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Abstract—Simultaneous coexistence of multiple wireless com-
munications systems sharing the same spectrum is critical for
the success of modern and future communications. We develop
a technique for estimating regions of wireless coexistence (RWC)
– the transmission configurations of each of the wireless systems
which permit coexistence – based on measurements of key
performance indicators (KPIs) of those systems. In this article
we focus on two-way coexistence tests, which aim to determine
the impact each of the communications systems have on each
other. The new technique is based on a Gaussian process
surrogate model of the unknown transmission-configuration-to-
KPI functions. We introduce a sequential design of experiments
based on this surrogate model which is designed to reduce the
number of measurements necessary to reach a highly-accurate
estimate of a RWC. On an illustrative example, this technique
reduces the average number of required measurements by over
40% compared to a baseline experimental design. Similar results
are achieved for a measurement-informed simulation based on
a coexistence test between an Bluetooth Low Energy device and
an IEEE 802.11n Wi-Fi devices.

I. INTRODUCTION

THe increased proliferation of wireless communications
devices necessitates that device performance be robust

to limited spectrum availability. While some spectrum shar-
ing is already common, for example within the Industrial,
Scientific, and Medical (ISM) band, newly-developed and
future communications technologies will require devices to
use spectrum even more efficiently [1], [2]. Designers and
testers of these devices must understand how transmission
configurations (e.g., transmission power or coding schemes)
impact wireless coexistence between devices. This is particu-
larly true under some use cases, say a medical or industrial
setting, where dependable coexistence between devices can be
a safety concern.

A wireless coexistence test assesses the performance of
multiple coexisting wireless devices under a number of op-
erating conditions. In the two-way wireless coexistence tests
we consider here, key performance indicators (KPIs) of both
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systems are monitored as a function of transmission configura-
tion and coexistence is achieved when both KPIs surpass a use-
defined threshold. This is unlike a one-way coexistence test,
which typically focuses only on the behavior of one device
under test. As an example in a Wi-Fi-Bluetooth coexistence
scenario, packet error rate (PER) of the Bluetooth device could
be measured alongside throughput of the Wi-Fi device as
a function of changing Wi-Fi transmit power. The KPIs in
this scenario are Bluetooth PER and Wi-Fi throughput and
the changing transmission configuration is Bluetooth transmit
power. Coexistence can also be defined with respect to user-
experience or mission-defined KPIs, though the KPIs we
consider here are dictated by ease of measurement. Detailed
wireless coexistence test plans are described in [3] and one-
way coexistence studies are described for example in [4], [5],
[6], [7], [8], [9], [10].

Two-way coexistence tests, compared to their one-way
counterparts, are significantly more complicated as detailed
information about all systems operating in the deployment
environment is necessary. Detailed information on the RF
activity in a given deployment environment can be difficult
to obtain; assumptions and approximations are often made.
In a two-way coexistence test, one is concerned with how
their device or system performs among others and what their
device contributes back into the RF environment. From a
modeling perspective, the goal is to identify cases, settings, or
configurations where both (or all) systems in the deployment
environment can successfully operate. To the best of our
knowledge, this is the first work to attempt to identify a region
of mutual coexistence and provide guidance for a subsequent
set of measurements.

In this article, we discuss a framework for estimating the
transmission configurations of each wireless system which
allows for wireless coexistence with high confidence. We intro-
duce a new method to describe the set of reliable transmission
configurations, which we call the region of wireless coex-
istence (RWC). In the Bluetooth-Wi-Fi coexistence scenario
described above, the RWC is the range of Wi-Fi transmit
powers which lead to both KPIs satisfying some threshold.

A high-resolution estimate of the RWC could be obtained by
densely sampling the space of possible transmission configu-



rations and monitoring the resulting KPIs of each system, such
a measurement is infeasible for all but the simplest situations.
As such, we also propose a method for improving estimates of
the RWC by adaptively selecting transmission configurations
based on a small set of previously-collected coexistence data.
This adaptive design of experiments (DOE) requires fewer
measurements to estimate the RWC than an experiment design
which is not designed with RWC estimation in mind.

We compliment the measurements taken in the wireless
coexistence tests with a data-driven surrogate model described
by a Gaussian process (GP). This is a well-studied technique
from statistical learning theory for estimating the output of
an unknown function from a small set of measurements of the
function and from assumptions about how rapidly the function
can change. Many important statistics of GP models, briefly
described in Section II, are exact expressions. This simplifies
the estimation of the RWC and the adaptive DOE.

