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ABSTRACT: Cloud-hosted environments offer known benefits
when computational needs outstrip affordable local workstations,
enabling high-performance computation without a physical cluster.
What has been less apparent, especially to novice users, is the
transformative potential for cloud-hosted environments to bridge
the digital divide that exists between poorly funded and well-
resourced laboratories, and to empower modern research groups
with remote personnel and trainees. Using cloud-based proteomic
bioinformatic pipelines is not predicated on analyzing thousands of
files, but instead can be used to improve accessibility during
remote work, extreme weather, or working with under-resourced
remote trainees. The general benefits of cloud-hosted environ-
ments also allow for scalability and encourage reproducibility. Since one possible hurdle to adoption is awareness, this paper is
written with the nonexpert in mind. The benefits and possibilities of using a cloud-hosted environment are emphasized by describing
how to setup an example workflow to analyze a previously published label-free data-dependent acquisition mass spectrometry data
set of mammalian urine. Cost and time of analysis are compared using different computational tiers, and important practical
considerations are described. Overall, cloud-hosted environments offer the potential to solve large computational problems, but
more importantly can enable and accelerate research in smaller research groups with inadequate infrastructure and suboptimal local
computational resources.
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■ INTRODUCTION

Remote hosted computational environments, often referred to
as the cloud, allow for potentially easier setup, faster processing,
and lower cost to build and manage than local workstations.
Recently, with increased remote work due to pandemic driven
lockdowns, globalization of scientific research (e.g., globally
distributed research consortia), and the growth of public data
repositories and reanalysis of public data sets, using cloud-
hosted environments as the computational backbone of research
offers increasing advantages. Specific to proteomics there are
opportunities for increased use of cloud-hosted environments,
leading to improved accessibility, scalability, and reproducibility.
Currently, there is a plethora of cloud-based options and
different benefits, with real and perceived bottlenecks to
implementation. These benefits are not limited to utilizing
cloud-hosted environments for high-throughput large-scale
proteomics data, but can also prove essential for remote work,
remote training, or disaster resilience. To help the reader, a
glossary of terms is provided.

■ CLOUD COMPUTING

Depending on the available resources of both investigators and
their institution/company, there exists a spectrum of local
computational capacity. These resources may be available via
remote access, but many cases exist when this is not possible
often due to institutional security concerns. By utilizing cloud-
hosted environments (Figure 1), computational work may
continue even when local resources are inaccessible (due to
lockdowns, extreme weather, inconsistent power, etc.) and
provide access to remote colleagues and trainees (including
those in other countries) that otherwise could be using
inadequate local resources. Furthermore, using cloud-hosted
environments allows users to quickly scale resources to
accomplish larger tasks at appropriate times, instead of
purchasing or upgrading local hardware that runs far below its

Special Issue: Software Tools and Resources 2021

Received: November 16, 2020
Published: January 29, 2021

Technical Notepubs.acs.org/jpr

Not subject to U.S. Copyright. Published
2021 by American Chemical Society

2076
https://dx.doi.org/10.1021/acs.jproteome.0c00920

J. Proteome Res. 2021, 20, 2076−2082

D
ow

nl
oa

de
d 

vi
a 

N
A

T
L

 I
N

ST
 O

F 
ST

A
N

D
A

R
D

S 
&

 T
E

C
H

N
O

L
O

G
Y

 o
n 

A
pr

il 
2,

 2
02

1 
at

 1
4:

20
:5

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+A.+Neely"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jproteome.0c00920&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00920?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00920?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00920?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00920?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
https://pubs.acs.org/toc/jprobs/20/4?ref=pdf
pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00920?ref=pdf
https://pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org/jpr?ref=pdf


potential most of the time and requires periodic system
hardware and software maintenance. Depending on the cloud
environment, adding computational resources can be as simple
as “building” a new virtual cluster with the click of a button, using
an instance with more cores or memory with an existing image,
utilizing workflows that automatically scale across a virtual
cluster depending on workload, or executing a function in a
serverless framework. In theory, this means that every researcher
can have the same computational capacity, regardless of
location.
Cloud-based computing can trace a line from the time-sharing

