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Quantum transport simulations often use explicit, yet finite, electronic reservoirs. These should
converge to the correct continuum limit, albeit with a trade–off between discretization and com-
putational cost. Here, we study this interplay for extended reservoir simulations, where relaxation
maintains a bias or temperature drop across the system. Our analysis begins in the non–interacting
limit, where we parameterize different discretizations to compare them on an even footing. For
many–body systems, we develop a method to estimate the relaxation that best approximates the
continuum by controlling virtual transitions in Kramers’ turnover for the current. While some dis-
cretizations are more efficient for calculating currents, there is little benefit with regard to the overall
state of the system. Any gains become marginal for many–body, tensor network simulations, where
the relative performance of discretizations varies when sweeping other numerical controls. These
results indicate that typical reservoir discretizations have little impact on numerical costs for certain
computational tools. The choice of a relaxation parameter is nonetheless crucial, and the method
we develop provides a reliable estimate of the optimal relaxation for finite reservoirs.

I. INTRODUCTION

The design of new electronic materials and nanoelec-
tronic devices requires scalable, high–fidelity approaches
to simulate transport. Modern methods can accurately
describe the atomic and band structure of many materi-
als, often using density functional theory [1–3]. More-
over, dedicated many–body techniques, such as quan-
tum Monte Carlo or tensor networks, can include con-
tributions from explicit correlations [4–11]. The com-
putational cost of these tools is nonetheless appreciable
for large systems or long simulation timescales. These
limitations are particularly onerous for tensor networks,
where an explicit treatment of the reservoirs will intro-
duce many degrees of freedom [7–15].

A typical transport simulation is shown in Fig. 1, where
a system (device) of interest is coupled to explicit reser-
voirs. Transport is maintained by a bias. In a closed
system, this could be introduced by a density imbalance
or a time–dependent, inhomogeneous on–site potential
in the reservoirs. Open systems can go a step further
by including implicit reservoirs, which drive transport by
relaxing explicit reservoir modes to biased Fermi distri-
butions [16–22]. The extended reservoir approach exem-
plifies such an arrangement, and it has become popular in
many guises [16–39], including those that accommodate
many–body transport [8–11].

These computational methods employ reservoirs that
are discretized. While a given discretization should con-
verge to the spectral function of a continuum reservoir,
its construction is otherwise arbitrary. This flexibility
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FIG. 1. Quantum transport with extended reservoirs.
(a) An arbitrary impurity (S) is flanked by explicit left (L)
and right (R) reservoirs. Each reservoir contains NW modes
of frequencies ωk that couple to a designated system site i
with constant strength vki. Implicit reservoirs relax L and R
to biased Fermi distributions f̃k at a rate γk for the kth mode.
We consider models for S that include (b) one, (c) two, and
(d) three site systems with onsite frequencies ωi. These sites
couple to each other with strength vij and to the reservoirs
at terminal sites (i.e., a single system mode couples to each
reservoir).

has resulted in a variety of approaches, including the
placement of modes evenly across the bandwidth (linear
discretization), assigning them according to the canoni-
cal transform of finite tight–binding lattices, distributing
them evenly inside the bias window and logarithmically
outside (linear–logarithmic) [10, 14, 40, 41], and using an
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influence–based approach that yields linear mode spacing
across the bias window and an inverse spacing outside
(linear–inverse) [42]. Moreover, the deviation of finite
representations from the continuum can be corrected for
perturbatively [43, 44]. Related techniques aim to min-
imize the number of reservoir modes by introducing in-
termode transitions during relaxation. While these addi-
tional fitting parameters provide a higher fidelity spectral
density [12, 13, 15, 45], they also add numerous long–
range couplings from the intermode relaxations. This
ultimately limits the feasiable size of reservoirs. Ideally,
one desires high accuracy simulations at low computa-
tional cost (and favorable scaling). It is unclear what ap-
proach performs best, as a quantitative comparison does
not exist.

Here, we address one very important facet of this com-
parison: How does the choice of reservoir discretiza-
tion influence the computational cost needed to converge
transport properties to a given accuracy? We also exam-
ine how the system–reservoir coupling and implicit relax-
ation impact the convergence of steady–state transport.
We study non–interacting systems and their many–body
counterparts, but only consider extended reservoirs with
intramode Markovian relaxation [8, 16–22]. For non–
interacting systems, we optimize the relaxation (e.g., dis-
cretization and coupling to implicit modes) to get the
highest accuracy in steady–state currents. This proce-
dure has limited generality since it requires knowledge of
the exact, continuum reservoir solution. For the many–
body case, we demonstrate how Kramers’ turnover can
be used to estimate an optimal relaxation rate.

We find that certain discretizations can increase effi-
ciency for non–interacting calculations, where efficiency
is measured by the number of reservoir modes required
to reproduce the current up to a fixed accuracy. This
advantage is weak for other system observables (e.g.,
the impurity’s density) and its correlation matrix, par-
ticularly when working at small to moderate reservoir
sizes. While tensor network calculations exhibit mod-
erate, discretization–dependent deviations in the impu-
rity correlation matrix, we find that the overall effi-
ciency is tied to other control parameters — most im-
portantly, the Schmidt cutoff. This behavior reflects
the natural structure of our tensor network, which uses
an energy/momentum basis for the explicit reservoirs
and orders them globally according to their energies to
minimize the bipartite entanglement in the numerical
ansatz. While certain discretizations reduce the number
of modes, they do so for energy scales that are weakly
correlated. These scales contribute little to the compu-
tational cost. Thus, the choice of discretization has little
practical impact on efficiency.