Adaptive DOEs with GP surrogate models have been stud-
ied previously primarily in the context of maximizing an
unknown function through measurements [11]. Less work has
been done towards estimating regions where the unknown
functions meet some threshold. Different approaches to this
problem with GP surrogate models are described in [12],
[13], [14], [15], [16] and references therein. In the wire-
less coexistence scenarios we consider here, there are two
KPIs being monitored. This seemingly-small change requires
modification to prior work, which are documented below
in Section II-A. We continue in Section III by discussing
adaptive DOEs for multiple KPI scenarios. In Section IV,
two examples demonstrate the feasibility of our approach to
wireless coexistence scenarios. We study two examples in that
section, one based on measurements and the other based on
simulation. In each example, we compare the newly-developed
adaptive DOE to more commonly-used DOE. Compared to
these older baseline techniques, the newly-developed adaptive
DOE reduces the number of measurements required for highly-
accurate estimates of RWCs by around 40%.

A. Regions of Coexistence

We model the J > 0 test measurements performed in a
two-way wireless coexistence test as the measured values y1

and y2 such that

y1(xj) = f1(xj)+ε1(xj) and y2(xj) = f2(xj)+ε2(xj).

Here, f1 and f2 are functions describing the true KPIs for
each of the wireless systems as a function of M -dimensional
(M > 0) vectors xj ∈ X (j = 1, . . . , J), which describe differ-
ent transmission configurations within the set of all possible
configurations, denoted X ⊆ RM , and εi ∼ N (0, σ2

i (xj))
are Gaussian random measurement error with variance σ2

i

(i = 1, 2). In this article we will take M = 1 (Wi-Fi transmit
power) but there is no need for such a restriction. While the
KPIs themselves are likely to be related, we model the noise
components ε1 and ε2 to be statistically independent.

The regions of coexistence between f1 and f2 are the input
values such that these true KPIs satisfy some quantitative

criteria. The prototypical example we consider in this article
is the set of x ∈ X such that f1(x) ≥ τ1 and f2(x) ≤ τ2 for
user-supplied τ1, τ2 ∈ R. In other words, coexistence in this
example occurs when one KPI exceeds some threshold while
the other is below a threshold. Note that coexistence is more
flexible than this prototypical example and we more generally
define coexistence according to the transmission configurations
so that the KPIs belong to user-defined sets. We denote these
sets as T1, T2 ⊂ R and the regions of coexistence are thus
formally defined as

ΓT1,T2 := {x ∈ X : f1(x) ∈ T1, f2(x) ∈ T2}.

The prototypical example thus takes T1 = (−∞, τ1] and T2 =
[τ2,∞).

In practice, the values y1 and y2 are only known at a small
set of measured locations xj , j = 1, . . . , J . As such, the aim of
this work is to find measurement-based estimates of the binary
classifier η(x) := 1ΓT1,T2

(x) for all x ∈ X which equals 1
when x ∈ ΓT1,T2

and is zero otherwise.

II. GAUSSIAN PROCESSES AND ESTIMATION OF RWCS

Surrogate modeling with GPs has a long history, particularly
in the evaluation of time-consuming computer simulations
[16]. GPs are non-parametric models on which a priori as-
sumptions of a function’s regularity can be flexibly encoded. In
particular, if a function f is sampled from a GP, then it is a col-
lection of random variables, any subset of which is distributed
as a multivariate Gaussian random variable with known mean
and covariance. GPs are characterized by a mean function,
µ(x), and covariance function, k(x1,x2), which play the roles
of the mean vector and covariance matrix of a multivariate
Gaussian random variable. The mean function encodes general
trends of f while the covariance function encodes smoothness
assumptions, typically by implicitly dictating properties of the
derivatives of a function sampled from the GP. Such a GP
is denoted by f ∼ GP (µ(x), k(x1,x2)). More information
about GPs is available, for example, in [17] and the references
therein.

Remark 1. The reader may object that GPs are a poor model
for KPIs of interest in wireless communications. Many KPIs
are percentages, for example, and so bounded on [0, 1]. On the
other hand, all GPs have infinite extent. While there are well-
understood ways to combat this [17], we are not concerned
by such a mismatch in this article because we are using GPs
as a surrogate model: in particular, they quickly estimate
RWCs and adaptively indicate through the surrogate model
where new measurements ought to be performed to improve
that estimate. In the application of interest presented here,
then, GPs provide a trade-off of computational complexity and
model fidelity.

