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ABSTRACT

Communication is an integral part of human life. Today, optical pulses are the preferred information carriers for long-distance communica-
tion. The exponential growth in data leads to a “capacity crunch” in the underlying physical systems. One of the possible methods to deter
the exponential growth of physical resources for communication is to use quantum, rather than classical measurement at the receiver.
Quantum measurement improves the energy efficiency of optical communication protocols by enabling discrimination of optical coherent
states with the discrimination error rate below the shot-noise limit. In this review article, the authors focus on quantum receivers that can be
practically implemented at the current state of technology, first and foremost displacement-based receivers. The authors present the experi-
mentalist view on the progress in quantum-enhanced receivers and discuss their potential.
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I. INTRODUCTION

The communication capacity crunch is upon us,1,2 owing to
the exponential expansion of the Internet. With monthly Internet
traffic of 200 exabytes at the time of writing, the underlying com-
munications systems will no longer be able to support the service
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reliability and Internet traffic congestion will only worsen as the
exponential trend continues. Claude Shannon analyzed and
described the limits of a communication channel.3 He found a uni-
versal relation between information capacity, available channel
resources, and noise. The connection between information and
physics turns out to be even more fundamental. This connection is
now well-established as a result of the progress in information the-
ory and computer science, on one hand,4,5 and quantum physics on
the other.6 With physical measurement at the heart of communica-
tion, the fundamental communication channel limits are related to
fundamental properties of measurements.

Quantum theory established tools that quantitatively connect
physical measurement and communication. In 1962, Gordon found
the maximal capacity of electromagnetic (bosonic) channels from first
principles.7 The connection between the channel’s physical resource
and its capacity was solidified in the subsequent work.8–15 On one
hand,9,10 there is a fundamental limit of measurement accuracy that
leads to occasional errors in discriminating between physical states
used for communication called Helstrom bound (HB). On the other
hand, it was found that commonly used detection techniques such as
homodyne/heterodyne measurement even with the ideal components
are limited by measurement noise7,11–15 due to the quantum nature of
the photoelectric effect and the Poisson photon statistics of the coher-
ent light.16 This inherent noise is called shot noise. This noise prevents
reaching the rate of errors prescribed by Helstrom’s work.

Thus, at least potentially, quantum measurements can surpass
the capabilities of classical measurements and improve channel capac-
ity (to within Gordon’s bound). A new field of research was born. The
main goal of this research is to use quantum effects to surpass the
shot-noise limited measurement. First practically attainable quantum
measurement-based receivers were proposed in 1970s.17,18 This pio-
neering work was followed by further theoretical and experimental
research, for instance.19–26 The field became particularly active in the
late 2010s as highly efficient, low dark noise single-photon detectors
became available.27

Although there are reviews on discrete quantum state discrimina-
tion,28–33 there is no comprehensive review of experimental efforts in
state discrimination of the continuous-variable states. In this review,
we focus on the state-of-the art quantum measurement schemes and
communication protocols for classical communications with finite sets
of continuous-variable states, such as coherent states. Because we pri-
marily describe receivers that have been practically implemented, the
central attention is devoted to coherent displacement-based receiver
designs. Averting the capacity crunch in global communications may
require paradigm-shifting research and engineering efforts. Quantum
measurement could provide new tools that will help take full advan-
tage of communication channels—up to the theoretical maximum—
and thus enable this paradigm shift.

This review is organized as follows. In Sec. II, we briefly review
the theoretical foundations of classical and quantum-enabled channels.
We introduce a simple classification of the communication channels
based on the type of encoding and the type of measurement. In
Sec. III, we discuss conventional and novel communication protocols
used for coherent optical communication. We compare power limited
and bandwidth limited encodings and the trade-off between their
resource efficiencies. In Sec. IV, we discuss displacement-based quan-
tum receivers for discrimination of coherent states. The two main

classes of the receivers are considered: receivers with adaptive displace-
ment and passive displacement receivers. In Sec. V, we outline
research efforts beyond displacement receivers and beyond the use of
coherent states in noiseless communication channels. Section VI sum-
marizes advantages and challenges of the potential widespread use of
quantummeasurement for communication and concludes the review.

II. THEORY OF DETECTION; CLASSICAL SHOT-NOISE
LIMIT AND QUANTUM HELSTROM BOUND
A. Quantum-enabled channels

Quantum theory revisited the fundamentals of communication.
The calculation of information capacity limits of conventional com-
munication channels from the first principles became possible. Then,
questions on using quantum enhancement to improve conventional
communication channels emerged. Although we expect a higher
capacity for a quantum-enabled channel, additional steps may be
required to take advantage of it. A communication link requires an
encoding scheme that maps user information to physical states and a
measurement device for a physical state detection. Thus, on the most
practical level, quantum properties of physical states and measurement
need to be considered, potentially limiting the practically accessible
channel capacity. We will start from the most abstract analysis and
then consider practical constraints.

In general, a quantum enabled channel supports (1) classical
encoding and measurement, (2) classical encoding and quantum mea-
surement, (3) quantum encoding and classical measurement, and (4)
quantum encoding and measurement. The information capacity of
quantum-enabled channels is bounded from above by Holevo’s
theorem.8

From a quantum standpoint, electromagnetic waves are
described by expanding them to a series of orthogonal modes and pre-
scribing each mode a discrete number of excitations, i.e., photons. For
the sake of simplicity, we assume communication via a single spatial
mode, which is most commonly the case. Then, the number of orthog-
onal modes is directly related to the frequency bandwidth B of
the channel. The average number of photons per state n is directly pro-
portional to the average energy: E ¼ �hxn. The average power is
W ¼ EB ¼ n�hxB. After substituting the maximal achievable entropy
per optical mode to the Holevo theorem, one finds the capacity of a
lossless and noiseless quantum-enabled channel:7

CQ ¼ B log2 1þ W
�hxB

� �
þ W

�hx
log2 1þ �hxB

W

� �
: (1)

Therefore, the number of modes and the average energy of an optical
state fully describe the physical resource use when electromagnetic
waves are used as information carriers. This important result is
referred to as Gordon capacity (or Holevo bound). To aid comparison,
the channel capacity is often divided by the channel bandwidth. Then,
normalized channel capacity CQ=B conveniently characterizes the
spectral efficiency. Formally, the spectral efficiency is measured in bits,
but often units bits=s=Hz are used to emphasize the physical meaning
of C/B as a measure of data rate in bits per second over a channel with
a bandwidth of 1Hz. CQ=B is also used for classification of communi-
cation protocols34,35

CQ=B ¼ log2 1þ W
�hxB

� �
þ W

�hxB
log2 1þ �hxB

W

� �
: (2)
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In a classical limit, W � B�hx, so the second term nearly vanishes,
and the capacity becomes CQ � CShannon ¼ B log2ð1þW=ð�hxBÞÞ.
This result is identical to a classical channel capacity given by the
Shannon limit, whereW=ð�hxBÞ is a signal to noise ratio.

In a photon-starving regime, W � B�hx capacity is mainly
defined by the second term in (2). This result can be interpreted as fol-
lows. For low input power, one can use several orthogonal modes and,
each time they send the entire available energy (a single photon) in
one mode. The more modes are available, the more bits of information
can be encoded per photon. For example, if one photon can be sent
per time interval T, then for an available bandwidth B, one can divide
this interval into M¼BT slots. The information can be encoded by
sending a photon in a particular time slot. The number of encoded
bits is log2BT. Therefore,

COME ¼
log2BT

T
¼ W

�hxB
log2 1þ �hxB

W

� �
; (3)

where OME stands for orthogonal mode encoding. Spectral efficien-
cies CQ=B; CShannon=B and COME=B are shown as a function of energy
efficiency defined as average number of photons used to transmit 1 bit
of information in Fig. 1.