II. BACKGROUND AND SETUP

We follow a conventional arrangement [46, 47] that
consists of non–interacting left (L) and right (R) reser-

voirs, and a bias that drives transport through a im-
purity system (S), see Fig. 1. The associated Hamilto-
nian has the form H = HS + HL + HR + HI , where
HS is the (potentially many–body) Hamiltonian for S,

HL(R) =
∑
k∈L(R) ~ωkc

†
kck are the reservoir Hamiltoni-

ans, and HI =
∑
k∈LR

∑
i∈S ~ (vkic

†
kci + vikc

†
i ck) is the

interaction Hamiltonian that couples S to LR. The c†m
(cm) are fermionic creation (annihilation) operators for
a state m ∈ LSR. All indices implicitly include multi-
ple relevant labels (such as mode number, reservoir, and
spin). The frequency for the kth reservoir mode is de-
noted by ωk, while vki = v∗ik is used for the coupling
between i ∈ S and k ∈ LR. For two–site impurity S, the
Hamiltonian is

HS = ~vS(c†1c2 + c†2c1) + ~Un1n2, (1)

where vS is the internal coupling in S, ni = c†i ci is
the particle number operator for site i, and U is the
many–body density–density interaction strength [8]. The
description of other models can be found in the Sup-
plemental Information (SI). This model corresponds to
a (time–independent) photoconductive molecular device
where spin can be neglected [48].

We calculate the properties of non–interacting systems,
including the impurity’s correlation matrix, using non–
equilibrium Green’s functions [16–18, 20, 21], and employ
tensor networks for the many–body case [8, 22]. When
considering the latter, we solve a Lindblad master equa-
tion

ρ̇ = − ı
~

[H, ρ] +
∑
k∈LR

γk+

(
c†kρck −

1

2

{
ckc
†
k, ρ
})

+
∑
k∈LR

γk−

(
ckρc

†
k −

1

2

{
c†kck, ρ

})
, (2)

for the LSR system with Markovian relaxation in LR
(here {·, ·} is the anticommutator). The first term gives
evolution of the many–body density matrix ρ under our
Hamiltonian H, while the second and third terms give
open dynamics through injection and depletion of the
modes k at rates γk+ and γk−, respectively. To ensure
that the reservoirs relax to the fully isolated LR state,
we set these rates to γk+ ≡ γkf

α(ωk) and γk− ≡ γk[1 −
fα(ωk)], where fα(ωk) is the Fermi–Dirac distribution in
the α ∈ {L,R} reservoir.

We quantify accuracy of the steady–state current I for
non–interacting models using a relative error |I− I◦|/I◦,
where the reference current I◦ is the Landauer limit for
continuum reservoirs [49] (we work with the current it-
self for many–body cases, as I◦ is not known exactly).
Furthermore, we quantify combined error in occupancy
and correlations using the correlation matrix of S, i.e.

CS = Cij = 〈c†i cj〉, with i, j ∈ S. The quantity CS
completely characterizes all equal time correlations for
non–interacting systems, and includes the information
on densities (occupancy) ni = Cii. A natural metric for
convergence of the system state is the normalized trace
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distance, ||CS − C◦S ||∗ = ||CS − C◦S ||/ 2 [trCS + trC◦S ],

defined in terms of the trace norm ||M || = tr
√
M†M and

the exact correlation matrix C◦S for continuum reservoirs.

Discretizations are compared by maintaining a com-
mon set of modes within the bias window B, while dis-
tributing modes outside the bias window W \ B accord-
ing to a designated arrangement (here W denotes both
the reservoir band and its bandwidth). We formalize
this by associating an abstract influence scale χ(ω) with
each discretization, which we use to specify mode place-
ment within the reservoir bandwidth. In this manner,
the functional form of χ(ω) completely specifies a given
discretization. Mode placement begins by defining in-
tegrated weights for modes inside XB =

∫
B χ(ω) dω and

outside XW\B =
∫
W\B χ(ω) dω the bias window. We also

introduce an integrated influence per mode x (a target
weight per mode) that specifies NB = dXB/xe modes in
the bias window and NW\B = dXW\B/xe outside the bias
window. The region B is then divided into NB bins ∆k

with boundaries satisfying
∫

∆k
χ(ω) dω = XB/NB and

∪k∈B ∆k = B (similarly for the complement of B). We
choose values of x so that there is always an even number
of symmetrically distributed modes in both B andW\B.
This accommodation ensures that there is never a mode
at the Fermi level. Reservoir modes are then placed at
the midpoint ωk of each bin.

We compare three reservoir discretizations: (i) a lin-
ear case, with modes spaced evenly throughout the band-
width; (ii) a linear–logarithmic discretization (motivated
by energy scale separation under the numerical renormal-
ization group [50]); and (iii) a linear–inverse arrangement
following the influence approach of Ref. [42]. The influ-
ence scales for these discretizations are

χlin(ω) = 1 (3)

χlog(ω) = θ
(µ

2
− |ω|

)
+

µ

2|ω|θ
(
|ω| − µ

2

)
(4)

χinv(ω) = θ
(µ

2
− |ω|

)
+
( µ

2ω

)2

θ
(
|ω| − µ

2

)
, (5)

which are nonzero within the reservoir bandwidth and
zero outside, as depicted in Fig. 2a. Here, θ(x) is the
Heaviside step function. All three measures give evenly
spaced modes within B yet differ inW\B, acknowledging
that bias window modes contribute significantly to the
current. Our terminology reflects a measure of influence
that is given by the integral of χ.

Using these, we compare simulations with the reservoir
relaxation rate γk a fixed multiple of the mean level spac-
ing in the bias window 〈∆k〉B (this is equal to µ/NB for
all cases herein) to the relaxation defined by the mode–
dependent level spacing ∆k. We also compare system–
reservoir couplings that are defined by the midpoint be-
tween two discrete reservoir modes to couplings defined
by the integrated coupling over an interval of width ∆k

about a mode ωk (which is placed at the center of the
bin) [51].

Lin Lo
g Inv

a b

Inv

Lin

Lo
g

FIG. 2. Influence scales and discretizations. (a) influ-
ence scales that induce linear (χlin(ω); orange, solid), linear–
logarithmic (χlog(ω); green, dashed), and linear–inverse
(χinv(ω); black, dash-dot) discretizations. (b) The resulting
minimal mode distributions ωk, calculated at the same inte-
grated influence per mode x. Thin dotted lines in both plots
demarcate the bias window edge. Data are at a bias µ = ω0/2
and reservoir bandwidth W = 4ω0, where ω0 is the real–
space hopping in the reservoir. Modes near the band edges of
the linear–logarithmic discretization are a consequence of the
chosen influence scale, bias, and bandwidth — they are not
necessarily present for denser distributions.