To estimate RWCs, we assume a GP model sufficiently
describes the configuration-to-KPI functions f1(x) and f2(x)
based on measurements of those functions and use a GP sur-
rogate to model these functions. We denote the GP surrogate
based on n > 0 measurements Xn := {xj}nj=1 (denoted
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consider the surrogate models to be statistically independent
because the measurement noise, which introduces randomness
into y1 and y2, is also independent. Note that as GPs, these
have closed-form expressions [17],
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(n)
i (x) := [ki(x1,x), ki(x2,x), . . . , ki(xn,x)]

T and
K

(n)
i is the n×n matrix with entries [ki(xi,xj)]

n
i,j=1. Calcu-

lation of important properties (e.g., confidence intervals around
the estimated function values) of the surrogate model is then
straightforward from these formulas.

A. Estimation of RWCs with GPs

We use f
(n)
1 (x) and f

(n)
2 (x) to estimate η(x), the char-

acteristic function of ΓT1,T2 . To do this, we construct a
binary estimator η̂(x) from the GP as the estimator which
minimizes the average integrated mean square error (IMSE)
E
[∫

X(η(x)− η̂(x))2 dx
]

(here and elsewhere, the expectation
operator is taken with respect to all functions generated by the
GP surrogate model). This type of estimator was used in, e.g.,
[16], to find areas where a GP is larger than some threshold.
We follow a similar, but slightly generalized approach.

The binary nature of both η(x) and η̂(x) allows their IMSE
to be expressed as

E
[∫

X
(η(x)− η̂(x))2 dx

]
=

∫
X

(P {η(x) 6= η̂(x)}) dx, (1)

which is the integrated probability of misclassification. Using
similar logic as in [16], the probability of misclassification can
be expressed by

τ (n)(x) = p(n)(x) + (1− 2p(n)(x))η̂(x),

where p(n)(x) := P
{
f

(n)
1 (x) ∈ T1, f

(n)
2 (x) ∈ T2|Xn

}
is the

probability that the estimates of f (n)
1 and f

(n)
2 fall within

the RWC, conditioned on the n measurements Xn. The
probability of misclassification, and hence (1), is minimized
by η̂(x) = 1p(n)(x)>1/2. Since the surrogate models f

(n)
1

and f (n)
2 are modeled as statistically independent, p(n)(x) =

p
(n)
1 (x)p

(n)
2 (x) where p

(n)
i (x) = P

{
f

(n)
i (x) ∈ Ti|Xn

}
. Us-

ing the equality 1
p
(n)
i (x)>1/2

= 1µi(x)∈Ti
, which holds for

GPs, this provides the binary estimate to η(x) which we use
in this article,

η̂(x) = 1
µ
(n)
1 (x)∈T1

1
µ
(n)
2 (x)∈T2

. (2)

We remark for below that due to its binary nature,
Var

(
η̂|X(n)

)
=
(
p

(n)
1 (x)p

(n)
2 (x)

)(
1− p(n)

1 (x)p
(n)
2 (x)

)
.

III. ADAPTIVE DESIGN OF EXPERIMENTS

In this section, we develop a measurement scheme designed
to reduce the number of measurements required to estimate the
RWC in a wireless coexistence test. We reduce the number of
required measurements by only measuring at locations that the
GP surrogate model suggests there is even a small possibility
of coexistence. As more measurements are performed and
the surrogate models improve, the experimental design we
propose becomes composed almost entirely of transmission
configurations which lead to coexistence. As the examples
in Section IV demonstrate, such a goal-oriented design leads
to a more than 40% reduction in required measurements for
estimating a RWC at a high accuracy level, as compared to a
baseline experimental design, which samples evenly from all
possible transmission configurations.

Design of experiments is a well-studied field for efficiently
learning about and building models describing a measurand
from well-selected measurements [18]. Unlike classical exper-
imental design which decide on the measurements to perform
before an experiment begins, adaptive and goal-oriented exper-
imental designs take an iterative approach to choosing which
measurements to take. One well-known adaptive DOE is a
maximin design, which aims to find the measurement location
so that the minimum distance between the new location and all
measured points is largest. Indeed, given a set of measurements
X(n) = {xj}nj=1, the adaptive maximin point is the solution
to

x(n+1) = arg max
x∈X

{
min

ξ∈X(n)
‖x− ξ‖22

}
,

where ‖ · ‖22 is the standard Euclidean distance. This measure-
ment scheme is described as space-filling because it efficiently
fills the possible measurement configurations [19].