Note that this simple result is based on the assumption of a noise-
less and lossless channel. In this ideal case only encoding using Fock
states in conjunction with ideal photon-number resolving (PNR) mea-
surement can attain the Gordon capacity, Table I. Typically, optical
channels exhibit a significant loss. The upper bound (2) can be cor-
rected by changing assumptions. In particular, adding a model for
losses leads to a different capacity bound.36–38 Any practical optical
communication system requires physical states that are resilient to
optical loss, at least to some extent. To this end, classical states, espe-
cially coherent states of light, are particularly useful. In this review, we
focus on channels with classical encoding and quantummeasurement.

To design a practical digital communication system, an encoding
method to map digital information on transmitted physical states is
needed. The set of states fjwjig is called an alphabet; it can be of an
arbitrary length M. We assume equiprobable states and a noiseless
channel, Table I. How well can the alphabet symbols be distinguished?
To answer this question quantitatively, we use symbol error rate
(SER), the probability that a transmitted symbol is received incorrectly,

P. Helstrom determined that the lower bound on this error is related
to an overlap of the alphabet states.10 One uses the square root mea-
sure (SRM) method8,23,39,40 to find the Helstrom bound (HB). This
method relies on a Grammatrix defined as

Gmj ¼ hwmjwji: (4)

Note that the dot product in (4) cannot be zero for coherent states.
Indeed, in Fock basis, one writes

jwji ¼ e�
jaj2
2 jvacji þ aj1ji þ

1
2
a2j2ji þ � � �

� �
; (5)

where a is a coherent state parameter. Recall that hvacmjvacji ¼ 1
even if modes m and j are orthogonal. This property of coherent states
is important for other applications such as quantum fingerprinting.41

Interestingly, even if the communication alphabet uses quantum states
with no vacuum component, any loss in a channel admixes the
vacuum component to the initial state. The error probability bound
for a quantum receiver can be written as the square root of Gram
matrix elements

PHB ¼ 1�
XM
m¼1
j G1=2
� �

mmj2=M: (6)

In general, Helstrom bound cannot be found analytically. For some
encodings, G1=2 has an analytical form. We will give examples of
Helstrom bounds for typical encodings in Sec. III.

Because Holevo theorem bounds channel capacity and HB puts a
limit on error rate, the two bounds cannot be directly compared.
However, HB gives the resource use, i.e., the required power and band-
width to reach a certain error probability. Thus, to benchmark an
encoding, the error probability is fixed. Then the normalized data rate
R/B and the required power are compared to the normalized channel
capacity CðWÞ=B. Obviously, for sufficiently low SER P0HB and a lossy
communication channel, RHB=B < CðW 0Þ=B, where W 0 is the power
required to achieve the SER P0HB. It is very important to note here that
HB merely establishes the lowest possible error probability, but does
not guarantee a measurement method capable of achieving the HB.
Hence, we expect that experimental spectral efficiency RE=B � RHB=B
< CðPÞ=B.

B. Classical channels

Unless OME is used, classically, the information capacity is given
by the Shannon theorem3

CShannon ¼ B log2 1þW
N

� �
:

This classical model does not specify the origin of channel noise N.
Naively, this noise is a property of a communication channel and can
be arbitrary small, which would result in the infinite channel capacity.
In reality, noise is a fundamental property of any measurement.
Because communication cannot occur without a physical measure-
ment at the receiver, it is the measurement noise that would limit an
otherwise noiseless channel. Although noise can be introduced ad hoc
into a classical model of measurement, it is much more convenient to
derive the minimal measurement noise using a quantum mechanical
description of an otherwise classical measurement.7,42,43 A typicalFIG. 1. Classical and quantum limits to channel capacity.
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classical receiver measures the optical signal via heterodyne and/or
homodyne measurements. In both cases, the signal undergoes interfer-
ence on a beam splitter with a local oscillator (LO). The LO is a coher-
ent state with the same optical frequency as the signal carrier in the
case of the homodyne and a different frequency in the case of the het-
erodyne. After interference, the signal is detected on one or more
detector(s). In all cases, there will be a current at the detector, and
hence there will be shot noise. Assuming the detection efficiency of
unity, the information capacity of coherent homodyne and heterodyne
receivers is7

Cheterodyne ¼ Blog2 1þ W
�hxB

� �
;

Chomodyne ¼
B
2
log2 1þ 4

W
�hxB

� �
: (7)

We see that the measurement-induced noise is proportional to the
channel’s bandwidth, and the dependence of capacity on power and
bandwidth in (7) is similar to the first term of the Gordon capacity, cf.
Eq. (1).

For OME, a so-called direct detection measurement can be used.
In principle, orthogonal optical modes can be physically separated
without introducing extra noise or loss. Once separated, each mode
can be separately measured with a detector. For instance, if spectral
modes were used, a dispersive element such as a grating could be
employed, followed byM spatially separated detectors. For pulse posi-
tion multiplexing (PPM), when a position of a short pulse within a
larger temporal window encodes information, one time-resolving
detector is sufficient because modes are separated in time. A successful
detection occurs when light is detected in one and only one mode.
Although the exact analytical expression for the OME capacity in a
classical Poisson channel is not known,44,45 channel capacity scales
like W

�hxB log2ð1þ �hxB
W Þ in a limit of weak optical input.46 This limit is

identical to the second term of the Gordon capacity, cf. (3).
We see that CQ > Cheterodyne;Chomodyne;COME. Therefore, chan-

nel capacity of the quantum-enabled channel exceeds that of the classi-
cal channel. In derivations above, one does not specify a modulation
scheme to obtain channel capacity. Finding the upper bound for SER
requires selecting a modulation scheme. The uncertainty due to shot
noise on the detector12,47 leads to state discrimination errors. The low-
est classically attainable symbol error rate is often referred to as shot
noise limit (SNL), quantum noise limit (QNL), or standard quantum
limit (SQL). We will give examples of SNL derivations for particular
modulation protocols in Sec. III.

To benchmark an encoding, a SER P is fixed (at a sufficiently low
value). Then the normalized data rate R/B and the required power can
be compared to the normalized channel capacity CðWÞ=B. Thus, the
highest attainable data rates for classical and quantum-enabled

channels as well as Holevo bound and Shannon limit can be presented
on the same graph. As we will see below, RSNLðW 0Þ=B < RHBðW 0Þ=
B < CQðW 0Þ=B, where W 0 is a fixed power. Note that because we
explicitly assume the measurement method to compute SNL, the clas-
sical lowest possible error probability PSNL can in principle be achieved
using ideal components, as opposed to PHB, because the ideal quantum
measurement method might be unknown.

Table I summarizes channel capacity and SER bounds and the
assumptions that are required to derive them.

III. CONVENTIONAL and NOVEL COMMUNICATION
PROTOCOLS

In digital communications, the ratio between data rate and
bandwidth R/B gives the spectral efficiency of the communication pro-
tocols. Two main families of modulation schemes are generally distin-
guished: power-limited R=B > 1 and bandwidth-limited R=B < 1,
Fig. 2. The power-limited family includes such encodings as pulse
amplitude modulation (PAM), quadrature amplitude modulation
(QAM), phase-shift keying (PSK), and others. In these modulation
schemes, the bit rate R for a fixed signal pulse duration grows as
log2M as the number of states in the alphabet M increases.
Communication bandwidth B remains constant, which means that the
spectral efficiency R/B improves with M. However, power-limited
modulation schemes using longer communication alphabetsM require
more power than these with shorter alphabets for reliable communica-
tion because it is generally harder to discriminate a larger number of

TABLE I. Assumptions for the channel capacity and SER bounds derivations.