III. KRAMERS’ TURNOVER

The composite LSR system exhibits distinct trans-
port regimes in the presence of relaxation [16] which
mimic Kramers’ turnover for chemical reaction rates, see
Fig. 3a [52] (a similar result holds for thermal trans-
port [53–57]). When relaxation is weak, transport is
determined by the rate at which particles and holes are
replenished in the extended reservoirs. In this regime the
current will rise proportionally with the mode–dependent
relaxation rate γk, analogous to chemical systems where
environmental friction controls the equilibration of re-
acting species. When the relaxation is strong, phase
coherence is suppressed and the current decays as γ−1

k .
Here, transport emulates reactions where strong friction
redirects partially formed products back to the reactants
(i.e., recrossings). The intermediate region contains a
plateau–like region where the continuum limit current is
reproduced, analogous to reactions that are controlled by
the transition state rate. As we will emphasize later, the
system state does not necessarily reflect the exact model
on the whole plateau. The width of the plateau—and
convergence to this limit—is dominated by the number
and distribution of explicit reservoir modes. The natu-
ral transport rate only predominates in the intermediate
region [16].

The formation of the plateau as NW →∞ and γk → 0
(in that order) is sufficient to determine the continuum
current, though not all points on the plateau will corre-
spond to a fully converged system state (e.g., local elec-
tronic densities). Moreover, this regime is not guaranteed
to be unambiguous. There may be additional features
due to the underlying Hamiltonian [8, 18] or the pres-
ence of specific anomalies which exist on either side of the
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Strong sys coupling
Weak sys coupling

Weak res coupling (shift)
Strong res coupling (noshift)

Scan turnover alpha

Scan turnover trace distance

a b

c d

On-resonant Off-resonant

FIG. 3. Kramers’ turnover and accuracy. Steady–state
transport for a two–site model and discrete reservoirs with
mode–independent reservoir relaxation γk = γ. Data are
presented for on–resonant reservoir modes (solid lines) and
those made off–resonant via a frequency shift 〈∆k〉B/2 be-
tween isoenergetic modes (dotted lines). (a) Current turnover
I(γ) at strong system–reservoir coupling v0 = ω0/2 and for
two system–site couplings, vS = (1 +

√
2)ω0/4 (black) and

vS = (2 +
√

3)ω0/4 (green), showing different plateau to-
pographies at different intrasite coupling scales. (b) Cur-
rent turnover at small system–reservoir coupling, v0 = ω0/10,
reveal anomalies on either side of an interstitial Landauer
regime (vS = (1 +

√
2)ω0/4) [22]. (c) Relative current error

with respect to the continuum limit I◦ for the model in (b).
(d) Convergence of the system state via the normalized trace
distance between finite CS and continuum C◦S correlation ma-
trices, illustrating that no conditions are uniformly optimal
for all observables (the current impacts this convergence in
limited manner; see the SI). The continuum (Landauer) limit
is denoted by the dotted horizontal line. All calculations use
NW = 128 explicit reservoir modes, spaced evenly between
±W/2 and integrated couplings (see Ref. [49]). We apply
a symmetric bias µ = ω0/2 between reservoirs both held at
temperature T = ω0/40.

plateau (Fig. 3a,b) [22]. For large relaxation, a Marko-
vian anomaly is associated with an unphysical broad-
ening of reservoir modes and the lack of a well–defined
Fermi level [16]. This is a direct consequence of Marko-
vian relaxation, which fills a reservoir mode according
to its bare frequency ωk rather than accounting for its
broadening. Such behavior can lead to zero bias cur-
rents in some cases [16]. These concerns are irrelevant
for non–Markovian relaxation, where reservoir modes are
properly occupied according their broadened density of
states.

For weak relaxation, a virtual anomaly occurs due to
virtual transitions through the system, specifically be-
tween on–resonant L and R modes. This leads to ex-
cess transport, as previously seen in Refs. [8, 38] and

explained in Ref. [22]. The virtual anomaly can be sup-
pressed by shifting the relative energy of L and R by
half the level spacing, ∆k/2, disrupting the resonant
structure. While anomalous regimes can be difficult
to distinguish at strong system–reservoir coupling (e.g.,
v0 ≈ ω0/2), they become prominent when the coupling
is weak (e.g., v0 ≈ ω0/10), see Fig. 3b.

Various factors, including the finite distribution of
reservoir modes and the specific Hamiltonian, can in-
fluence the turnover architecture (e.g., weak and strong
coupling can have a different optimal relaxation as a func-
tion of Nr [22]). Thus, we need a method that compares
discretizations while not placing any given discretization
at a disadvantage a priori. We obtain this for non–
interacting systems by choosing a relaxation that most
accurately reflects the steady–state current of continuum
reservoirs. For many–body cases, we estimate the opti-
mal relaxation as described later in the manuscript.

IV. OPTIMAL RELAXATION

We can obtain the exact, continuum–limit current of
non–interacting systems using established methods. For
finite reservoirs, there is an optimal relaxation located
in the intermediate, physical turnover regime that best
estimates this current (see Fig. 3; we exclude inciden-
tal crossovers at weak and strong relaxation). To pro-
ceed, we must quantify this optimum for reservoirs with
an inhomogeneous mode spacing. We begin by intro-
ducing a relaxation γk = αη(ωk), where α > 0 is a
real scaling constant and η(ωk) is a function of the level
spacing within the extended reservoirs. Using this con-
vention, we examine η(ωk) as either (i) a constant in-
dependent of k (in some cases, we set this constant to
the average bias window level spacing) or (ii) to the k–
dependent level spacing. We then seek an α? in the inter-
mediate region that minimizes the relative current error
α? = arg min(|I[γk(α)]− I◦|/I◦) with respect to the con-
tinuum limit I◦. This α? completely defines the optimal
relaxation for both equally and unequally spaced cases
(with a single γ? = γk for equally spaced modes). In some
cases we could also derive an optimal relaxation using
the normalized trace distance between correlation matri-
ces (see Fig. 3d) though we do not take this approach.
Convergence of this quantity would ensure convergence
of all other (time–local) system observables [58], includ-
ing the current if there is a boundary that divides the
impurity into left and right parts. This relaxation would
not necessarily coincide with γ? as defined above [59].