In contrast to the maximin scheme, we aim to improve
efficiency of the coexistence measurement by limiting samples
to locations where the surrogate model predicts plausible coex-
istence. Simultaneously, we want to sample at locations which
improve IMSE of η̂. Each of these goals is accomplished by
relying on statistical properties of the GPs f (n)

1 and f
(n)
2 in

a way we describe below. Note, however, that in order for
these statistical properties to be trustworthy, the GPs must
be sufficiently-accurate approximations of the true functions
f1 and f2. Balancing between taking samples that improve
the estimate of η̂ according to current information about the
GPs and taking samples that learn more information about the
GPs, is referred to as the exploration-exploitation trade-off. It
is the balance between exploring areas of the GPs that are
known poorly and exploiting previous measurements in order
to determine where to sample next and reduce the IMSE of η̂.

To simplify exposition, we assume henceforth that T1 =
(−∞, τ1] and T2 = [τ2,∞) for known τ1, τ2 ∈ R. The first
step of our three-step DOE is to locate regions of X that
have any possibility to be part of the RWC, according to
what measurements have thus far shown. To do this, we rely
on Q(n)

i =
[
µ

(n)
i (x)−

√
β(n)σ

(n)
i , µ

(n)
i (x) +

√
β(n)σ

(n)
i

]
,

where β(n) is a user-selected parameter. These sets specify



Algorithm 1 Adaptive DOE for RWC Estimation
.
Input: Initial design (X(0), y1

(
X(0)

)
, y2

(
X(0)

)
); thresholds

(τ1, τ2); stopping index N ; hyperparameter function β(n);
initial GP priors µi(x), ki(x1,x2), i = 1, 2

Output: Estimate of RWC η̂(N); surrogate models f
(N)
1 ,

f
(N)
2 .

1: for n ≤ N do
2: Estimate f

(n)
i , u(n)

i , `(n)
i (i = 1, 2), and η̂(n) from

current measurements
3: Determine Optimistic RWCs with (3)
4: Find Exploration-Exploitation Sample Locations with

(4) and (5)
5: Find Sample to Reduce Uncertainty on η̂ with (6)
6: Take new measurement

(x∗, f1(x∗) + ε1(x∗), f2(x∗) + ε2(x∗))

7: end for

confidence regions in which the true functions f1 and f2

are likely to reside, particularly for large-enough β(n) and n.
Denote Q(n)

i :=
[
`
(n)
i (x), u

(n)
i (x)

]
as the lower and upper

bound functions. We optimistically determine plausible RWC
sets, denoted by O(n), by finding the x ∈ X so that `(n)

i (x)

or u(n)
i (x) satisfy the threshold critria for coexistence. For the

T1 and T2 used in this discussion,

O(n) =
{
x ∈ X | `(n)

1 (x) < τ1 and u(n)
2 (x) > τ2

}
. (3)

This type of optimistic sampling draws inspiration from,
for example, [12], [14], [20]. Unlike those works, we further
subsample to iteratively improve the IMSE of η̂. In particular,
once the optimistic RWCs are available, we subsample within
them to find the transmission configurations that minimize the
integrated probability that η̂ is incorrect,

x∗m = arg min
x∈O(n)

E
[∫

X
τ (n+1)(x) dµ(x) |x(n+1) = x

]
(4)

and find the maximin point within O(n),

x∗s = arg max
x∈O(n)

{
min

ξ∈X(n)
‖x− ξ‖22

}
. (5)

Note that computationally, the calculation of x∗m requires
some form of statistical sampling. We use a Gauss-Hermite
quadrature here, similarly to [16].

These two sampling points must be balanced in order
to simultaneously improve the estimates of η and improve
estimates of f1 and f2. The first of these goals is achieved
by only sampling within η̂ while the second goal is achieved
by exploring enough of X. This is exactly the exploration-
exploitation trade-off. To choose between these possible mea-

surement locations, we find which one minimizes the expected
integrated variance around η̂,

x∗ =

arg min
x∈{x∗

m,x
∗
s}
E
[∫

X
Var

(
η̂(n+1)(x)

)
dµ(x) |x(n+1) = x

]
.

(6)

As before, we calculate the expectation in (6) with Gauss-
Hermite quadrature. Pseudo-code for this adaptive DOE is
available in Algorithm 1.