Metric Channel assumptions Measurement assumptions Encoding assumptions

Gordon capacity (Holevo) Lossless, noiseless Photon number resolving Fock states
Helstrom bound Noiseless n/a Any alphabet
Shot Noise limit Noiseless Ideal classical Any alphabet

FIG. 2. Resource use per bit for different communication protocols. Bandwidth and
the theoretical minimum energy per bit requirements are shown for classical, quan-
tum state discrimination of some communication protocols assuming a symbol error
rate P ¼ 10�5. The protocols with the same modulation method, but different
alphabet lengths M are connected with colored lines. Power-limited protocols are
above R=B ¼ 1 line and bandwidth-limited protocols are below R=B ¼ 1 line.
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non-orthogonal states. The maximal possible R/B is set by the power
limit of the communication channel. While energy per symbol require-
ments increase as a power function of M, the number of encoded bits
increases logarithmically. Thus, even though spectral efficiency R/B
improves, energy requirements per bit increase exponentially.

The bandwidth-limited R=B < 1 family includes pulse position
modulation (PPM), biorthogonal and simplex signal modulation, and
orthogonal frequency-shift keying (OFSK). These encodings typically
use classically orthogonal states. The number of bits carried with each
signal pulse depend on the alphabet length as log2M, the same depen-
dence as for power-limited protocols. However, the bandwidth occu-
pied by orthogonal communication symbols grows linearly with the
alphabet length M. The energy efficiency improves with M because
each signal pulse carries more information, while the energy required
for reliable discrimination does not depend on the number of orthogo-
nal signals. The spectral efficiency R/B of bandwidth-limited protocols
decreases as M=ð log2MÞ, Fig. 2. The largest M is given by the band-
width limit of the communication channel.

We will discuss different modulation methods, review their theo-
retical limits for detection error rates, and compare their performance
with the fundamental channel capacity. We will focus on encoding
schemes that have been actively considered for quantum-enabled
communication experiments.

A. Binary protocols

Binary protocols are well studied, and they are a rare case where
analytical expressions for error rate limits can be found, see Table II. It
is not surprising that the first quantum receiver outperforming SNL
was proposed for the binary modulation.17 In addition, the first projec-
tion measurement that achieves the HB (or the optimal projection)
was found for binary encodings.10,18 Here we discuss binary encodings
based on amplitude and phase modulations.

The binary PSK (BPSK) uses two coherent states with opposite
phases for encoding and encodes exactly one bit per symbol

s0 ¼ j � ai;
s1 ¼ jai:

The corresponding constellation diagram is shown in Fig. 3. Fuzzy
circles represent coherent states on a phase diagram, a distance from

the state to the origin is proportional to the square root of the average
number of photons in the state, and an average phase is measured as
the angle between the positive direction of axis I and the vector from
the origin to the center of the coherent state. Because both BPSK sym-
bols s0 and s1 are states of the same optical mode, this encoding is
non-orthogonal even if one can neglect the vacuum component, cf.
(5). Faint states s can significantly overlap. The optimal classical dis-
crimination of the BPSK signals can be achieved via a homodyne mea-
surement. The only relevant measurement value for BPSK is the
projection of the measured state on the in-phase quadrature (I axis in
Fig. 3). The probability density function to receive a projection x when
state si was sent is

pðxjsiÞ ¼
1
p
exp �ðx �

ffiffiffi
2
p
< si½ �Þ2

� �
¼ 1

p
exp �ðx6

ffiffiffiffiffi
2n
p
Þ2

� �
; (8)

where n ¼ hni ¼ jaj2 is the average number of photons in a state si. A
decision that the input state is s0 is made if the measured x< 0; other-
wise, if x> 0, the decision is s1. Therefore, to find the probability of a
discrimination error, we need to compute the probability of measuring
x> 0 when s0 was sent (or the probability of measuring x< 0 when s1
was sent),

TABLE II. Quantum and classical SER bounds of different modulation protocols.

Encoding
Optimal classical

Receiver
Shot noise limit

PSNL
Helstrom bound

PHB Ref.

OOK Direct detection 1
2
e�n

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�n
p� � 20

BPSK Homodyne 1
2
ð1� erf

ffiffiffiffiffi
2n
p� �

Þ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�4n
p� � 10,34

M-PSK Homodyne
1� 1

p

ðp=M

�p=M

ð1
0
ejre

ih�
ffiffi
n
p
j2r drdh

1�
XM
q¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�n
XM
m¼1

eð1�qÞ
2pim
M þne

2pim
M

vuut
0
B@

1
CA

2,
M2

24

M-PPM Direct detection ðM � 1Þe�n=M ðM � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðM � 1Þe�n

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�n
p� �2	

M2 50,51

M-CFSK Homodyne Numerical Numerical SRM 48,49

FIG. 3. Binary phase shift keying constellation diagram.
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PPSK
SNL ¼

ð1
0
p xjs0ð Þdx ¼ 1

2
1� erf

ffiffiffiffiffi
2n
p� �� �

: (9)

The HB can be readily found as

PPSK
HB ¼

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�4n
p� �

: (10)

As we expect, PHB < PSNL.
The BPSK constellation is similar to a binary on-off keying

(OOK) (i.e., s0 ¼ 0; s1 ¼ jai) when the origin is shifted to the center
of the left state in Fig. 3. Thus, we immediately get20

POOK
SNL ¼

1
2

1� e�nð Þ;

POOK
HB ¼

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�n
p� �

:

(11)

Note that the classical measurement of OOK states distinguishes
coherent states from vacuum states, and this measurement does not
require a heterodyne; POOK

SNL is based on direct optical power measure-
ment (direct detection). OOK requires four times higher peak energy
and two times higher average signal energy than BPSK to match its
quantum discrimination error rate bound, HB. This inefficiency can
be explained by calculating the geometrical distance between signal
vectors dPSK01 ¼ 2a and dOOK01 ¼ a.34

Binary protocols can carry only one bit of information with each
signal pulse. It may be beneficial to encode more than one bit of infor-
mation per signal pulse, i.e., by using larger encoding alphabets.

B. M-ary PSK

A natural extension of BPSK is when more than two states are
encoded in the phase of a coherent state. From symmetry consider-
ations, the states are separated by equal phases D/ ¼ 2p=M, whereM
is the number of states in the alphabet. As an example the constellation
diagram of the 4-ary PSK is presented in Fig. 4. This modulation
method encodes more than one bit per state, which may be beneficial
for two reasons. First, when detectors are slow, a single measurement
yields several ( log2M) bits, so that the rate of information exchange
improves. Second, the number of bits transmitted per optical mode in
a unit time is higher; thus, spectral efficiency is higher. SNL and HB
can be found analytically in integral form Refs. 23 and 34; see Table II.

It is convenient to plot energy and bandwidth requirements of M-ary
PSK protocols on one graph, where points with different M are con-
nected to guide the eye, Fig. 2. Even though PSNL > PHB for all M,
error probability bounds for classical and quantum detection grow fast
withM for a constant energy per bit n= log2M.34,48 Unfortunately, the
potential advantage of the quantum measurement PSNL=PHB also
decreases with M. Therefore, quantum receivers are most effective
for PSK protocols with relatively lowM (see SNL PSK and HB PSK in
Fig. 2).

C. M-ary orthogonal encodings

The information can be encoded in M orthogonal modes, where
a single optical pulse occupies one such mode. Modes can be made
orthogonal using non-overlapping time bins, non-overlapping
frequency bands, polarization, and spatio-angular distributions.
Particularly, pulse-position modulation (PPM) is a modulation
scheme in which log2M bits are encoded in one ofM time bins, Fig. 5.
Because different symbols of the alphabet do not overlap in time, this
encoding is classically orthogonal. Each time bin can be thought of as
an optical mode; therefore, an M-ary alphabet occupies M modes.
Because the duration of a signal is one T/M time bin, the required
bandwidth for this protocol is M times broader than that for the flat-
top pulse of duration T. Instead of using time bins, one can use sym-
bols that are separated in frequency, in which case information will be
encoded in spectral modes, and the required bandwidth will still beM
times broader than that for the flat-top pulse of duration T. Linear
expansion of bandwidth use is unavoidable for all modulation schemes
using orthogonal modes. Other degrees of freedom, such as polariza-
tion or spatial modes, can be used when available.