When the exact, continuum limit current I◦ is un-
known, as is the case for most interacting systems, there
is no obvious way to optimize I[γk(α)]. This point is crit-
ical in practical calculations. Optimization can also fail
when the plateau is featureless (e.g., at strong–coupling
in Fig. 3a), when many plateau features are present [18],
or if convergence occurs from below the Landauer limit
(see the SI). We can, however, estimate an optimal regime
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FIG. 4. Optimal relaxation and estimators. (a) Elonga-
tion of the region between anomalies as the number of reser-
voir modes NW is increased. Turnover profiles are shown
with (dotted line) and without (solid line) a frequency shift
of 〈∆k〉B/2 between isoenergetic modes in L and R, defined
by the mean level spacing in the bias window. (b) De-
termination of the best estimator for the Landauer regime
I[γ?] = I[γk(α?)] (black diamond). Estimators are based on
either γ` (blue circle)—the linear extrapolation of the small–γ
regime of the shifted model (off–resonant; blue, dashed) into
the unshifted (on–resonant) profile—or γs (tan circle)—the
intersection between shifted and unshifted profiles. Scaling
of relaxation associated with γ` and γs estimators: (c) Con-
vergence of the relative current error |I − I◦|/I◦ and (d) the
trace norm ||CS −C◦S ||∗ with respect to NW . All scaling pro-
files correspond to γ? = γk(α?) (black, square), the linear
extrapolation estimator (blue, triangle), and the intersection
of shifted/unshifted turnover profiles (tan, circle). All panels
reflect a linear reservoir discretization for the weak coupling
model of Fig. 3b.

by applying a relative shift of 〈∆k〉B/2 between isoener-
getic states in L and R reservoirs. That is, we shift
the modes in L and R by plus/minus a quarter of the
level spacing. As noted earlier, this eliminates the virtual
anomaly associated with resonant transitions [22]. The
shifted profile should intersect the unshifted profile at a
point γs near the physical regime γ? [60]. A second esti-
mate is given by extrapolating the linear, small–γ regime
of the shifted case and finding the point γ` where this in-
tersects the unshifted profile. This γ` will typically lie
prior to γ?.

Figure 4a shows these two estimators. Since the re-
gion between anomalies expands into an almost flat pro-
file with an increasing number of reservoir sites, we ex-
pect these estimators to bound γ? on either side for large
NW . This is indeed the case here. Moreover, the inter-
section estimator γs tightly reproduces the optimal point
I[γk(α?)] starting at moderate NW . In contrast, the ex-
trapolation estimator γ` moves away from the optimum
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FIG. 5. Coupling and relaxation methods. Convergence
of the steady–state current I[γk(α?)] using integrated cou-
plings and mode–dependent relaxation. Error in I is shown
for (a) integrated couplings with relaxation defined by the
mean bias window spacing γk = α?〈∆k〉B (black, solid) or by
the level spacing γk = α?∆k (orange, dashed), where α? is
the optimal prefactor. (b) Convergence of the system state,
as reflected by the normalized trace distance ||CS −C◦S ||∗ be-
tween correlation matrices, for the same methods as (a). The
grey dotted line in (a) and (b) has γk = α?∆k, but with
couplings from the midpoint of the discretization intervals.
The model is otherwise that of Fig. 3b with a linear–inverse
discretization.

as NW increases (see Fig. 4c and the SI). This is a conse-
quence of the plateau topography. That is, the estimator
γ` scales with 1/NW and rides the edge of the virtual
anomaly as NW → ∞. However, there is a duality be-
tween virtual and Markovian anomalies, which can make
the optimal relaxation scale as 1/

√
NW in the moderate

NW regime [22]. Thus, in this moderate regime, the γ`
departs from the optimal relaxation and its error satu-
rates.

The intersection estimator γs is also robust when ex-
amining the overall state of the system (Fig. 4e). How-
ever, the extrapolation estimator γ` actually outperforms
both the optimal and intersection estimators for this case
(see Fig. 4e and the SI). We consider this incidental as it
is due to the fact that smaller relaxation often results in a
more accurate system correlation matrix, see Fig. 3d [61].
Despite this, the intersection estimator is better behaved.
Thus, to find the Landauer limit, we only need to calcu-
late turnover profiles with on–resonant and off–resonant
reservoir modes and find their intersection γs — an ap-
proach that is borne out for other models and in the
strong coupling limit (see the SI). While Hamiltonian pa-
rameters can change the plateau architecture, the inter-
section between turnover profiles will invariably remain
a useful estimator of the physical (continuum) regime.

V. RESULTS

Having established a framework to compare different
discretizations, we now examine both non–interacting
and many–body transport. As a first step, we compare
different system–reservoir coupling methods and different
choices of η(ωk) for the non–interacting case.
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FIG. 6. Error and discretization. Convergence of reser-
voir discretizations when increasing the number NW of ex-
plicit reservoir sites. This behavior is quantified through (a)
relative error in the steady–state current I[γk(α?)]; (b) the
mean relative error of the on–site densities ni within S; and
(c) the normalized trace distance between correlation matrix
CS for S and its infinite reservoir counterpart C◦S . Discretiza-
tions correspond to the standard linear (orange, dotted line),
the linear–logarithmic (green, dashed line), and the linear–
inverse (black, solid line) arrangements. Results are also pro-
vided for modified linear–logarithmic and linear–inverse dis-
cretizations that incorporate the 1D spectral density into the
influence scale (this pinches off the influence at the band edge)
(green and black crosses). Profiles from (a) fit to A/Np

W with
[A, p] = [11 ± 1,−0.65 ± 0.02], [8.5 ± 0.2,−0.72 ± 0.01], and
[4.4± 0.2,−0.64± 0.18] for the main discretizations. All data
are from the non–interacting, two–site Hamiltonian of Fig. 3b
at weak–coupling (v0 = ω0/10), with integrated system–
reservoir couplings, and relaxations γ = α〈∆k〉B determined
by the mean mode spacing within the bias window B.