IV. EXAMPLES

We consider two examples in this section to demonstrate the
method discussed above. In the first example, we compare the
performance of the adaptive experimental design developed
in Section III to the performance of an adaptive, but not
goal-oriented, maximin design and a non-adaptive uniform
design. In the second example, we demonstrate the method on
data informed by Bluetooth-Wi-Fi coexistence tests, described
below.

In order to assess the algorithms we developed above, we
determine the number of measurements required for η̂(x) to
reach a true positive rate (TPR) of 95% and simultaneous false
positive rate (FPR) of 5%. These metrics, defined as TPR =
(Number of True Positives)/(Total Positives Reported) and
similarly for FPR, provide a simple way to assess the success
of RWC estimation in an example with known solution.

The GP surrogate model for these examples uses the GPML
Toolbox Version 4.2 [21] though any similar GP modeling
package is likely to produce equivalent results. In each ex-
ample, we use a squared exponential covariance function,
with hyperparameters chosen to minimize the marginal likeli-
hood, and begin each experiment with an initial design of 4
uniformly-distributed points.

A. Example Problem

The first example problem we consider is a one-dimensional
problem whose analytical properties can be easily determined
but which also demonstrates important properties of the adap-

Fig. 1. The RWC (blue lines) and true functions (black and red lines) for
the example in Section IV-A. Horizontal black and red dashes indicate the
thresholds of interest for the simulations.



Fig. 2. Average TPR and FPR for three different sampling schemes: maximin
(left), adaptive (middle), and uniform (right). Grey bars represent variability
around mean. Horizontal lines at 0.05 and 0.95 represent the success metric
for TPR and FPR.

tive experimental design discussed previously. In particular,
we consider X = [0, 10] with functions

f1(x) ={
cos(ω1x) x < c

(x− c− cos(ω1c)) sin(ω1 + π/2 + ω2(x− c)) x ≥ c
f2(x) = cos(ω2x)

representing the transmission-configuration-to-KPI functions
with ω1, ω2 > 0, c ∈ R. We use the sets T1 = (−∞, 0.1]
and T2 = [0.3,∞) to determine coexistence. Although this
coexistence scenario is contrived, it possesses challenging
aspects for the estimation of the RWC and efficient sampling.

Fig.1 shows the true RWC for ω1 = 8π/3, ω2 = 6π/7,
and c = 5. Notice that the RWC is the union of 7 sets of
rather different size with gaps of varying size between them. A
space-filling experimental design will inefficiently determine
this RWC: an excessive amount of samples will be performed
in locations which do not give any further information about
the RWC.

To demonstrate the behavior of different sampling schemes,
we performed 50 repeats of RWC estimation with different
noise samples and compare sampling by a standard maximin
scheme, by the adaptive DOE introduced above, and by non-
adaptive uniform rectilinear sampling. The resulting TPR and
FPR curves are indicated in Fig.2. Notice in particular that
while the two space-filling designs quickly reach a TPR above
95%, this comes at the expense of a high FPR. The adaptive
method introduced here is more balanced with respect to these

Fig. 3. Rescaled values of Bluetooth PER and Wi-Fi throughput as a function
of additional Wi-Fi transmit power (dBm). Blue lines represent the RWC.

TABLE I
STATISTICS ABOUT THE NUMBER OF MEASUREMENTS REQUIRED TO

REACH THE SUCCESS METRIC OF TPR> 0.95 AND FPR< 0.05 FOR THE
EXAMPLE IN IV-A.

DOE N

[
E
q
(η̂(q))

]
min
q

(N [η̂(q)]) max
q

(N [η̂(q)])

Maximin 61 35 > 100
Uniform 48 32 49
Adaptive 36 21 71

rates, and both TPR and FPR quickly reach their success
thresholds without sacrificing the performance of the other
metric.

Improved performance by the adaptive technique is further
reflected in the reduction of measurements achieved by the
adaptive scheme compared to the space-filling schemes: the
adaptive DOE achieves a successful TPR and FPR metrics
on average after 36 measurements, compared to the maximin
scheme which meets this metric after 61 measurements (an
improvement of nearly 41%) or the uniform scheme after 48
measurements (an improvement of 25%), both on average.

More complete statistics are available in Table I which
additionally lists the best-case and worst-case experiments.
Therein, N [η] represents the first measurement so that TPR>
0.95 and FPR< 0.05 for a given RWC estimate η and η̂(q),
q = 1, . . . , 50, represents the RWC estimate for each repeat
calculation. At most 100 measurements were allowed, so at
times the maximin sampling scheme never reaches the desired
threshold. Note that one repeat of the experiment resulted
in a relatively high 71 measurements until success for the
adaptive measurement scheme, demonstrating that there exist
scenarios under which the new technique will occasionally
perform worse than classical DOEs.

