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SECURITY AUDITING OF INTERNET OF 
THINGS DEVICES IN A SMART HOME 
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Abstract Attacks on the Internet of Things are increasing. Unfortunately, trans-
parency and accountability that are paramount to securing Internet 
of Things devices are either missing or implemented in a questionable 
manner. Security auditing is a promising solution that has been applied 
with success in other domains. However, security auditing of Internet 
of Things devices is challenging because the high-level security recom-
mendations provided by standards and best practices are not readily 
applicable to auditing low-level device data such as sensor readings, logs 
and configurations. Additionally, the heterogeneous nature of Internet 
of Things devices and their resource constraints increase the complex-
ity of the auditing process. Therefore, enabling the security auditing 
of Internet of Things devices requires the definition of actionable secu-
rity policies, collection and processing of audit data, and specification 
of appropriate audit procedures. 

This chapter focuses on the security auditing of Internet of Things 
devices. It presents a methodology for extracting actionable security 
rules from existing security standards and best practices and conduct-
ing security audits of Internet of Things devices. The methodology is 
applied to devices in a smart home environment, and its efficiency and 
scalability are evaluated. 
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1. Introduction 

The popularity of Internet of Things devices is growing rapidly. In 
fact, Statista [38] projects that more than 75.44 billion devices will be 
operational by 2025. However, current Internet of Things devices are 
easy targets of compromise due to implementation flaws and miscon-
figurations [1, 31, 43]. Verifying the flaws and misconfigurations, and 
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ensuring the accountability and transparency of the devices [1, 11] are 
essential for consumers and vendors. 

Security auditing – verifying system states against a set of security 
rules – has become standard practice in enterprise security environments 
(see, e.g., Delloite [13], KPMG [23] and IBM [21]). Its advantages in-
clude supporting a range of security rules that cover system and network 
configurations, enabling examinations of the effects of events on system 
states, and delivering rigorous results via formal verification methods 
[25] as opposed to using other security solutions such as intrusion detec-
tion. 

Security auditing has the potential to become a leading security mea-
sure against emerging threats to Internet of Things devices. However, 
security audits of Internet of Things devices are hindered by three prin-
cipal challenges. First, existing security standards and best practices 
(e.g., [11, 14, 16, 17, 34]) provide high-level recommendations instead 
of guidance for conducting security audits of low-level system data in 
Internet of Things devices. Second, most Internet of Things devices 
cannot conduct the auditing process autonomously because they have 
limited resources to log audit data [43] and execute the formal verifica-
tion tools used for auditing. Third, identifying the essential audit data 
to be collected for each security rule can be tedious. 

Considerable research has focused on Internet of Things device secu-
rity, including application monitoring, intrusion detection, device finger-
printing and access control. A few solutions provide ad hoc lists of rules 
for security tasks such as mobile application verification, network traffic 
inspection and access control [5, 6, 9, 43]. However, what is missing is 
a generic approach for automatically defining actionable rules that can 
be used to verify Internet of Things device security. Also missing is an 
auditing methodology designed for Internet of Things devices that can 
verify a range of security rules and present detailed audit reports with 
evidence of breaches. Unfortunately, existing auditing solutions for other 
environments such as the cloud (e.g., [10, 25, 26, 29]) are not applicable 
to Internet of Things devices because of their heterogeneous audit data 
sources, resource constraints and limited logging functionality. 

This chapter proposes a security auditing methodology for Internet of 
Things devices. The methodology supports the extraction of actionable 
security rules from existing security standards and best practices, and 
enables security audits of Internet of Things devices. As a proof of 
concept, the security auditing methodology is applied to devices in a 
smart home environment, and its efficiency and scalability are evaluated 
(e.g., auditing 1,000 smart home networks within ten minutes). 



275 Majumdar, Bastos & Singhal 

2. Preliminaries 

This section reviews key Internet of Things security standards and 
best practices, highlights the challenges to security auditing of Internet 
of Things devices, and defines the threat model. 