Direct detection is classically the best detection strategy.
Specifically, in PPM, modes are separated in time, so the arrival time
of the pulse to the detector is sufficient for the physical separation of
modes. For other encodings, mode separation may involve spectral
filtering, spatial mode sorters, and so on. The classical error limit for
ideal signal-shot-noise limited (background-free) detector operation,
Table II, is proportional to e�n, i.e., the probability to detect vacuum
states in all modes. There is no dependence of PSNL onM for large M.
Therefore, for a given power, error per bit reduces withM as log2ðMÞ
(DD orthogonal in Fig. 2). This feature is used for photon-starved
communications although the energy-bandwidth trade-off becomes
inefficient for largeM.

Even though heterodyne detection is not optimal due to larger
shot noise, it is often used in optical communications for orthogonal
frequency shift keying. Heterodyne noise increases with the band-
width. On the other hand, noiseless physical separation of the closely-
spaced frequency modes may be practically unfeasible. Interestingly,

FIG. 4. M-ary phase shift keying constellation diagram example, M¼ 4. FIG. 5. M-ary pulse position modulation states, M¼ 4.
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when heterodyne detection is employed, nearly all gain in bits per unit
energy for large M is canceled by increasing noise (see SNL OFSK in
Fig. 2).

As we discussed above, from the quantum viewpoint, faint coher-
ent states are always nonorthogonal. A Helstrom bound is therefore
above zero. Its value can be readily found, Table II (HB orthogonal in
Fig. 2), and it can be shown that the PHB < PSNL.

9 Therefore, orthogo-
nal encoding receivers can also benefit from a quantummeasurement.

D. M-ary coherent frequency shift keying

The M-ary coherent frequency shift keying (CFSK) encodes
information in both the frequency and phase of coherent state pulses,
jami ¼ jaðxm; hmÞi. The adjacent symbolsm andmþ 1 are separated
by Dx in frequency space, and their initial phases differ by Dh, so that
jami ¼ jaðx0 þ ðm� 1ÞDx; ðm� 1ÞDhÞi. This alphabet is illus-
trated in the constellation diagram, Fig. 6. In this diagram, coherent
states rotate with time around the origin with rates given by their
detuning. The keying can be described by two parameters: Dh and
DxT . This parameter space contains the PSK modulation scheme:
DxT ¼ 0; Dh ¼ 2p=M and the orthogonal frequency shift keying
(OFSK): DxT ¼ 2p. The goal here is to reduce the bandwidth of the
communication protocol while maintaining low error probabilities.
Therefore, one is interested in small frequency separation: DxT < 2p.
In this parameter space, states are nonorthogonal. Therefore, both PHB
and PSNL cannot be expressed analytically. Numerical methods48,49 are
used instead. Both Dh and DxT can be adjusted to meet certain opti-
mization goals. For instance, when optimizing for energy efficiency,
minimal Helstrom bound is achieved with one set of parameters, the
lowest shot noise limit requires another parameter set, and the mini-
mal error rate is achieved in a quantum receiver with yet another one.
Interestingly, as the numerical analysis of PHB shows, this keying bal-
ances energy requirements and bandwidth requirements at the same
time, for 4 � M � 32, see Fig. 2. As a consequence, its rate graph
crosses the R=W ¼ 1 value. Therefore, this keying is neither power
limited nor bandwidth limited.

For a properly optimized CFSK PCFSK
SNL < PPSK

SNL, which is expected,
because the bandwidth of CFSK is wider than that of PSK. However, it
may be difficult to build an efficient classical CFSK receiver in practice.
Interestingly, it turns out that a time-resolving quantum receiver, dis-
cussed later, uses the same hardware for many encodings including

PSK and CFSK. The only difference is the feedback algorithm encoded
in firmware. Therefore, the quantummeasurement can be used to pro-
vide bandwidth and power efficiency simultaneously in a practical
way.

IV. DISPLACEMENT-BASED QUANTUM STATE
DISCRIMINATION

Quantum theory establishes a lower discrimination error bound
than that accessible through classical measurement. However, the
design of a practical measurement method does not directly follow
from theory. In 1973, Kennedy proposed the first near-optimum
receiver approaching Helstrom bound for binary coherent states.17 In
less than a year, Dolinar proposed an improved receiver for binary
coherent states.18 In both receivers, the input state is displaced from its
original state through interference with a local oscillator, which can be
practically accomplished with a heavily unbalanced (typically, 99:1)
beam splitter. These two seminal papers have triggered theoretical and
experimental research of quantum receivers.

Most theoretical and nearly all experimental reports to date take
advantage of coherent state displacement in one way or another even
though coherent state displacement is not the optimal quantum mea-
surement for some encodings. As it has been shown recently, an opti-
mal projective measurement may require ancillary quantum states or
quantum nodes, such as a single atom. We cover this exciting work in
Sec. V.

In this section, we discuss the experiments with coherent state
displacement-based quantum receivers. To aid the reader, we present
a simple classification of these receivers in Fig. 7. The classification is
based on the principle of operation. Coherent displacement can be
either non-adaptive, where the local oscillator does not change
throughout measurement (as in a Kennedy receiver) or adaptive,
where the coherent state is actively controlled (as in a Dolinar
receiver). The lowest level in the figure contains references (in bold) to
experimental demonstrations and mentions a modulation protocol(s)
used in the experiment.

At the time of writing, we are aware of OOK, BPSK, M-ary PSK,
M-ary PPM, andM-ary CFSK experiments. To gauge the performance
of quantum receivers, we compiled a table with the experimental
results, Table III. The improvement from quantum measurement is
typically measured as a ratio of the observed error rate to the classical
SNL limit for a noiseless receiver with the same system detection effi-
ciency as the quantum receiver, i.e., adjusted SNL. This measurement
quantifies the so-called “quantum advantage” over a classical measure-
ment under similar conditions. However, using this characterization
method does not account for any inefficiency of the quantum mea-
surement experiment. Some inefficiencies may be due to imperfect
off-the-shelf components that were used, while other inefficiencies
may be intrinsic to the chosen quantum measurement method. Thus,
one could argue that a more relevant comparison of quantum versus
classical receivers is to use the absolute SNL—the limit of the ideal
classical receiver with unity efficiency. The error rates below the abso-
lute SNL cannot be achieved by a classical receiver in principle.
Although all quantum receivers surpass the adjusted SNL, not all of
them achieve SER below the absolute SNL. We also compare input
state energy required to achieve SER of 10% for demonstrated quan-
tum receivers versus the SNL-limited receivers where applicable. This

FIG. 6. M-ary coherent frequency shift keying constellation diagram example,
M¼ 4.
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FIG. 7. Classification of displacement-based quantum receivers. References to experimental demonstrations are in bold.

TABLE III. Experimentally attained performance of quantum receivers with different encodings. The best energy sensitivity improvement over classical detection is given by the
smallest ratio of experimentally measured SER (PE) to the classical theoretical SNL adjusted for receiver’s system efficiency g (PSNLðgÞ) and to the ideal SNL (PSNL). The input
energy in average number of photons per bit (photons/bit) when this minimum occurs is given in adjacent columns. The energy required to experimentally achieve 10% SER
(PE ¼ 0:1) is compared to energy requirements to achieve the same with classical measurements, shown as energy efficiency improvement relative to ideal (hniSNL=hniE) and
adjusted (hniSNLðgÞ=hniE) SNLs.