B. Experiment-Informed Example

This simulation emulates the behavior of a preliminary co-
existence measurement test. This coexistence test tracked KPIs
from two transceiving Bluetooth devices and two transceiving
Wi-Fi devices which operated on the same frequency bands
and were connected with coaxial cables to emulate user-
designed coexistence and interference scenarios. The set of
transmission configurations for this experiment was the trans-
mission power of the transmitting Wi-Fi device and the KPIs-
of-interest were the Bluetooth PER and Wi-Fi throughput. A
description of a similar measurement campaign is available
in [9], where a coexistence test was performed in a radiated
fashion, rather than over coaxial cables.

The conducted test performed here included 10 repeat mea-
surements of each KPI-of-interest over transmission conditions
X = (1dBm, 2dBm, . . . , 15dBm) as the Wi-Fi transmit power
greater than a baseline transmit power1. We define coexistence
in this test as a Bluetooth PER below 3% and a Wi-Fi
throughput above 43 Mbps. These values were chosen both

1We express power in dBm as is common in wireless coexistence problems.
This can be converted to milliwatts, the International System of Units standard
unit of power, via 10value in dBm/10 · 1mW



as reasonable for this goal and to demonstrate the method.
The data and threshold values were rescaled in this simulation
to have zero mean and a standard deviation of 1.

We omit further details as this measurement campaign
was used only to inspire a realistic simulation on which to
demonstrate the techniques discussed above. Indeed, we define
f1(x) by fitting a cubic spline through the average Bluetooth
PER at each measurement location and f2(x) similarly for Wi-
Fi throughput measurements. In the same way, we define each
σi(x) (i = 1, 2) by fitting a cubic spline through the standard
deviation of the repeat measurements. This process gives an
experiment-informed set of KPI functions, shown in Fig.3 on
which to estimate the RWC, also shown in Fig.3. Note that,
unlike in the previous example, the KPIs have non-uniform
noise across X, which we we do not include as an a priori
assumption in the GP surrogate model.

The true RWC in this example is sparse within X, so we
expect a space-filling design to inefficiently estimate the RWC.
To demonstrate this, we performed again a simulation of 50
repeats of this coexistence experiment with different noise at
each repeat shows that the adaptive DOE requires on average
only 7.6 measurements to reach a TPR of 95% with FPR
of 5%. A maximin scheme requires on average 12.24 so the
adaptive measurement on average requires nearly 38% fewer
measurements in this example.

V. CONCLUSIONS

We have developed a surrogate modeling technique for
estimating the transmission configurations of two wireless sys-
tems, which allow them to coexist when sharing spectrum. The
surrogate model leads to an efficient design of experiments for
estimating such a RWC. While this technique shows promise
on a simple coexistence example and an experimentally-driven
example, there is the potential for significant improvement.
For example, we have chosen hyperparameters heuristically
in order to balance the exploration-exploitation trade-off. A
theoretically-justified choice, such as the choice of β devel-
oped in [14], may lead to improvements.

We have focused here only on the case of a varying 1-
dimensional parameter (transmission power) in the coexistence
measurement. This is useful in many contexts, but we foresee
that the techniques described here will be applicable in more
complex coexistence scenarios. Indeed, the same techniques
described above apply to estimating RWCs for parameters of
multiple-dimension and we expect the adaptive technique pro-
posed above to perform increasingly well as dimension grows
due to the curse-of-dimensionality. Note, however, that GP
surrogate models require significant computation resources for
high-dimensional problems [17]. Higher-dimensional trans-
mission configurations could include, for example, MAC-layer
parameters of wireless devices.

In ongoing work, we are implementing these ideas on a
similar BLE-Wi-Fi coexistence test with changing transmit
powers from both the BLE and Wi-Fi devices able to change,
compared to only the BLE discussed above. This will be a full
two-way coexistence test on real test equipment. Finally, with

respect to potential improvements we point out [15] which
solves a similar estimation problem by explicitly designing an
adaptive measurement towards balancing true and false posi-
tives and negatives. This type of experimental design may lead
to better outcomes in some wireless coexistence applications,
particularly in wireless communications modalities that rely
heavily on spectrum sharing.
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