2.1 Security Standards and Best Practices 

This section reviews several security standards and best practices, 
namely NISTIR 8228 [11], NISTIR 8259 [17], OWASP IoT Security 
Guidance [34], ENISA Good Practices for Security of IoT [16] and the 
U.K. Government’s Code of Practice for Consumer IoT Security [14]: 

NISTIR 8228 [11]: NIST’s internal report NISTIR 8228 pro-
vides security and privacy recommendations for Internet of Things 
environments. It identifies four capabilities of Internet of Things 
devices: (i) transducer, (ii) data, (iii) interface and (iv) support. 
Additionally, it discusses a number of generic security recommen-
dations for Internet of Things devices. In Section 4 below, security 
rules are specified based on the four device capabilities identified 
by NISTIR 8228. 

NISTIR 8259 [17]: Unlike NISTIR 8228, NIST’s internal re-
port NISTIR 8259 provides specific security recommendations for 
Internet of Things device vendors. It identifies six activities that 
vendors should consider during the pre-market and post-market 
phases. Additionally, it identifies five risk mitigation goals for 
consumers: (i) asset management, (ii) vulnerability management, 
(iii) access management, (iv) data protection and (v) incident de-
tection. 

OWASP IoT Security Guidance [34]: OWASP’s IoT Security 
Guidance includes recommendations for device vendors, applica-
tion developers and consumers. The recommendations, which are 
divided into ten categories, are used in Section 4 to identify ac-
tionable security rules for Internet of Things devices. 

ENISA Good Practices for Security of IoT [16]: ENISA’s 
Good Practices for Security of IoT focuses on the software devel-
opment lifecycle. Its principal audiences are Internet of Things 
software developers, integrators, and platform and system engi-
neers. It provides recommendations for preventing the introduc-
tion of vulnerabilities via the insecure implementation of software 
development lifecycle processes. The main contributions are an 
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analysis of security concerns in all phases of the software devel-
opment lifecycle, detailed asset and threat taxonomies, and good 
practices that enhance the security and mapping of ENISA good 
practices to related standards, guidelines and schemes. 

U.K. Government Code of Practice [14]: The code of practice 
published by the Department for Digital, Culture, Media and Sport 
of the U.K. Government focuses on consumer Internet of Things 
device security. The code of practice includes recommendations 
for device vendors, application developers and service providers. 
The recommendations, which are divided into 13 categories, are 
used in Section 4 to identify actionable security rules for Internet 
of Things devices. 

2.2 Security Auditing Challenges 

Security auditing of Internet of Things devices faces four principal 
challenges: 

Existing security standards and best practices like NIST 8228 [11] 
and OWASP IoT Security Guidance [34] provide high-level recom-
mendations to programmers and practitioners instead of guidance 
for conducting automated security operations such as monitoring 
and auditing Internet of Things devices. As a result, the rec-
ommendations cannot be used directly to create actionable rules 
for verifying Internet of Things device security. For instance, 
the OWASP high-level recommendation “ensure proper authen-
tication/authorization mechanisms” has to be instantiated to an 
actionable rule such as “require a unique username and complex 
password of more than eight characters to access a smart door” in 
order to enable security verification. 

The recommendations listed in NISTIR 8228 [11], NISTIR 8259 [17], 
OWASP IoT Security Guidance [34], ENISA Good Practices for 
Security of IoT [16] and U.K. Government Code of Practice [14] 
significantly differ in their scopes, objectives and descriptions. Fur-
thermore, some recommendations conflict with each other. A sin-
gle comprehensive source for actionable rules does not exist. As a 
result, it is necessary to systematically analyze all the high-level 
recommendations, interpret them, resolve conflicts and then derive 
actionable security rules. 

System information such as the hardware specifications and soft-
ware APIs of Internet of Things devices from different vendors are 
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published in different formats and use vendor-specific jargon (as 
reported in [15]). Therefore, it is essential to first normalize the 
vendor-specific materials and interpret the high-level recommenda-
tions specified in the standards and best practices in the context 
of the various implementations. 