of the 1950s1 through the packet radio van of 19772 into the
modern “cloud” available from public and commercial providers.
In many regions across the globe, there are federally subsidized
resources available to researchers through varied application
processes. For instance, Jetstream (a distributed collaboration of
the University of Indiana, University of Texas at Austin, and
University of Arizona) on the National Science Foundation-
funded Extreme Science and Engineering Discovery Environ-
ment (XSEDE) allows users to start instances using a catalog of
Linux-based images, many already preconfigured for common
research applications, and create single multi-CPU and high
memory instances or multiple-node virtual clusters, and access
these by web-based console or remote desktop. Setting up
seemingly complicated virtual clusters can be accomplished with
ease when a tutorial exists, exemplified by MAKER on
Jetstream,3 Cactus on Amazon Web Services (AWS),4 and
Bioconductor on AWS.5 The ease of using a service like
Jetstream for a cloud novice cannot be understated. Similar to
XSEDE, other publicly subsidized resources including ACI-REF
(Advanced Cyberinfrastructure Research and Education Facil-
itators) Network, ELIXIR (the European life-sciences Infra-
structure for biological Information), NCI (National Computa-
tional Infrastructure) Australia, and PRACE (Partnership for
Advanced Computing in Europe) make free hosted computa-
tion time available to researchers. Although the free or low-cost
nature of these services is preferred, commercial resources are
also available and include AWS, Microsoft Azure, and Google
Cloud, which also have free tiers or trials available. These
services, both public and commercial, are the backbone of most
large computational efforts from particle physics to population
genomics.

■ PROTEOMICS IN THE CLOUD

Mass spectrometry-based proteomics is a broad term
encompassing many applications6 used across different bio-
logical systems,7 and accordingly has an abundance of software
tools available.8 Protein inference is made possible by peptide
identification following database searching of tandem mass
spectrometry data.9 Computation in many modern protein
identification algorithms is performed in RAM with high-speed
CPUs and varied I/O requirements. These computational
requirements mean that high-performance local machines are
perceived as better suited to database searching, as opposed to
cloud-hosted environments, though there have been notable
cost benefit analyses over the past decade showing the benefits of
proteomics analysis in cloud-hosted environments.10,11 In
contrast, nucleic acid sequencing computation has historically
relied on massive parallelization on modestly appointed
motherboards, and therefore was very amenable to cloud
applications. Despite this historic precedent, with decreasing
cloud computing costs there is an ever increasing list of cloud-
based proteomic solutions including Bolt12 and ionbot.13 More
importantly, there are software platforms specifically tuned to
run proteomic data processing and analysis in the cloud, such as
Galaxy-P.14,15 Even without being specifically tailored to a cloud
environment, any software can be used in a cloud-hosted
environment, though there may be concerns for licensing.
Software that can run in a Linux environment is best for services
like Jetstream or containers like Singularity, while software that
can run in Windows may be used for services like AWS or
containers like Docker. Examples of free or open-source
proteomic software that can run in a Linux environment include
Crux,16 EncyclopeDIA,17 ProteoWizard,18 SearchGUI,19 The
OpenMS Proteomics Pipeline (referred to as OpenMS or
TOPP),20,21 Trans-Proteomic Pipeline (TPP),22,23 X!Tan-
dem,24 and FragPipe.25,26 Other tools that run in Windows
but can also be run via command line in a Linux environment
includeMaxQuant,27,28 MetaMorpheus,29 and Spritz.30 In order
to truly take advantage of the scalability of cloud environments,
software that can work in a clustered environment is preferred.
This relies on distributing tasks across nodes, often integrated
with workflow engines including the Konstanz Information
Miner (KNIME),31 Makeflow,32 Nextflow,33 Snakemake,34

Swift,35 and Toil,36 which frequently provide tutorials specific

Figure 1.Generalized concept of proteomics in a cloud-hosted environment. The environment is accessed via any client with Internet access (1). Data
for analysis can be retrieved directly to the environment from private data sources (5) and public data repositories (6). Computational resources can be
assigned to the environment prior to analysis (2), at which point programs (4) or workflows (3) may be used to complete the analysis.
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to scaling in cloud-hosted environments. A recent review of
proteomic software, containerization, and workflow engines
highlights the benefits related to scalability.37 Regardless, most
proteomic applications have not made the transition to being
capable of fully utilizing modern clustering options, though
database searching has been shown to benefit greatly from
parallelization.38 Notable noncommercial exceptions include
MS-PyCloud,39 SEQUEST-PVM,40 UltraQuant, which uses
Snakemake to run a containerized MaxQuant,41 and OpenMS-
based tools, which can be run on a cluster using KNIME42 and
Nextflow.43,44 Beyond workflows and virtual clusters, in the
coming years computational steps will be offloaded onto
serverless frameworks (i.e., function as a service; FaaS),45

blurring the line between local and cloud-hosted environments.
Given the potential of cloud-hosted environments, it seems that
we are on the cusp of seeing a shift to cloud-based solutions in
proteomics.