Encoding
protocol PE

PSNLðgÞ
@ hniE

log2M
g PE

PSNL
@ hniE

log2M

hniE= log2M
@PE ¼ 0:1

hniSNL=hniE
@PE ¼ 0:1

hniSNLðgÞ=hniE
@PE ¼ 0:1 References

dB photons/bit dB photons/bit photons/bit
OOK �2.2 2 0.35 �0.31 0.29 a a a 57

�0.5 0.2 �0.75 0.2 0.7 a a a 20
BPSK �0.77 0.44 0.55 b 0.73 0.56 1.03 54

�0.42 0.21 0.91 �0.15 0.21 0.41 1 1.1 22
�6 7 0.72 b 0.5 0.82 1.14 60
�4 2.2 0.58 b 0.78 0.53 0.91 55c

4-PPM �2.3 1.6 0.4 b a a a 51
4-PSK �0.22 1.51 0.53 b a a a 59

�13 4.5 0.72 �6.7 5.5 1.25 1.07 1.48 67
�27 10 0.72 �14 10 1.25 1.07 1.48 69
�6.8 2 0.7 �3.7 2 1.02 1.31 1.87 73
�8.9 4.7 0.65 �1.7 4.2 1.3 1 1.58 68c

�6.3 2 0.75 �3.7 2 1 1.33 1.79 75
4-CFSK �11 2.7 0.75 �7.1 2.7 0.84 1.49 1.98 49
8-CFSK �7.1 2 0.75 �3.1 2 1 1.25 1.67 49
16-CFSK �2.6 1 0.75 �0.30 1 1.28 0.95 1.27 49
8-PSK �3.8 3.1 0.75 �1.86 3.1 2.42 1.27 1.69 75
16-PSK �2.7 7.4 0.75 �1.2 6.3 7.75 1.15 1.33 75

aExperimentally measured SER is above PE ¼ 0:1.
bExperimental SER does not surpass absolute SNL.
cMark experiments at the telecom wavelength (1550 nm).
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comparison shows the possible reduction of energy requirements by
switching to quantum receivers.

A. Kennedy receiver

Helstrom determined the fundamental SER bound for the opti-
mum receiver in 1968,10 where the projection measurement on a
quantum superposition state, often called “Shr€odinger cat state” was
proposed to reach the quantum limit for the binary coherent state
encoding. The experimental implementation of the proposed optimal
measurement is very difficult because it relies on a superposition basis
and entanglement measurements.52 This method requires a very high-
fidelity entanglement and a near-unit detection efficiency.53 In 1973,
Kennedy proposed the first receiver using a simple displacement oper-
ation on the input coherent state followed by photon detection.17

While the overall performance of the receiver falls short of the HB, the
receiver achieves exponentially optimum performance and outper-
forms the shot noise limit.17 The receiver scheme proposed for BPSK
states j þ ai and j � ai is shown in Fig. 8(a). The input signal is dis-
placed using a local coherent state andmeasured using a photon detec-
tor. The displacement occurs by interfering with the input signal with
the local state on a beam-splitter. As shown in Fig. 8(a), the local state
is set to j þ ai. The destructive interference occurs for the input signal
j � ai which is displaced to vacuum j0i, so no photon can be detected.
The constructive interference occurs for j þ ai, such that the output is
displaced to j þ 2ai. A brighter output makes the probability to detect
a photon higher. Therefore, in the ideal noiseless case and with the
perfect displacement no photons will be detected when the input state
was j � ai, but there is a probability (proportional to exp ð�4jaj2Þ)
that no photons will be detected if the input state was j þ ai. This
non-zero probability causes a discrimination error. In spite of the
apparent simplicity of the method, experimental implementations54,55

fell short from outperforming the absolute SNL due to low system effi-
ciency, non-ideal displacement, and dark noise at the detector.
Modified Kennedy receivers use an optimized displacement and a
more sophisticated discrimination algorithm. Those receivers uncon-
ditionally surpass the SNL in experiments,20,22 discussed below.

B. Dolinar receiver

Following the proposal of the first quantum receiver using non-
Gaussian measurements to beat the shot-noise limit, Dolinar proposed
a receiver18 that can reach the Helstrom bound for discrimination of
binary coherent states. This receiver theoretically approaches the

quantum limit in binary state discrimination by using the real-time
quantum feedback with the so-called optimal displacement and pho-
ton counting measurements, i.e., without the need for a “cat-state”
measurement.10 In contrast to the Kennedy receiver, the displacement
amplitude b is changing constantly. The phase is adjusted every time a
photon is detected, i.e., it is determined from the number of photons
nt detected in the time interval ½0; tÞ.18,56 For an on–off keying, the
optimal displacement amplitude is given by57

bðntÞ ¼
a
2

eipðntþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�jaj

2t=T
p � 1

" #
: (12)

The discrimination decision is based on the total number of photons
nT counted during the entire measurement ½0;T�, so that jai (j � ai)
is chosen when nT is even (odd) as shown in Fig. 8(b). Formally,
Eq. (12) diverges at the beginning of the pulse t¼ 0, which cannot be
practically implemented because of the finite energy of the LO and the
saturation of a single-photon detector.

Yet, this issue can be practically alleviated in a laboratory envi-
ronment. A binary Dolinar-like receiver with finite displacement
amplitudes was successfully implemented experimentally in Ref. 57. In
their work, authors demonstrated that for input signal with the low
average number of photons (n<1) the OOK receiver not only sur-
passes the adjusted SNL, but also approaches the adjusted HB; for
comparison, both SNL and HB were adjusted to the system efficiency.

Dolinar’s idea of adaptive feedback enabled multiple new quan-
tum receiver configurations. Particularly, sub-SNL receivers for M-ary
encodings were invented and experimentally demonstrated.

C. Novel quantum receivers and experiments

1. The optimized displacement receiver

A few attempts were made to modify Kennedy receivers to
achieve a lower SER. One such enhancement is the optimized displace-
ment receiver (ODR). Kennedy receiver displaces the input state by
interfering it with the equal amplitude of the local state. In their theo-
retical paper, Takeoka and Sasaki proposed to adjust the displacement
of the input signal using local state.58 Their ODR uses the local
state with an amplitude b greater than the input signal amplitude a,
Fig. 9(a). It is evident that due to unequal amplitude in the local state
the input signal will not be displaced to vacuum. There are no other
changes to the Kennedy design, cf. Fig. 8(a). Since larger displacement
results in a higher probability of photon detection when input signal

FIG. 8. Schematic diagram of first quantum receivers for binary state discrimination. The displacement operation, D̂, uses a local oscillator state and a beam-splitter. (a)
Kennedy-like receiver (non-adaptive) and (b) Dolinar-like receiver (with feedback).
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state is displaced to jaþ bi, the probability of detecting no photons
e�jaþbj2 is reduced from that of the Kennedy receiver. However,
because j � ai is no longer displaced to vacuum, there is a possibility
to collect photons, which leads to errors. The trade-off between these
“false” detections due to the non-ideal vacuum jb� ai and the
reduced probability to get no clicks for the jbþ ai state results in an
optimization problem. The optimal displacement amplitude b mini-
mizes the combined error probability. The experimental implementa-
tions of ODR has shown discrimination error rates below the SNL
adjusted for the experimental conditions54,59 and unconditionally,20,22

i.e., in comparison to the absolute SNL. The most significant improve-
ment in discrimination accuracy is shown for faint coherent states
with jaj2 � 1. The amplitude of the optimized displacement
approaches the amplitude of the input state jbj ! jaj as jaj ! 1. A
similar optimization of displacement can reduce the discrimination
error rate of adaptive feedback receivers for binary and M-ary alpha-
bets as well.

The discrimination error rate of the ODR receivers can be further
reduced with photon-number resolving (PNR) measurements
[Fig. 9(b)] and can extend the below-SNL performance of the receiver
to higher input energies jaj2.22,60 A discrimination threshold is the

particular number of detected photons during T. If the total number
of detections is below that threshold, j�ai is received; otherwise, jai is
received. Note that with a notable exception of Refs. 20 and 22 where
transition edge sensor (TES) detectors were employed, other receivers
use a quasi-PNR detector. A conventional single-photon avalanche
photodiode’s (SPAD) clicks are counted. The total count of clicks cor-
responds to the number of photons to within the detector’s deadtime,
afterpulsing, and dark count probability.27,61,62

2. Conditional pulse nulling receiver

Conditional pulse nulling (CPN) receivers are explicitly designed
for pulse position modulation (PPM) which is widely used in photon-
starved free space communications due to its high energy efficiency.
Dolinar proposed the CPN receiver in 1982.50 He theoretically showed
that CPN performs near the optimum.50 Almost three decades later,
the CPN receiver has been experimentally demonstrated for a 4-ary
PPM with the discrimination error below the adjusted SNL.51

The experimental scheme of the CPN receiver is shown in Fig. 10(a).
The input signal is displaced to vacuum using the local state pulse. The
decision strategy for 4-ary PPM is shown in Fig. 10(b). The receiver

FIG. 9. Schematic diagram of modified Kennedy receivers. (a) Optimal displacement receiver (ODR) and (b) ODR with photon number resolution (PNR).