Even after actionable rules are specified, Internet of Things devices 
are unable to conduct auditing processes autonomously because 
they have limited storage for logging audit data and computa-
tional power for executing formal verification tools. For example, 
a smart door would not be able to execute Sugar [40], a Boolean 
satisfiability solver. 

This work attempts to overcome these challenges by deriving action-
able rules for verifying Internet of Things device security and designing 
a security auditing methodology for Internet of Things devices. 

2.3 Threat Model 
The threat model assumes that Internet of Things devices have imple-

mentation flaws, misconfigurations and vulnerabilities that are exploited 
by malicious entities to violate security rules. A remote server or a local 
hub or gateway is required to perform security audits. The communi-
cations between Internet of Things devices and the verification server 
are secured by end-to-end encryption mechanisms. Privacy threats as-
sociated with data sharing by Internet of Things devices are beyond the 
scope of this research. However, they could be addressed in future work 
using a privacy-friendly auditing technique. 

To keep the discussion concrete, the remainder of this work uses the 
context of a smart home to elaborate the concepts underlying the pro-
posed security auditing methodology. 

3. Security Auditing Methodology 

Figure 1 provides an overview of the security auditing methodology 
for Internet of Things devices. The methodology involves three steps: 

Step 1: Build a knowledge base from Internet of Things device 
security standards and best practices, and details of Internet of 
Things device designs and implementations. 

Step 2: Translate the system knowledge and keywords to security 
rules. 

Step 3: Audit Internet of Things devices using the security rules. 
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Figure 1. Security auditing methodology. 

3.1 Step 1: Build a Knowledge Base 

In order to audit the security of Internet of Things devices in a smart 
home, it is important to understand existing security standards and 
best practices as well as details of Internet of Things device designs and 
implementations. A knowledge base is created to codify this knowledge. 
Creating the knowledge base involves two steps: 

Extract Keywords from the Guidelines Listed in Security Standards 
and Best Practices: Keywords are extracted by parsing the con-
tents of relevant sections in security standards and best practices 
documents. A corpus is then created with the relevant terms, 
mainly nouns and verbs, the two parts of speech that convey the 
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essence of the recommendations. Finally, the keywords in the cor-
pus are classified based on standard security goals such as confi-
dentiality, integrity and availability [3]. 

Collect System Knowledge Related to Internet of Things Device 
Designs and Implementations: Structural knowledge about devices 
such as sensors and actuators is obtained from vendor-provided 
materials, including hardware specifications and software APIs as 
described in [15]. Functional knowledge such as network protocol 
usage is obtained by analyzing the network behavior of Internet of 
Things devices using MUDGEE [19]. 

3.2 Step 2: Translate to Security Rules 

Having created the knowledge base, knowledge in the repository is 
translated to actionable security rules for Internet of Things devices. 
The translation process involves two steps: 

Extract Recommendations from the Classified Keywords in the Se-
curity Standards and Best Practices: The extraction of recommen-
dations is automated using text analysis algorithms such as term 
frequency-inverse document frequency and sentiment analysis [39]. 
Next, the results are manual inspected to create a shortlist of the 
recommendations. 

Define Actionable Security Rules by Instantiating the Recommen-
dations with System Knowledge: Actionable rules are defined by 
extracting the contexts of the recommendations using deep con-
textualized learning [35]. The context associated with each rec-
ommendation is mapped to related system knowledge and each 
recommendation is then mapped to a concrete security rule. 

3.3 Step 3: Audit IoT Device Security 

Having obtained a set of actionable security rules, the final objective 
is to conduct security audits of Internet of Things devices. Security 
auditing involves two steps: 

Collect and Process Audit Data for the Security Rules Covering 
Internet of Things Devices: The audit data source corresponding 
to each security rule for each Internet of Things device is identi-
fied and the logged data is collected. The collected data is pre-
processed to a formal language format such as first-order logic. 

Verify the Security Rules Using Formal Verification: The first-
order logic expressions are converted to the input format required 
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by a formal verification tool such as Sugar [40], a Boolean satisfi-
ability solver. The verification results are interpreted. Finally the 
auditing results are presented to support various capabilities such 
as evidence analysis and security decision enforcement (e.g., allow 
or deny at runtime). 