■ TESTING PERFORMANCE IN THE CLOUD
It has been said that the future is already here, it is just not evenly
distributed yet (paraphrased from William Gibson), which is
especially true of cloud computing. Research in numerous fields
including materials science, astronomy, and genomics rely
heavily on cloud-based computing, while it is largely absent in
proteomic research. Aside from knowledge of these resources
and tools, a common hindrance is understanding the ease of use
and estimating time and cost.10,11 With respect to time, it is
difficult to directly compare cloud-hosted environments to local-
hardware given the diversity and dynamic nature of computa-
tional time and costs, and the fact that processing time is affected
by everything from algorithm, general code, and settings
optimization, to the processing pipeline’s physical architecture
used for the cloud-hosted environment. For this reason, tools
like the TPP Amazon simulator11 or an exploratory analysis such
as presented here can help estimate the scale of time and costs.
Since different search algorithms will use resources differently
and react differently to search settings (e.g., mass tolerance,
database size, variable modifications, and quantification), users
should benchmark their preferred tools with their typical data
sets. Broader efforts such as the ongoing proteomic data analysis
pipeline comparison led by the ELIXR Proteomics Commun-
ity46 will help clarify pipeline performance. For the discussion

herein, a previously published study47 with a follow-up analysis48

of label-free data-dependent acquisition shotgun proteomic data
from mammalian urine was chosen. For this example, the data
was analyzed using AWS Elastic Compute Cloud (EC2)
instances with an arbitrarily chosen OpenMS-based Comet-
Percolator workflow constructed with KNIME (Figure 2). The
goal was to demonstrate time and costs with different
computational resources on a ubiquitous commercial platform
using a typical label-free data-dependent shotgun proteomic
experiment.

■ EXAMPLE CLOUD SET-UP
Although AWS EC2 was chosen for this example, most services
offer similar remote desktop access. This means that even for the
cloud novice, making productive use of instances does not
require command line work, but instead can look just like the
computer they are already using by access via remote clients
such as Windows Remote Desktop (RDP), Virtual Network
Computing (VNC), Team Viewer or other available remote
desktop options. For this example, a community Amazon
Machine Image (AMI: Windows_Server-2019-English-Full-
Base-2020.09.09) was used as a c5d.xlarge instance to set up
the software and run analysis. The c5d instance types provide
very fast local (to the instance’s motherboard) scratch disk space
that is erased upon shut down of the on-demand instance. The
19 raw files from PRIDE PXD00901949 of approximately 1.3
gigabytes each were copied to the instance using FTP. It should
be noted that transfer speeds tend to be faster between a public
cloud-hosted environment and a public data repository since
they tend to be network proximal; for example, there seem to be
fewer hops and bigger pipes between MassIVE and XSEDE.
Additional tools such as Globus or Aspera can make high
transfer speed through proximity for data that are not in public
repositories. For the analysis, CSL16 was omitted and the other
18 files were used. Once the raw files were loaded onto the
instance, MSConvert 3.0.20280 was installed to derive MS2
mzML files. The remove_duplicates.py script50 was used to
collapse duplicate fasta entries prior to workflow execution. The
KNIME 4.2.2 scientific workflow platform was installed with
OpenMS 2.6.0 nodes and a simple workflow was built using
KNIME OpenMS tutorials as a guide.42,51 Broadly, a mix of
OpenMS native nodes including DecoyDatabase, PeptideIn-