FIG. 10. (a) Experimental scheme of CPN receiver for 4-ary PPM. (b) Decision strategy for 4-ary PPM. Broken arrows represent no photon detection and solid arrows represent
photon detection after nulling. Green boxes are the received states after discrimination.
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starts by nulling the pulse in position 1 (Fig. 5). Photon detection (fail-
ure) leads to the nulling of pulses in the subsequent steps. If no pho-
tons were detected in position 1 (success), then the received state is
ja1i. The same strategy is repeated for subsequent positions. The green
boxes represent the received state after a discrimination. Even in ideal
experimental conditions, errors arise from the Poisson nature of the
coherent states, cf. Kennedy receiver: the displacement of the input sig-
nal with a wrong local state does not necessarily lead to photon
detection.

3. Multi-stage receivers

The optimal receiver for binary coherent states proposed by
Dolinar18 requires feedback to adjust the LO as more information
about the input state becomes available. A possible modification of the
Dolinar receiver that makes it more experimentally feasible breaks the
input into segments or stages either spatially [(11(a)] or temporally
[(11(b)]. Then, the measurement result from each segment can be
used to choose the best displacement state for the next segment. The
number of stages is predefined. Switching rules can be represented as a
decision-making tree that is typically precomputed. It can be
shown63,64 that with the proper choice of the displacement intensity at
each stage n (jbnj2 > jaij2, cf. Dolinar receiver) and in the limit of infi-
nite number of stages such a multi-stage receiver can optimally dis-
criminate binary states. Thus, choosing the same intensity of the LO
for all stages does not enable the HB-limited discrimination even
when the intensity is optimized.

For example, the BPSK input state, jaii, is split into multiple cop-
ies with equal intensity, Fig. 11(a). Thus, the energy of the input to
each stage is reduced by the factor of m. Each attenuated copy of the
state is sent to a displacement setup. An optical delay is inserted in
each stage so that the measurement on an nþ 1th stage does not start
before the measurement on the nth stage is completed. For the first
stage, an arbitrary state of the LO is chosen. If the LO matches the

input, the input state is displaced to vacuum, no photons will be
detected; otherwise, a photon can be detected. To achieve close to opti-
mal performance, the value of jbnj2 should be corrected at each stage,
but the phase of jbji only changes with photon detection. The poten-
tial drawback of this scheme is that the number of optical elements
and single-photon detectors grows with the number of stages. An
excessive loss of the optical signal occurs due to imperfect optical com-
ponents. In addition, the alignment of the multistage setup may be
complicated.

A signal pulse can be divided into equal temporal intervals rather
than spatially. In this case, just one LO with the feedback and one
detector is needed. As before, the feedback is used to update the
LO after each measurement segment with an equal duration T/m.
Figure 11(b) shows the experimental scheme of the multi-stage
receiver with temporal stages. The strategy tests the hypothesis that
the most probable input signal is ai during each measurement seg-
ment. At the end of the signal pulse T, final Bayesian probabilities are
computed, and then the hypothesis with the highest probability is used
to make the discrimination decision. The main drawback of temporal
segmenting is the need for faster detectors and electronic components.
A deadtime of single-photon detectors is yet another obstacle.

The idea of adjusting the feedback after each photon detection
can be generalized for M-ary communication protocols although the
optimal feedback algorithm is not known. An M-ary discrimination
strategy that uses m measurement stages where LO can be adjusted
after each stage was proposed in Ref. 24. In this paper, the signal is
split on a beam splitting tree, where each measurement stage has its
own LO and detector. Formally, the Bayesian probabilities for the pos-
sible input state are calculated based on the outcome of the measure-
ment (click or no click) in each stage. Bayesian probabilities are used
to set the LO of the next stage to verify the most probable hypothesis.
Finally, after allmmeasurement results are known, the Bayesian prob-
abilities are updated one last time and the most likely hypothesis is

FIG. 11. Schematic diagram of adaptive displacement receivers: (a) spatial adaptive displacement receiver and (b) temporal adaptive displacement receiver.
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used as the discrimination outcome. This proposal does not consider
optimizing the LO intensity separately for each stage. The spatial
multi-stage approach was further investigated theoretically for
M ¼ 3; 4 PSK in Ref. 65. In Ref. 66, authors investigate the theoretical
performance of the 4-PSK receiver by adding PNR capabilities.

Temporal adaptive receivers can also be generalized to longer
alphabets, Fig. 11(b). The temporal adaptive receiver design was used
in the experimental demonstration of the 4-PSK quantum receiver
that unconditionally surpassed the SNL limit.67 A similar design was
used for the first demonstration of the 4-PSK receiver at a telecom
wavelength.68 A more sophisticated version of this receiver counts the
number of photons in each measurement. This approach enables
more precise Bayesian calculations and especially helps with sub-SNL
measurements of mesoscopic input states. The information about the
number of detected photons is particularly helpful against the experi-
mental imperfections such as darkcounts, non-ideal visibility, etc.
Thus, lower discrimination error probability can be achieved. In
Ref. 69, a SPAD-based quasi-PNR detection was used. The authors
extended the sub-SNL performance of their receiver to the inputs with
more than 20 photons per pulse on average.69 They achieved the
record SER (below 10�6). The similar quasi-PNR enhancement with a
SPAD detector was used to optimize other multi-stage receivers.66,70–72

Adjusting intensity of the LO is yet another path to sensitivity
improvement. In Ref. 73, the theoretical model of displacement for
M-ary receivers is optimized by optimizing jbj2 at each step and the
unconditional error rate below signal-to-noise ratio (SNR) is experi-
mentally demonstrated.

4. Time-resolving receivers

Another class of receivers consists of one displacement module
and one single-photon detector and uses single-photon detection times
for discrimination. Unlike multi-stage receivers, it provides instanta-
neous feedback to switch the LO state right after each photon detec-
tion. By design, the receiver gets to test the unrestricted number of
hypotheses and allocates the optimal time to verify each hypothesis.
Owing to the nature of coherent states, with a sufficiently fast detector,
the probability to detect more than one photon in the field is negligi-
ble. Therefore, PNR detection is not required.

The first receiver of this class was introduced by Bondurant.19

Type-I Bondurant receiver probes hypothesis in a simple sequential
order and uses the hypothesis at time T as the discrimination decision,
Fig. 12(a), while Type-II receiver uses the sequential order, but com-
pares photon interarrival times to make the final discrimination

decision. Bondurant receivers have a near-optimal performance for 4-
PSK state discrimination, where a Type-II receiver outperforms the
Type-I receiver at low input energies. The probing is executed by
switching the local state from one hypothesis to next,
a1 ! a2…! am, until all hypotheses are tested or no more clicks are
detected. In a practical setting, a detection event can be induced by a
dark count or non-ideal displacement. After any photon detection, the
Bondurant receiver discards the hypothesis and will never test it again,
leading to extra errors. A cyclic strategy can correct some of these
errors. A cyclic receiver is similar to the Bondurant Type I receiver,
except after testing the last state of the alphabet aM it switches back to
the first state a1 and continues the measurement until the end of the
pulse T.26 The cyclic receiver was demonstrated experimentally.74 The
measured SER is unconditionally better than the SNL for 4-PSK, 8-
PSK, 4-CFSK, and 8-CFSK encodings.