4. Auditing Smart Home Security 

This section demonstrates the application of the proposed methodol-
ogy in a use case involving the security auditing of Internet of Things 
devices in a smart home environment. 

4.1 Security Rule Definition 

This first step in the security auditing methodology is to define con-
crete security rules. To establish a bridge between the high-level guide-
lines in security standards and best practices and low-level system infor-
mation pertaining to smart home devices, a list of concrete security rules 
from the standards and best practices and the literature were specified 
to formulate the security auditing problem. 

Table 1 shows sample security auditing rules identified from relevant 
standards and best practices, smart home literature and real-world smart 
home implementations (e.g., Google Nest). The specific standards and 
best practices used were NIST 8228 [11], OWASP IoT Security Guid-
ance [34] and U.K. Government Code of Practice [14]. 

The running example in this chapter will consider the following ver-
sions of rules R1 and R6 in Table 1: 

R1: Smart lock must not be in the unlocked state when other 
devices are in the vacation mode. 

R6: Photo or video capture are not allowed in a bathroom. 

4.2 Data Collection 

The next step is to collect the audit data to verify the security rules. 
Figure 2 shows sample data collected about Google Nest products. To 
obtain the data to verify the cross-device rules, the fields noted in the 
blueprints must be extracted from the event logs corresponding to each 
rule. Note that the required data was already collected by the devices, 
so no changes to the devices were necessary. In order to obtain data for 
auditing the rules pertaining to device capabilities (rules R7 and R8 ), 
the types of all the installed devices were identified by analyzing the 
network traffic using the IoT Inspector [20] and IoTSense [7] tools. 
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Table 2. Sample data collected about Google Nest products. 

Device Collected Data 

Smoke Detector id:1, device id:vgUlapP6, locale:en-US, 
software version:4.0, last connection: 
2018-12-31T23:59:59.000Z, battery health:replace, 
co alarm state:ok, smoke alarm state:ok 

Camera id:1, device id:2saNS6kQ, software version:3.9, 
name:Front Door, is streaming:false, 
web url:https://home.nest.com/cameras/2saNS6kQ, 
is online:false 

Thermostat id:4, device id:vgUlapP6, locale:en-US, 
software version:3.6, last connection: 
2019-1-05T15:59:59.000Z, ambient temperature f:70, 
ambient temperature c:38, humidity:75 

Example 1: In the case of rule R1, event logs of the smart lock, smart 
plug and thermostat were collected. The following data was collected: 
smart lock1.lock state:locked, smart lock2.lock state:unlocked, smart -
plug1.vacation state:on, thermostat1.vacation state:on. 

In the case of rule R6, the sensing capabilities of all the bathroom de-
vices were collected: showerhead:{bluetooth, microphone}, smart mir-
ror:{camera, ambient light sensor, motion sensor}, water pebble:{blue-
tooth}. 

4.3 Formal Language Translation 

The next step is to convert the audit data and security rules to formal 
language expressions for the verification step. To this end, the security 
rules were expressed in the input format of the formal verification tool, 
i.e., as a constraint satisfaction problem for Sugar [40]. Programs were 
developed to translate the collected audit data for input to the selected 
verification tool. 

Example 2: Rule R1 is expressed as the predicate: 

∀ l ∈ Smartlock, ∀ p ∈ Smartplug, ∀ h ∈ Smarthome, ∀ s ∈ Device-Status 
(LockState(h, l, l.s) ∧ VacationState(h, p, p.s)) ∧ (IsOff(l.s)) −→ 

(IsOff(p.s)) 

The corresponding constraint satisfaction problem (CSP) predicate is: 
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(and LockState(h,l,l.s) VacationState(h,p,p.s) (IsOff(l.s)) 
(not (IsOff(p.s))) 

The LockState(h,l,s) relation indicates the lock status s of smart 
lock l in smart home h. The  VacationState(h,p,s) relation indi-
cates the vacation status s of smart plug p in smart home h. The  
IsOff(l.s) relation indicates that the status of device d is OFF. For  
example, the lockState(h1,l1,s1) relation is TRUE when there exists 
a smart home h1 with smart lock l1 in state s1; otherwise the relation is 
FALSE. Similarly, the other relations in the CSP predicate are evaluated. 
Note that the CSP predicate becomes TRUE when rule R1 is breached. 
Next, the relations are instantiated for each tuple associated with the au-
dit data as: (LockState (supports (h1,l1,OFF) (h1,l2,ON) ...)) 
and (VacationState (supports (h1,p1,ON) ...)). 