Figure 2. KNIME workflow using OpenMS adapters. OpenMS 2.6 KNIME nodes for a simple workflow loading spectra and protein sequence files,
performing a search, and consolidating peptide and protein IDs found in the input spectra files. A simple approach to benchmarking was achieved
through a standard KNIME node and file write timestamps.
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dexer, PSMFeatureExtractor, and IDMerger, and adapter nodes
for the Comet search engine52 and Percolator53 were used, and
the specific KNIME workflow with required files and settings for
replication locally or in cloud-hosted environments is publicly
available,54 as well as the final AMI (ami-0dead6b478bd16281
on us-east-2 region). These different software were chosen to
demonstrate the capabilities and possibilities of this approach.
Following completion of the workflow with the c5d.xlarge
instance type, outputs, and benchmark times were saved from
the scratch drive to a long-term EBS (Elastic Block Store)
volume and the instance was shut down. Two further iterations
were completed in the samemanner by rebooting and rerunning
the same workflow using the c5d.2xlarge and c5d.12xlarge
instance types. Only the threads parameter was changed and the
resulting benchmarking information was saved after confirming
the idXML outputs. For all three instance types tested, the
number of parallel threads allowed to be used by the
CometAdapter was set at one less than the number of cores
available to the instance type. A representative completed search
result was retained in long-term storage, and the results could be
transferred elsewhere by various manners including browser-
based file upload from the desktop environment before shutting
down.

■ TIME AND COST
In the case of a commercial provider, it is recommended to use a
modest computational tier with low hourly cost for learning the
system and setting up the workflow. It is also important to note
that on-demand pricing of services like EC2 requires instances to
be manually shut down when not in use. For high-end instances,
if not shut down, the monthly bill can easily exceed many
thousand dollars. For this specific example, three c5d instance
types were compared and analysis time and cost were
determined using the same data, workflow, and search
parameters (Table 1). As stated before, the time and cost aspect

of this comparison is extremely dynamic and will change
depending on computational speeds of instances (which are
periodically upgraded), software (and their updates), and search
settings (e.g., number of variable modifications). This is also
important to note when comparing to running on local resources
or in other cloud-hosted environments. For comparison, there
are benchmarks available for this specific data set analyzed on
different hardware with different software, which is being
updated here.55 Specific to the results described herein,
unsurprisingly the search was quicker with the higher perform-
ance tiers, but this came at a monetary cost, similar to other
studies.10,11 Though this trade-off is important to note, in

situations where accessibility is the main concern, it demon-
strates that a modestly powered instance can perform well at a
low cost, especially since “set it and forget it” is a common
approach when analyzing proteomic results locally. Still, any
costs may prove prohibitive when resources are limited, though
with federally subsidized resources like Jetstream, this is
surmountable. Budgeting dynamic costs versus one-time
hardware purchases is also difficult, but it is expected that this
cost model will continue to be easier to cover as institutional
views shift to preferring cloud-hosted environments versus local
infrastructure. There are additional concerns beyond this
discussion concerning privacy and security concerns of using
cloud-hosted environments for certain types of data, and this
may also affect costs. Whether speed or cost is a priority is up to
each user and situation, but given the elastic nature of resource
allocation, this decision can be made dynamically, further
emphasizing the power of working in a cloud-hosted environ-
ment.

■ RESULT HANDLING AND REPRODUCIBILITY

Best practices for using a cloud-hosted environment will vary
across fields, but in proteomic data analysis the primary
computational bottlenecks are file conversion, processing
spectra, peptide identification, protein inference, and relative
quantification if applicable. Downstream steps such as differ-
ential analysis or enrichment analysis can be performed with
fewer computational resources, meaning these steps are likely
more appropriate on local systems. Following completion of the
search steps, results files can be retrieved to local workstations.
Typically, result files can be explored using the same software
used to generate the data or software-specific viewers (e.g.,
PeptideShaker for SearchGUI output). Alternatively, flat file
exports (e.g., csv) may be shared between users. It is also
possible to stay completely within the cloud by using one of a
growing number of cloud-based services for statistical analysis
and result sharing (e.g., SimpliFi56).
One of the most important benefits of using cloud-hosted

environments is the opportunities for reproducibility.57 Images
can be shared privately or publicly between users, allowing
others to reproduce the same operating system and software
versions and, if desired, settings as the original analysis. Similar
to previous cloud-based proteomic analyses that supplied AMIs
to encourage reproducibility,10,11 the AMI used in this example
has been shared publicly on EC2 (ami-0dead6b478bd16281 on
us-east-2 region), and is ready for use following modification of
KNIME memory allocation and CometAdapter threads to
match the instance’s resources. An imagemay also be cloned and
modified if a user wants to update or change software, thus
allowing for comparison of results all while preserving the
original environment. Another way to achieve reproducibility is
by using containers. For example, software from GitHub can be
packaged into a Singularity container58 that can be linked with
other workflow steps using Nextflow. In this way, more complex
sets of software with different dependencies can work together in
a pipeline that can be used in a cloud-hosted environment. The
reason this is preferred is that software is exactly preserved and
shared via GitHub and the container can also be made available
via repositories such as Singularity Container Registry,59

DockerHub60 or BioContainers,61 while optimized applica-
tion-specific Nextflow workflows are available via nf-core.62

Together, this degree of portability and reproducibility enables
replication by anyone on any system.

