execute it? (Routing)

	Operational Control Model Libraries for Modeling DELS
	Conclusion