4.4 Verification 

Verification leverages formal techniques such as the Boolean satis-
fiability problem (SAT), declarative logic programming (Datalog) and 
satisfiability modulo theory (SMT), which have been used in several se-
curity applications [10, 24, 27, 28, 33]. These techniques are recognized 
for their expressivity of security rules, provable security and rigorous 
results. The verification tools are hosted at a server to overcome the 
resource constraints of Internet of Things devices. Note that no changes 
to the design or functionality of the verification tools are required. 

Example 3: The CSP predicate of rule R1 instantiated with the states 
of smart locks and smart plugs is executed in Sugar [40], a satisfiability 
problem solver. 

4.5 Evidence Extraction 

The final step is to interpret the outcome of the formal verification 
and prepare the audit reports. This effort is very specific to the veri-
fication tools that are used because most formal tools have their own 
output formats. However, in all cases, they provide rigorous results to 
identify evidence of any and all security rule violations. 

Example 4: After verifying the CSP predicate of rule R1 using the col-
lected data, Sugar returns SAT, which indicates that the predicate is 
TRUE for the given data and that rule R1 is violated. Furthermore, as 
evidence, Sugar identifies the tuple that caused the breach. Specifically, 
LockState(h1,l1,OFF) and VacationState(h1,p1,ON), which  mean  
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Figure 2. Security auditing framework. 

that smart lock l1 is unlocked when smart plug p1 is in the vacation 
mode in the same smart home h1. 

5. Security Auditing Framework 

Figure 2 shows a high-level representation of the security auditing 
framework for Internet of Things devices. It primarily interacts with 
Internet of Things devices to collect audit data and with a cloud server 
to store audit data and delegate auditing computations (i.e., verifica-
tion). It also interacts with users such as security experts and smart 
home owners to obtain the auditing requirements (security policies) and 
provide them with audit results in the form of reports. The framework is 
designed to work with a variety of Internet of Things networks. However, 
this work is restricted to smart home environments. 

The framework has three main components: (i) data collection and 
processing engine, (ii) policy verification engine and (iii) audit dash-
board: 

Data Collection and Processing Engine: The data collec-
tion and processing engine incorporates data collection and data 
processing sub-engines. The data collection engine collects the re-
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quired audit data in the batch mode using smart home platforms 
such as Google Nest. Required audit data may also be collected 
from an Internet of Things hub and/or Internet of Things cloud 
server depending on the specific smart home implementation. 

The data processing engine filters the collected data to retain the 
data needed to verify the security rules. It converts this data to a 
uniform format and subsequently translates it to formal language 
expressions. The final processing steps generate the code for ver-
ification and store it in the audit repository database for use by 
the policy verification engine. The code that is generated depends 
on the verification engine that is employed. 

Policy Verification Engine: The policy verification engine ver-
ifies security policies and identifies security violations. Upon re-
ceiving an audit request and/or updated inputs, the engine invokes 
the back-end verification and validation (V&V) algorithms. For-
mal methods are employed to express system models and audit 
policies, facilitating automated reasoning, which is more practical 
and effective than manual analysis. 

When a security audit policy is breached, supporting evidence is 
obtained from the output of the verification back-end. After the 
compliance validation is completed, the audit results and evidence 
are stored in the audit repository database and made accessible to 
the audit report engine. Depending on the security policies being 
verified, multiple formal verification engines may be incorporated. 