Table 1. Time and Cost of Running the Same 18 Injection
Search-Only Workflow on Three Instance Typesa

c5d.large c5d.2xlarge c5d.12xlarge

processors available 2 8 48
processors used 1 7 47
run rate ($/h) 0.22 0.84 5.08
search time (hours:minutes) 3:54 1:15 0:31
total workflow time (hours:minutes) 4:01 1:21 0:37
cost ($) 0.88 1.13 3.13
aEach raw file is approximately 1.3 gigabytes and contains roughly
65 000 MS2 scans. The comparison of the large versus the 12× large
c5 instance found that the higher performance is about three times
more expensive but six times faster.
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■ REAL AND PERCEIVED LIMITATIONS
With the concurrent advancements in proteomic data
repositories and software along with pricing and performance
of cloud-hosted environments, there are fewer limitations than
ever to take proteomics to the cloud. In addition to the points
addressed in previous sections, data transfer speed and storage
costs present different limitations. Transferring data from
repositories or from a private resource to cloud-hosted
environments can be very fast depending on where the actual
servers are located. Although it can be tedious and unintuitive, it
is worthwhile to choose services and host locations with data
sources in mind. In the future, there will be improved integration
of data repositories with cloud-hosted resources (e.g., Google’s
Cloud Life Sciences public data sets), which will increase
usability and reduce data storage costs. Currently, the cost of
storage used with a computational instance will vary from free to
minimal depending on the service, but it is a fraction of the
computational cost if managed properly. Finally, maybe the
most crucial limitation to adoption of many of the resources and
tools is the perceived difficulty. The proteomics community
could address this by creating more prebuilt proteomic-centric
images (similar to those available for the TPP11), while software
and pipeline developers could provide detailed vignettes using
real data on different cloud-hosted environments.

■ FUTURE OUTLOOK
When researchers look to the cloud it is often to accomplish
tasks that are not possible with local workstations. Although
proteomics researchers are adept at using local resources to
accomplish large computational tasks, there is far-reaching
potential in developing and utilizing cloud-hosted environments
for proteomic needs. The resilience of using remote resources
should not be understated in the current climate, and though not
foolproof, they are lockdown proof. More importantly, as the
global flow of people has slowed, utilizing the cloud to avoid lost
timewith trainees in other countries or tomaintain research with
distant colleagues is invaluable and can be facilitated using
shared cloud resources. Moreover, these benefits are applicable
beyond mass spectrometry-based proteomics since other similar
mass spectrometry-based domains can benefit from cloud-
hosted environments, including imaging, lipidomics, and
metabolomics.37 As it becomes more common to work in
cloud-hosted environments we will see benefits that will
continue to drive the field forward.
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■ GLOSSARY

Cloud computing: Computing performed with remote
resources. Arguably, the first “cloud” drawn as an information
system visual was for the first transatlantic demonstration of
connectivity among ARPANET, SATNET, and PRNET in
1977.2

Container: An encapsulated environment typically contain-
ing only one program and associated dependencies, not to be
confused with a virtual appliance, which is more akin to an
image. A container can be run with a set of input and output
arguments via a command or in a workflow.
Image: A complete snapshot (“template”) of a computational
environment including operating system.
Instance: The instantiation of an instance type (putting a
machine image onto an instance type and “spinning it up” in a
server farm somewhere).
Instance type: A set of attributes describing number of
processor cores, memory, and I/O resources having a cost per
unit time.
Pipeline: A generic term referring to linked steps of analysis.
Workflow engines generate workflows, often referred to as
pipelines.
Running instance: An instance that is accumulating cost
attributable to its instance type and associated data storage
and I/O.
Stopped (or not running) instance: An instance accumulat-
ing cost attributable only to the storage of it is image.
Time-sharing (computing term): A concept dating from the
1950s relating to a computer system handling a number of
problems (for different users) concurrently.1

Workflow engines: Typically a visual tool to link steps that
are wrappers or containers of other programs. May be used in
different environments including clustering if capable.
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Schulz-Trieglaff, O.; Sturm, M. TOPP–the OpenMS proteomics
pipeline. Bioinformatics 2007, 23 (2), e191−7.
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