A much better result can be obtained if the time-resolving quan-
tum receiver uses both instantaneous feedback and Bayesian infer-
ence.48 A Bayesian classifier uses the knowledge about prior local state
and a photon arrival time to predict the most probable input state after
each photon detection. This strategy converges to the right hypothesis
with a minimal number of photon detections and it can be applied to
any encoding.75 The strategy works best if the encoding is developed
to take advantage of the instantaneous feedback.48,49 This holistic
approach when both the receiver and the encoding are developed side-
by-side has resulted in the record low error rates in discrimination of
large alphabets with faint signals (jaj2 � 1 photon per bit).
This receiver is shown to perform unconditionally below the SNL for
M � 16 alphabets, the largest number of states in an alphabet reported
to date.49

D. Summary of displacement receivers

In summary, a direct comparison of different displacement
receivers is not always possible. For binary protocols, the optimal mea-
surement is theoretically possible; measurement schemes that are
asymptotically optimal have a clear advantage. For longer alphabet
lengths, displacement measurements are not optimal. Theoretically,
time-resolving protocols and the protocols that adjust LO intensity
throughout the measurement are the most advantageous.

In experiment, practical considerations may play the decisive
role. In general, based on experimental evidence, Table III, the proto-
cols that take advantage of photon number resolution perform partic-
ularly well for brighter input states. Time-resolving protocols perform
better with dimmer input states (with� 1 photon/bit and lower). This
is because detectors have deadtime and the feedback components have

FIG. 12. Time-resolving adaptive displacement receivers: (a) Bondurant/cyclic receiver and (b) time-resolving receiver with Bayesian inference.
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latency; therefore, fewer feedback cycles may be practically advanta-
geous. Other considerations include the following:

• Transmission loss and detection efficiency. Both properties
reduce system efficiency and reduce the unconditional advantage
over the absolute SNL.

• Alignment of the displacement reduces both conditional and
unconditional advantage of the quantum measurement, but can
be partially mitigated by including the inefficiency into the feed-
back model.

• Background and dark counts similarly reduce both conditional
and unconditional advantage of the quantum measurement, and
can be partially mitigated by adjusting the feedback model.

We see that spatial multiplexing can remedy time delays, but it
may introduce higher losses and alignment issues. The choice of the
most optimal modulation protocol and the alphabet length may also
depend on experimental and/or practical conditions. In making the
choice, considering both conditional and unconditional performance
of a receiver (Table III) is important because the conditional perfor-
mance shows the degree of the advantage made specifically by a non-
classical measurement whereas the unconditional performance reveals
the system efficiency penalty.

V. NEW TRENDS

In Sec. IV, we discussed theoretical and experimental achieve-
ments in coherent state discrimination with displacement-based quan-
tum receivers. The field of quantum measurement is very active, and
many new ideas for using quantum measurement in optical networks
have emerged. Here we briefly discuss new research directions that in
our view have a significant practical potential.

A. Noisy communication channels

Realistic communication channels may distort and contaminate
communication signals. Given that the theory of quantum receivers
assumes noiseless channels, it is important to understand if quantum
measurement advantage extends to channels with noise. An important
realistic channel model is the non-Gaussian channel with bosonic
phase noise. In Ref. 76, authors investigate a communication strategy
over channels with phase noise and demonstrate that quantum mea-
surement may be advantageous. In particular, authors optimize the
displacement of the BPSK signals by varying LO amplitude, cf. Ref. 58,

paired with a Kennedy-like receiver that takes advantage of PNR, cf.
Ref. 60 [Fig. 13(a)]. They demonstrated SER below the homodyne
limit adjusted for the system efficiency of 72% in the presence of phase
noise. A similar strategy for a channel with thermal noise is considered
in Ref. 77. The authors theoretically demonstrate that a PNR-enabled
Kennedy-like receiver with the optimized displacement (see Refs. 58
and 60) can surpass the SNL when the average number of thermal
photons is smaller than 0.2. Practical implementations of many quan-
tum receivers require interferometric stability of the communication
channel or a pilot signal providing the reference phase. In long-
distance communication, it may be challenging to interferometrically
stabilize the communication channel. In Ref. 78, authors experimen-
tally demonstrate a phase-tracking protocol for quantum receivers to
correct for time-varying phase noise and keep SER below the SNL.

B. Discrimination of optical states other than coherent
states

So far we considered coherent states as communication carriers.
This is because coherent states of light are widely used for communica-
tion. Other types of states can be discriminated using quantum meth-
ods as well. The optimal discrimination of optical states with non-
Poissonian photon number statistics81–84 has recently attracted a lot of
interest. In these new experiments, ancillary coherent states are used
for displacement in a receiver. Clearly, the perfect displacement of a
non-Poissonian state to a vacuum state with a coherent state is impos-
sible. Still, the probability to detect at least one photon can be signifi-
cantly increased for one type of input and significantly reduced for the
other.

In Ref. 79, authors investigate a binary communication channel
that uses squeezed vacuum states as information carriers. The infor-
mation is encoded by displacing the squeezed vacuum state by
D̂ð6aÞ,16 resulting in two displaced squeezed states (DSS) j6DSSi
with the opposite phases [cf. BPSK, see Fig. 13(b)]. Squeezing of one of
the quadratures of the carrier gives a smaller overlap between the DSS
states in comparison to coherent states with the same average number
of photons. Thus, the discrimination error probability for the squeezed
states, in theory, may fall below the Helstrom bound for BPSK with
coherent states in the absence of loss. When the channel has some
phase noise, but no significant loss, even a homodyne-based “classical”
receiver can approach the quantum optimum.

FIG. 13. (a) Binary signals optimized for communication in the channel with phase diffusion. Reprinted with permission from DiMario et al., npj Quantum Inf. 5, 65 (2019).
Copyright 2019 Authors, licensed under a Creative Commons Attribution 4.0 International License;76 (b) displaced squeezed states (DSS) with opposite phases, as described
in Ref. 79; (c) Wigner functions of single-rail qubit states, reproduced with permission from Izumi et al., J. Phys. B 51, 085502 (2018).80 Copyright 2018 IOP Publishing. All
rights reserved.
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In Ref. 85, the fundamental quantum limit for discrimination
error probability between a coherent and a thermal optical state is
computed. Additionally, error probability bounds for direct detection,
coherent homodyne detection, and the Kennedy-like receiver are
given. The generalization of the Kennedy receiver for discrimination
of coherent and thermal states with a low average photon number is
shown to closely approach the quantum limit.

The displacement-based discrimination strategies used by quan-
tum receivers were recently adopted for the discrimination of single-
rail qubits, a superposition of the vacuum state with a single photon.
In Refs. 80 and 86, authors theoretically and experimentally investigate
a receiver for orthogonal single rail qubits: j6i ¼ ðj0i6 j1iÞ=

ffiffiffi
2
p

[see
Fig. 13(c)]. Authors have shown that their setup can discriminate the
superposition states using weak coherent states for displacement. Both
input states have a certain vacuum and single-photon components.
After coherent state displacement, the resulting states have distinct
photon-number statistics, Fig. 14. This difference in mean photon
numbers can be assessed with a single-photon detector. A feedback
discrimination strategy generalized for single-rail qubits yields an SER
below that of the perfect homodyne detection. These results can facili-
tate the implementation of quantum information processing protocols
using single-rail qubits.

C. Quantum unambiguous state discrimination

Displacement-based quantum receivers can be employed for so-
called unambiguous state discrimination (USD).71,87,88 Unlike a typical
receiver whose goal is to provide the best guess for all input states,
unambiguous state discrimination receivers aim to error-free discrimi-
nation of states or reject the measurement as inconclusive if that can-
not be done. In Ref. 71, sub-SNL USD is experimentally demonstrated
for BPSK. At a later time, sub-SNL USD was extended to 4-PSK in
Refs. 87 and 88.