Auditing Dashboard: The auditing dashboard enables users to 
select various standards and best practices as well as specific secu-
rity policies drawn from the standards and best practices. After an 
auditing request is submitted and processed, summarized results 
are presented via the auditing dashboard. Details of the violations 
are provided along with their supporting evidence. Audit reports 
are archived for stipulated periods of time. 

6. Experiments and Results 

This section presents the proof-of-concept experiments and their re-
sults. 

6.1 Experimental Setup 

The experiments employed physical and virtual testbeds. The phys-
ical testbed comprised 23 smart home products from several vendors, 
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Figure 3. Time efficiency of the security auditing methodology. 

15 Raspberry Pi single-board computers and 11 sensors for configur-
ing the smart home devices. The virtual testbed simulated five smart 
home products – smart lock, smart plug, thermostat, camera and smoke 
detector. 

The devices in the two testbeds produced outputs in standard for-
mats (e.g., based on Google Nest API specifications [18]) and transmit-
ted them to a cloud server for storage in a MySQL database. The two 
testbeds were connected to a virtual hub configured on a cloud server 
(Microsoft Azure IoT Hub [30]) or a physical hub. The hubs were con-
nected to an auditing server with a 3.70 GHz Intel Core i7 Hexa core 
CPU and 32 GB memory. 

The two testbeds were employed to generate datasets for the exper-
iments. First, the physical testbed generated real data from the smart 
home products. The virtual testbed generated scaled-up data for up to 
1,000 smart home networks based on the real data to help evaluate the 
scalability of the security auditing methodology. Each experiment was 
repeated 100 times and the average measurements were employed in the 
evaluations. 

6.2 Experimental Results 

The first set of experiments sought to measure the time efficiency of 
the security auditing methodology. Figure 3 shows the total times re-
quired to individually verify rule R1 mandating that no unauthorized 
door be opened and rule R6 mandating that no photo or video is al-
lowed in a toilet for up to 1,000 smart homes. Figure 3(a) shows the 
total verifications times for five devices per smart home whereas Fig-
ure 3(b) shows the corresponding total verification times for 15 devices 
per smart home. The results reveal that the total times are not linear 
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Figure 4. Data collection and processing time reqiurements. 

functions of the number of smart homes to be verified. Additional re-
sults (not reported here due to space constraints) reveal that auditing 
additional security rules would not lead to significant increases in the 
total verification times. 

Figure 4 shows the data collection and data processing times for rules 
R1 and R6 for up to 1,000 smart homes. Figure 4(a) shows the total 
times for five devices per smart home whereas Figure 4(b) shows the 
total times for 15 devices per smart home. Since the data collection and 
processing tasks are each performed only once for each audit request, 
the overheads are acceptable for auditing such large environments. 
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Figure 5. CPU and memory usage. 

The second set of experiments sought to measure the CPU and mem-
ory usage of the security auditing methodology. Figure 5 shows the CPU 
and memory usage results for auditing rules R1 and R6 for up to 1,000 



288 ADVANCES IN DIGITAL FORENSICS XVII 

smart homes. Figure 5(a) shows the CPU usage results for auditing up 
to 1,000 smart homes with a fixed number of devices per smart home. 
The CPU usage remains within 26% for the largest dataset (1,000 smart 
homes). Furthermore, significant leveling in the CPU usage is seen for 
300 or more smart homes. Note that other security rules show the same 
trends in CPU usage, which are expected because CPU usage is highly 
dependent on the amount of data collected. 

Figure 5(b) shows the memory usage for auditing up to 1,000 smart 
homes with a fixed number of devices per smart home. Increases in 
memory usage are only observed beyond 800 smart homes. Investigation 
of the peak in memory usage for 200 homes revealed it to be the result 
of internal memory consumption by the Sugar verification tool. In any 
case, the highest memory usage over all the experiments is just 0.92%. 
Other security rules show the same trends in memory usage due to the 
high dependence of memory usage on the amount of data collected. 

7. Discussion 

Due to the expressiveness of the underlying formal verification method 
(i.e., SAT solver), the security auditing methodology can support a wide-
range of security rules. Specifically, any rule that can be expressed as a 
constraint satisfaction problem would be supported. The main overhead 
in adding new rules comes from identifying the data required for auditing 
and locating their sources. This support can be provided by integrating 
additional tools in the security auditing framework. 