A. Non-interacting systems

The behavior of a reservoir discretization may be influ-
enced by the system–reservoir coupling and the assign-
ment of relaxation rates γk to each reservoir mode. We
present this behavior for the linear–inverse discretization
in Fig. 5. The more significant factor is the choice of
relaxation, which nontrivially moderates convergence to
the continuum limit with increasing NW . The error in I
is smaller when the relaxation is a multiple of the mean

a

c

b

FIG. 7. Error and discretization in the bias window.
Convergence of the reservoir discretizations from Fig. 6, now
parameterized in terms of the number of states NB in the
bias window. Scaling is quantified through (a) relative error
in the steady–state current I[γk(α?)]; (b) the mean relative
error of the on–site densities ni within S; and (c) the nor-
malized trace distance between correlation matrix CS for S
and its infinite reservoir counterpart C◦S . Colors and sym-
bols follow from Fig. 6. Profiles from (a) fit to A/Np

B with
[A, p] = [4.1± 0.1,−0.76± 0.02], [4.0± 0.2,−0.76± 0.02], and
[3.8 ± 0.3,−0.74 ± 0.03] for the main discretizations, while
restricting to NB > 4 to mitigate finite size effects. These
results indicate that, for the current, it is the convergence of
the spectral density in the bias window that matters. If ar-
bitrary observables are desired, however, the spectral density
at higher frequencies is relevant.

level spacing in the bias window, γk = α〈∆k〉B (which, in
the cases here, is equal to µ/NB). This situation is more
variable for convergence of CS , where we see better per-
formance at small NW if the relaxation is a multiple of
the level spacing γk = α∆k (Fig. 5a,b). Nonetheless, this
behavior crosses over to favor the mean–spacing approach
at modest NW . We note that convergence is minimally
impacted by the coupling method —t he integrated and
mean methods do not differ appreciably at any NW scale.
From here on, we employ mode–independent relaxation
γk = γ and the integrated coupling constants.

Figure 6 shows the performance of different discretiza-
tions when converging a transport calculation. We find



7

the full linear discretization χlin(ω) to behave more
poorly in terms of either the relative error in current
I or in the system–site density ni (Fig. 6a,b). Notably,
the error in the steady–state current is uniformly higher
than the other discretizations for all values of NW . Us-
ing the same criteria, the linear–inverse influence measure
χinv(ω) outperforms the linear–logarithmic discretization
χlog(ω). This implies a lower degree of error at fewer
reservoir sites, providing better convergence in a regime
with decreased computational cost. The performance
gain when moving between these methods is nonetheless
smaller than the gain when moving to them from the full
linear discretization.

Any advantage is less clear–cut for the overall state of
the system, where all three discretizations exhibit compa-
rable performance at large NW . Nonetheless, the linear–
inverse discretization performs more poorly when NW is
small — a region where convergence can oscillate due to
the placement of states outside the bias window edge.
Similar conclusions may be drawn for models containing
one or three sites (Fig. 1b,d; see SI). These methods are
roughly equivalent for the number of states used in typ-
ical many–body transport simulations (i.e., NW in the
100’s).

A parallel analysis can be done in terms of the number
of reservoir modes NB within the bias window (Fig. 7).
This region is particularly important when representing
the current, and the accuracy of a representation cor-
relates with NB. Working from this perspective, we
find uniform scaling across discretizations with respect
to the current error. This observation simply reflects
that transport is dominated by bias window modes and
one needs to accurately represent the spectral density in
that window. The occupations also scale uniformly at
large NB, albeit with discrepancies when this parame-
ter is small. Correlation matrices have more sporadic
behavior, though the linear–inverse arrangement repro-
duces the system state most poorly at a given NB. This
reflects a lower fidelity spectral density outside of the bias
window. The performance gap for the linear–inverse is
nonetheless offset by the overall reduction in NW at a
given integrated influence per mode, as seen in Fig. 6c.

B. Many-body impurities

To study complex, interacting models we require so-
phisticated numerical methods, such as tensor networks.
We adopt a typical approach for open quantum systems,
where the density matrix is vectorized and approximated
as a one–dimensional tensor network, also called a ma-
trix product state (MPS) [63, 64]. While the MPS has a
one dimensional structure, this does not require that the
Hamiltonian have only local interactions. The MPS may
also tolerate long–range couplings, particularly when a
judicious state ordering is imposed for the reservoirs (as
in our ordering for the mixed basis in Fig. 8). These
give a small, fixed MPO dimension. This construction is
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FIG. 8. Matrix product state ansatz. The reservoirs (or-
ange/green) are represented in the energy basis (similar to the
so–called star geometry [62]), where we mix the modes from
the two reservoirs along the one–dimensional MPS lattice,
ordering them globally according to their energies and keep-
ing the impurity sites (brown) in the middle. This order re-
flects the natural scattering structure of the current–carrying
states [7, 8], greatly reducing the bipartite entanglement in
the lattice and the MPS bond dimension needed to achieve a
given level of precision. The color–coding follows Fig. 1.

represented diagrammatically in Fig. 8, where we have
ordered the combined LR modes (green/orange) accord-
ing to their energies, reflecting the resonant nature of
the current-carrying states [7, 8] (the color–coding fol-
lows Fig. 1). The system S (grey) is positioned in the
middle at ω = 0. Following this notation, dj is the local
Hilbert space dimension at site j and Dj is the MPS bond
dimension to the right of site j. The latter determines
the size Dj−1 × d2

j × Dj of each tensor Aj constituting
the MPS. The computational cost will depend on both
NW and the structure of the correlations, which set the
minimal Dj needed to reach a given level of accuracy.
Our choice of reservoir mode ordering has been shown to
minimize this bond dimension by mitigating the spread
of entanglement [7, 8]. We obtain steady–states by using
the time–dependent variational principle [65] to evolve an
MPS under the Lindblad superoperator, as described in
Ref. [8] (see Ref. [9] for a similar approach with a differ-
ent state ordering). Since the accuracy of this approach
depends on the bond dimension, we can adjust the latter
using a cutoff εmin. That is, we only retain the singular
values that are above this cutoff for each bipartition of
the lattice in Fig. 8.