D. Optimal quantum measurements

We saw that displacement receivers are optimal for some encod-
ings. For other encodings, displacement receivers cannot reach the
HB. There is an alternative to displacement measurements, however.
For instance, an optimal projective measurement with the help of
quantum states, such as cat states,89 has been proposed and experi-
mentally implemented. To our knowledge, this work is the only

experimental effort to date that enables a quantum receiver that is not
based on coherent state displacement. Yet another idea is to take
advantage of an ancillary quantum system, such as a single atom.90–92

In these proposals, the input light field is mapped on a discrete set of
atomic states, followed by a projection measurement. Near-optimal
discrimination of BPSK,M-PSK, andM-ASK (amplitude shift keying)
encodings has been discussed. An efficient light field interaction with
an ancilla atom is required, which may be challenging to experimen-
tally implement with today’s technology. Another theoretical proposal
shows how to design the optimal receiver for an arbitrary alphabet
length and an arbitrary modulation scheme with the help of a univer-
sal quantum computer. The input signal is split to m copies each of
which is transferred to the quantum computer. The quantum com-
puter performs m unitary operations on the ancilla quantum register.
The final state of the ancilla register is measured to arrive to the dis-
crimination result.93 This idea uses two properties of coherent states:
first, splitting a coherent state produces coherent states with the same
properties, except for amplitudes; second, a coherent state with a suffi-
ciently small amplitude is well approximated by a single-rail qubit (cf.
Refs. 80 and 86). The problem of discriminating coherent states is
reduced to discriminating multicopy single-rail qubit states by a
sequential coherent-processing receiver.94

E. Artificial intelligence in communication

One of the interesting future directions for quantum receivers is
the possible use of the artificial intelligence for real-time feedback and
discrimination. Recently, artificial neural networks were successfully
applied to reduce the error probability of the classical communications
system, achieving the classical optimal limit.95 Replacing or pairing
Bayesian inference with artificial neural networks could optimize feed-
back strategy and reduce error rates of quantum receivers in practical
settings.

VI. THE QUANTUM MEASUREMENT ENHANCED
CLASSICAL INTERNET OF THE FUTURE? (IN LIEU OF
CONCLUSION)

As it is evident by now, below-the-shot-noise limit discrimination
error rates for coherent states have been achieved in many laboratories
and for different encoding methods. Properties of displacement-based
quantum receivers using non-Gaussian measurement were extensively
studied. The field, however, is still in its early stage. Indeed, just one
experimental report achieved SERs unconditionally below the classical
limit at a telecom wavelength,68 while other proof-of-principle experi-
ments either use visible light or cannot unconditionally surpass the
SNL.55 Conventional communication systems, on the other hand, are
very successful, mature, and competitive. Let us discuss the possible
future of quantum technologies for classical communication.

Figure 15 shows the channel resource use required for nearly
fault-free communication (Pe ¼ 10�5) using traditional modulation
methods with ideal classical detection. This theoretical plot does not
consider channel noise in a practical communication link, which
would make energy requirements significantly greater. The sources of
such noise include in-line optical amplifiers, cross-talk between
wavelength-multiplexed channels, nonlinear effects in fiber, and dark
noise of detectors. On the other hand, this plot does not take error
correction into account, which can somewhat relax the energy require-
ments. Yet, we believe that this curve is a good estimation for the

FIG. 14. Photon number distribution of single-rail qubits before and after displace-
ment, reproduced with permission from Izumi et al., J. Phys. B 51, 085502
(2018).80 Copyright 2018 IOP Publishing. All rights reserved.
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threshold of classical technologies. Some classical systems that are
currently near this threshold use single-photon detectors96–99 because
of their low dark noise.27 We see that quantum measurement could
potentially reduce channel energy requirements from this threshold by
more than one order of magnitude while not requiring more
bandwidth.

In certain cases, for instance, for photon-starved communication
links, reducing channel energy requirements may be the goal, which is
achievable by switching to a quantum measurement at the receiver.
However, reducing channel energy requirements does not automati-
cally reduce the total energy consumption of the entire communica-
tion link. In fact, the total energy requirements of the state-of-the-art
communication link using quantum receivers can be higher than that
using classical receivers. Below we discuss if reducing the total energy
consumption of communication systems using quantum measure-
ment is fundamentally possible. We also list major technological
obstacles that prevent such an energy reduction.

In order to tame the power needs of the telecom links, all compo-
nents of a communication system should be taken into account.
Power requirements of some electronic components scale proportion-
ally to optical power used and those components dominate the power
budget of fast (>10 GB/s) optical communication systems.100

Quantum measurement reduces the energy of light required to trans-
mit one bit; thus, the power required for those electronic components
excluding the receiver reduces proportionally. Displacement quantum
receivers require significantly stronger LO than that for the ideal classi-
cal homodyne or heterodyne measurement. On the other hand, con-
sider a long-distance fiber link where the optical loss is significant. The
energy savings at the transmitter scale proportionally to loss and even-
tually overcome the additional optical power needs at the receiver.
Certain single-photon detectors, such as SPADs, are less energy-
efficient than classical detectors, yet another issue with quantum
receivers. A new generation of single-photon detectors particularly
superconductor nanowire detectors can use significantly lower cur-
rents to reliably register photons than amplified classical detectors,

ultimately dissipating approximately 5 aJ per photon detection.101,102

Therefore, on balance, long-distance communication systems can fun-
damentally be more energy efficient than classical systems. Significant
energy savings could also come from a conceptual rethinking of the
network topology. Currently, a series of optical amplification stations
mitigate light loss in fiber. Amplification stations are used because
they require less wall power to operate than a transceiver. If trans-
ceivers power requirements could be dropped below that of an ampli-
fier, the topology of the network would significantly change. Given
that a large fraction of the optical noise in current networks is due to
amplification and optical power-dependent effects (Raman cross-talk,
cross- and self- phase modulation, etc.), the quantum-measurement-
based communication system can be made nearly noiseless by reduc-
ing optical power. Such a nearly noiseless communication system can
naturally support the coexistence of classical and quantum communi-
cation channels (such as quantum key distribution and entanglement
distribution channels). This optimistic outlook faces serious techno-
logical challenges. Currently, even the best single-photon detectors at
telecom can count fewer than 100 	 106 photons per second. In addi-
tion, adaptive algorithms employed in receivers may require extra
time to execute. Thus, per-channel data rates may be slower than that
of conventional receivers. Wavelength division multiplexing can allevi-
ate this issue, but it will require denser channel “packing” than is cur-
rently used. Such packing would require better frequency stabilization
of telecom light sources, multiplexers/demultiplexers with better reso-
lution, etc. Some single-photon detectors, such as superconducting
nanowire detectors, require a low ambient temperature to operate.
Because these detectors generate very little heat when operating, hun-
dreds of such detectors could share the same cooling module.102 Also,
the efficiency of the state-of-the-art cooling systems is far from theo-
retically optimal, leaving a lot of room for improvement. Lastly,
although most of the proof of principle experiments currently use one
laser source for both signal and local oscillator, local laser sources with
long coherence times and the phase control should be used to unveil
the potential energy saving. To this end, new phase correction proto-
cols are being actively considered. One such protocol78 demonstrates
phase estimation based on the output of quantum state discrimination,
potentially requiring no exchange of phase information between the
transmitter and receiver.

In conclusion, in light of the exponential growth of the Internet
traffic and capacity crunch,1,2 the research of applied practical quan-
tum measurement for communications is of urgent importance. We
are cautiously optimistic that quantum technology will be used—either
on a global scale or at least for some niche applications in a near
future. We hope that our review helped the curious reader to get
acquainted with this exciting field.
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FIG. 15. Potential improvement in resource use of quantum-enabled communication
over classical technology. The classical resource use is comprised of shot-noise
limits (at Pe ¼ 10�5) for M-ary PSK (values above R=W ¼ 1) and M-ary PPM
(values below R=W ¼ 1), red curve. The potential, but optimistic, quantum bound
is Gordon capacity, black curve.
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