The security auditing methodology and by extension the security au-
diting framework are designed to work with other Internet of Things 
networks, such as those encountered in the smart health, precision agri-
culture and autonomous vehicle environments. The main effort in adapt-
ing the methodology and framework to the new environments would in-
volve finding data sources, collecting data and dealing with application-
specific data formats. Most of the other steps are environment-agnostic 
and could be applied with minor modifications. 

8. Related Work 

The majority of research efforts in the area of Internet of Things 
security have focused on areas such as application monitoring, intrusion 
detection and access control [2, 6, 8, 12, 32, 37, 43, 44, 46]. This section 
attempts to show that, while the research described in this chapter differs 
from other Internet of Things security approaches in terms of scope and 
objectives, they complement each other. 
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Application monitoring techniques such as [22, 41] execute the source 
code of Internet of Things device applications to analyze the applica-
tions. For example, ContextIoT [22] and SmartAuth [41] are permission-
based systems for monitoring individual applications. ProvThings [43] 
creates provenance graphs using security-critical APIs to support In-
ternet of Things device forensics. Soteria [4] and IoTGuard [6] verify 
security and safety policies by performing static and dynamic code anal-
yses, respectively. Unlike these source code analysis tools, the research 
described in this chapter presents a concrete solution for conducting se-
curity audits of the logs and configurations of Internet of Things devices. 

Several security solutions have been developed for smart homes. For 
example, Zhang et al. [46] monitor isolation-related properties of Internet 
of Things devices using a virtual channel. Yang et al. [44] protect Inter-
net of Things devices by hiding them in onion gateways. HoMonit [45] 
proposes a smart home monitoring system that employs deterministic fi-
nite automaton models for Internet of Things devices. However, none of 
these methods provide a security auditing solution for Internet of Things 
devices. 

Modern security auditing methodologies can be categorized as retroac-
tive, incremental or proactive in nature. A retroactive approach such 
as [25] audits a system after the fact, which means that it does not pre-
vent irreversible damage such as denial of service or sensitive data loss. 
An incremental auditing approach such as [28, 10] audits the impacts of 
a change event; whereas such an approach overcomes the limitations of 
a retroactive approach, it causes significant delays in the response time. 
A proactive approach [10, 26, 29] computes a portion of the auditing 
effort in advance to keep runtime computations lightweight and, thus, 
provides practical response times, such as a few milliseconds to audit a 
mid-sized cloud [26]. However, unlike the security auditing methodology 
presented in this chapter, these auditing methods are not applicable to 
Internet of Things devices. This is primarily due to the computational 
and storage constraints of Internet of Things devices, their heterogeneity 
and limited logging functionality. 

9. Conclusions 

The proposed security auditing methodology for Internet of Things de-
vices facilitates the extraction of actionable security rules from existing 
security standards and enables the automated auditing of the security 
rules using formal verification techniques and tools. Experiments con-
ducted on physical and virtual testbeds with Internet of Things devices 
in smart home environments demonstrate the efficiency and scalability 
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of the security auditing methodology, including the ability to complete 
security audits of 1,000 smart home networks within ten minutes. 

Future research will focus on injecting privacy into the security au-
diting process, which is required because security policy verification is 
currently conducted on a remote server. Research will also focus on au-
tomating the important task of converting raw information from security 
standards and best practices into actionable security rules, which is cur-
rently performed manually. Other research will consider simplifying the 
auditing workload using an incremental as opposed to a batch approach. 
It will also investigate applications of the security auditing methodology 
and by extension the security auditing framework to other Internet of 
Things networks, such as those encountered in smart health, precision 
agriculture and autonomous vehicle environments. 

This chapter is not subject to copyright in the United States. Com-
mercial products are identified in order to adequately specify certain pro-
cedures. In no case does such an identification imply a recommendation 
or endorsement by the National Institute of Standards and Technology, 
nor does it imply that the identified products are necessarily the best 
available for the purpose. 
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