We quantify convergence of our MPS calculations via
the steady–state current, which is expected to have con-
sistently larger error than other measures. Our analy-
sis will focus on the weakly–coupled, two–site impurity
model from Fig. 6 in both non–interacting and interact-
ing limits. To assess the consistency of our methods, we
first confirm that the current and correlation matrix from
the non–interacting MPS can reproduce the exact solu-
tion for all three discretizations (Fig. 9). This confidence
allows us to focus on a particular level of discretization–
related error, indicated by the red band in Fig. 9a. By
fixing the number NW of sites in each reservoir to a value
within this band, we can determine how the singular
value threshold εmin controls convergence of the current
and the system state at a given accuracy. This accommo-
dation also fixes the number of bias window sites NB to
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FIG. 9. Error and discretization for non–interacting
MPS. Convergence of reservoir discretizations for the non–
interacting two–site system S of Fig. 6, obtained using MPS
with a fixed Schmidt cutoff εmin = 10−6. Scaling is quanti-
fied with respect to the number of modes in each reservoir NW
and the number of modes within the bias window NB. Data
correspond to (a, b) relative error in the steady–state current
IMPS = I[γ?] versus the Landauer limit I◦ and (c, d) the
normalized trace distance between correlation matrix CMPS

S
for S and its infinite reservoir counterpart C◦S . Discretiza-
tions follow linear (orange), the linear–logarithmic (green),
and the linear–inverse (black) arrangements. The red band
in (a, b) is at relative error scale (0.20), for which NW is 256,
100, and 60, respectively and NB is 32. The current IMPS

is an average from LS, S1S2, and SR interfaces. Uncertain-
ties σ = ±

√
σ2
1 + σ2

2 reflect fluctuations σ1 of the current
over a temporal window ∆t = 50ω−1

0 , as well as the mis-
match σ2

2 =
∑

j |Ij − I
MPS|2/3 of currents at the interfaces

j ∈ {LS1, S1S2, S2R}. The designated CMPS
S is representa-

tive of the final simulation time step. Parameters are identical
to Fig. 6, but with a system–reservoir coupling v0 = ω0/8.

be the same for each discretization—an important point
that we will address later. To proceed, we measure er-
ror with respect to the exact (i.e., with no truncation),
finite–size current IR associated with a given NW and
discretization of a non–interacting system. We find a
numerical solution that slowly approaches the exact cur-
rent as εmin is decreased, however, this convergence is not
uniform (Fig. 10a). The choice of discretization has lit-
tle impact on convergence (and its numerical cost) even
though the number of MPS sites is quite different.

This behavior can be understood by using the quan-
tity F =

∑
j D

3
j to estimate relative cost of MPS sim-

ulations for a given εmin. This metric encapsulates the
scaling of computational time with bond dimension, as
other parameters contributing to the cost (e.g., bond di-
mensions for the Lindbladian MPO, local Hilbert space
dimensions) are the same for all discretizations. Our dis-
cretizations differ in the total number of reservoir sites

b

db

c

a

FIG. 10. Error and Schmidt cutoff for non–interacting
MPS. (a) The relative error in the steady–state current IMPS

compared to reference values IR (these reference currents cor-
respond to exact, finite NW simulations performed using val-
ues of NW that give data points demarcated by the red band
in Fig. 9(a,b) thus reflecting the εmin → 0 limit). IR is at
a fixed error level with respect to the continuum current I◦.
The convergence is plotted versus the inverse Schmidt cutoff
1/εmin. (b) The normalized trace distance between the corre-
lation matrix CMPS

S for S and the reference CR
S versus 1/εmin.

(c) The relative, approximate numerical cost, versus 1/εmin,
of a single MPS update F =

∑
j D

3
j , defined in terms of the

MPS bond dimensions Dj at all bipartitions. Discretizations
correspond to linear (orange), the linear–logarithmic (green),
and the linear–inverse (black) arrangements.

NW that are needed to reproduce a given level of ac-
curacy. However, an analysis based on F suggests that
the degree of correlation is determined by the number of
states within the bias window NB, which is the same for
each discretization at a given accuracy level (Fig. 10).
Thus, we cannot specify a discretization that will yield
a clear increase in computational performance for MPS
simulations. The only benefit to having a smaller NW is
having fewer modes outside the bias window. This has
little computational impact, as our ordering places these
modes near the ends of the MPS, where they require a
small Dj and contribute weakly to F .

A related analysis can be performed for interacting sys-
tems, which we demonstrate by introducing a density–
density interaction of strength U = −ω0/2 between the
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FIG. 11. Discretization effects for interacting MPS.
Convergence of reservoir discretizations obtained with MPS
approach for two–site impurity of Fig. 9 with an additional
many–body interaction U = −ω0/2. The behavior is com-
puted versus the number of modes in each reservoir NW and
the number of modes within each bias window NB. Data cor-
respond to (a, b) the steady–state current IMPS = I[γs] and
(c, d) the total particle number in S, NMPS

S = NS [γs], where
γs estimates the bast relaxation as described in the text.
Discretizations follow linear (orange), the linear–logarithmic
(green), and the linear–inverse (black) arrangements. The red
band in (a, b) gives the reference current, IR, which, by virtue
of being approximately the same value of the current, is at
the same relative error scale. The number of modes, NW , is
128, 62, and 30, and NB is 16, 20, and 16 for the three dis-
cretizations, respectively. Model parameters and uncertainty
calculations in the current are identical to Fig. 9. Uncertain-
ties for NMPS

S are given by σ = ±σ1, reflecting fluctuations
of the measurement over a temporal window ∆t = 50ω−1

0 .
These density uncertainties are smaller than the data point
size in panels (c, d). The simulations have Schmidt cutoff
εmin = 10−6.

impurity sites. Since the exact solution is unknown,
we estimate an optimal relaxation γs by comparing γ–
dependent turnover profiles with on/off–resonant modes
(Fig. 4), as validated earlier in the manuscript. This
procedure is executed for each discretization and set of
reservoir modes, yielding the scaling behavior presented
in Fig. 11a. We again find a current that converges
monotonically with increasing NW for all discretization
schemes, though the convergence of occupations is more
variable.

We can also assess how simulation performance scales
with εmin when interactions are present. To avoid fi-
nite size effects, we limit this and subsequent analysis to
points with NB > 4. Following our analysis for the non–
interacting MPS, we define a fixed level of discretization–
related error. We do so by choosing discretizations which
give approximately the same current IR (the red band in
Fig. 11a) and thus have a similar error with respect to the

b

a

c

FIG. 12. Error and Schmidt cutoff for interacting
MPS. (a) The relative error in the steady–state current IMPS

compared to the reference value IR (demarcated by the red
band in Fig. 11(a,b), which is at a approximately the same
value). The convergence is plotted versus the inverse Schmidt
cutoff 1/εmin. The reference current IR is at the tightest cut-
off of εmin = 10−6. (b) The normalized trace distance between
correlation matrix CMPS

S for S and the reference CR
S versus

1/εmin. (c) The relative numerical cost, versus 1/εmin, of a
single MPS update F =

∑
j D

3
j , defined in terms of the MPS

bond dimensions Dj at all bipartitions. Discretizations corre-
spond to linear (orange), the linear–logarithmic (green), and
the linear–inverse (black) arrangements.

continuum limit. The latter is estimated to be far from
distinguished points (as discussed below) but it can’t
be derived exactly. In addition we quantify truncation–
related error measured with respect to the finite–size cur-
rents IR obtained for εmin = 10−6 at given discretiza-
tion. We find that convergence of the current and cor-
relation matrix CS is comparable across discretizations,
as is the numerical cost quantified through F (Fig. 12c).
Once again, performance is dictated by how accurately
we represent the bias window (and thus by NB), emu-
lating the non–interacting MPS. The particular reservoir
discretization, at comparable NB, still has little impact
when converging the current in tensor network simula-
tions at practical reservoir sizes. In fact, the Schmidt
cutoff εmin and underlying system Hamiltonian are the
primary determinants of convergence and its numerical
cost.
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The exact, continuum–limit current is unknown for
many interesting systems. Nonetheless, our extended
reservoir simulations should approach this regime as the
number of explicit reservoir modes is increased. This is
particularly true for the current, where we have observed
monotonic convergence with NW in both non–interacting
and interacting MPS simulations. Below we propose a fit-
ting procedure to estimate the continuum limit current
using a simple scaling law. We test our procedure with
non–interacting calculations and apply it to the interact-
ing model.

The importance of bias window modes is captured by
parameterizing the scaling law in terms of NB, I =
I∞ + A/Np

B, where I∞, A, and p are fit parameters.
I∞ provides an estimate for the continuum limit cur-
rent I◦. We test the fitting procedure by applying it to
MPS data for non–interacting model in Fig. 9b. The
fit for each discretization separately gives scaling expo-
nents of p = [0.48 ± 0.05, 0.54 ± 0.04, 0.67 ± 0.02] and
estimates for the continuum limit current 2πI∞/ω0 =
[0.0023±0.0003, 0.0026±0.0002, 0.0030±0.0001] for the
linear, linear–logarithmic, and linear–inverse discretiza-
tions, respectively. These exhibit reasonable agreement
with their exact counterpart 2πI◦/ω0 = 0.0031, albeit
with some discrepancies. The high performance of the
linear–inverse arrangement is expected since bias window
modes predominate for this discretization.

Given that the currents from different discretizations
overlap when plotted versus 1/NB, we can aggregate the
data sets to increase the total number of data points and
also change the fit range to be NB > 4. A collective
fit to this aggregated data gives us a scaling exponent
p = 0.72±0.02 and an estimate for the continuum current
of 2πI∞/ω0 = 0.0030±0.0001. This is in good agreement
with I◦. The MPS scaling exponents p can be compared
to the exact finite NW profiles in Fig. 6, which includes
many more points than accessible with MPS. We assume
that they give an exact estimate I∞ = I◦. The fit for
each discretization separately gives scaling exponents of
p = [0.77 ± 0.01, 0.77 ± 0.01, 0.74 ± 0.01] for the linear,
linear–logarithmic and linear–inverse discretizations, re-
spectively and p = 0.76 ± 0.01 for collective fit. This
suggests that the collective fit for the aggregated MPS
data is yielding better results.

The same strategy can be applied to the interact-
ing system of Fig. 11. Since we have a very limited
data set, we aggregate the data from different discretiza-
tions. The collective fit gives p = 1.50 ± 0.63 and
2πI∞/ω0 = 0.093 ± 0.002. The large standard error in
the exponent may be due to a few factors: non–scaling
finite–size effects, other contributions to numerical un-
certainty, or that modes outside the bias window have
a greater influence when interactions are present. The
outer modes influence densities and in turn affect the
current, which may be increasing their importance.

VI. CONCLUSIONS

Our observations suggest a general approach when
using discrete reservoirs in quantum transport simula-
tions. In a technical sense, we find that the linear–
inverse discretization is the most efficient arrangement
for non–interacting cases, particularly when combined
with a relaxation method based on the level spacing in
the bias window. Nonetheless, the performance between
discretizations is not dramatic, and is effectively negli-
gible for the NW used in practical simulations. This is
especially true for interacting MPS–based simulations,
where correlations ultimately regulate the computational
cost. Despite this behavior, one should remain mindful
of cases where the choice of discretization can become
more important—notably for small NW or at a small
bias where a large portion of the bandwidth becomes less
relevant (at least for the current). The importance of
this limit been recognized by other authors, particularly
in the context of numerical renormalization group cal-
culations [66–70]. Furthermore, there may remain some
interplay between the performance of a given discretiza-
tion toward a particular observable and the distribution
of states within S. This consideration could be relevant
in computationally taxing cases, including certain many–
body limits, where NW is strongly limited by practical
constraints.

In addition, we developed a method for estimating the
optimal relaxation γ? that approximates the continuum
result I(γ?) ≈ I◦. This is valuable when the contin-
uum limit I◦ is unknown. While the turnover region will
vary between model Hamiltonians and coupling regimes,
we need only “switch on” a level shift between reservoirs
and use the intersection γs between shifted and unshifted
turnover profiles (or γ` from linear extrapolation) to es-
timate the best relaxation. This provides a practical tool
for performing extended reservoir simulations with ma-
trix product states and tensor networks.

VII. SUPPLEMENTARY MATERIAL

The supplementary material contains turnover and
scaling analyses for additional multi–site systems.
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Rev. B 90, 235131 (2014).

[63] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205
(2004).
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CONVERGENCE OF THE LINEAR EXTRAPOLATION ESTIMATOR
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FIG. S1. Turnover and the linear extrapolation estimator. (a) Turnover in the steady–state current

I for the non–interacting, dual–site model of Fig. 4 in the primary manuscript. The on–resonant (solid)

and off–resonant (dotted) profiles are shown, along with a linear extrapolation of the off–resonant turnover

γ (dashed) into the on–resonant turnover. These profiles intersect at the linear extrapolation estimator γ`.

The relaxation γ` settles into the low–to–moderate γ shoulder of the virtual anomaly at large NW , leading to

the saturation seen in Fig. 4. (b) Turnover of the normalized trace distance between the system correlation

matrix CS and its continuum reservoir counterpart C◦S . The estimator γ` is again shown as a circle, which

rides a growing minimum in trace distance as NW is increased. This implies a scaling profile that does

not saturate, as captured by Fig. 4c. The dotted line depicts this trace distance for the real part of CS ,

indicating that current–carrying correlations contribute weakly to the error near γ` or γ?. Parameters in

(a) and (b) are identical to Fig. 4 in the primary manuscript.
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CURRENT ESTIMATORS IN DIVERSE COUPLING AND RELAXATION REGIMES

In this extended discussion, we consider several multi–site models for the system S and quantify

their transport characteristics in an extended reservoir framework. In particular, we demonstrate

that our intersection (γs) and linear extrapolation (γ`) estimators for the optimal transport regime

γ? remain applicable under a broad range of parameters. This underscores their general utility for

locating the physical transport regime, particularly when the turnover profiles have an ambiguous

plateau architecture.

Non–Interacting Single–Site Impurity at Weak System–Reservoir Coupling

The single–site impurity corresponds to a canonical quantum impurity problem (Fig. 1b). Here,

a single mode in S is proportionally coupled to left (L) and right (R) extended reservoirs with

strength v. The system Hamiltonian takes a simple form in terms of ω1, the on–site system

frequency:

HS = ~ω1 c
†
1c1. (S1)

In this case, the γ–dependent turnover mimics the dual–site model from the primary manuscript

(Fig. S2). Using the linear discretization as a reference, we find an increasingly wide physical

‘domain of confidence’ between virtual and Markovian anomalies as the number NW of explicit

reservoir modes is increased. The virtual anomaly also vanishes when modes in L and R are taken

out of resonance, making our γ` and γs estimators applicable. Taking advantage of this, we find

that the intersection estimator γs is a good predictor for the optimal transport regime γ? (Fig. S3).

We can also quantify convergence of the current at γ? using other discretizations. In doing so, we

find that the discretizations perform similarly for the one–site (Fig. S4) and two–site impurities

(Fig. S5) in the weak–coupling limit. This agreement does not extend to on–site densities, where

there are discrepancies at small NW (the linear–logarithmic discretization performs poorly in this

regime). Nonetheless, the discretizations remain comparable when NW is large (greater than

NW ≈ 128 sites).
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FIG. S2. Kramers’ turnover for the single–site impurity. (a) Turnover in the steady–state current

I of the non–interacting single–site impurity model from Eq. (S1). The extended reservoirs have a linear

discretization and the relaxation γk = γ is mode independent. Scaling is assessed with respect to the number

NW of explicit modes in each reservoir for both on–resonant (solid) and off–resonant (dashed; with a level

shift) configurations. (b) Inset of the data from (a) near the physical regime. The Landauer limit I◦ for

continuum reservoirs is shown by the solid, black horizontal line. Calculations are presented with an on–site

frequency ω1 = ω0 and weak system–reservoir coupling v = ω0/10, with a bias of µ = ω0/2 between L and

R and a temperature kBT = ω0/40 for reservoir Fermi distributions. The coupling between system and

reservoir sites is provided by the integrated approach (as described in the primary text).

���� ���� ����

����

����

����

����

����

���
�
�

�
�
��
���

��
�

���� ���� ����

����

����

����

����

����

���
�
�

�
�
��
���

��
�

a b

c d

⇢̂ (20)

⇢̂ ⇡ (21)

Dj�1 (22)

Dj (23)

d2
j (24)

! (25)

Aj (26)

�` (27)

�s (28)

�? (29)

NW (30)

2

⇢̂ (20)

⇢̂ ⇡ (21)

Dj�1 (22)

Dj (23)

d2
j (24)

! (25)

Aj (26)

�` (27)

�s (28)

�? (29)

NW (30)

2

FIG. S3. Relaxation estimators for the single–site impurity. Convergence of (a) the current error

|I − I◦|/I◦ and (b) error in the on–site density |n− n◦|/n◦ with respect to NW for our single–site impurity.

Scaling profiles correspond to γk = γ? (black square), the linear extrapolation estimator γ` (blue triangle),

and the intersection of shifted/unshifted turnover profiles γs (tan circle). Model parameters are identical

to Fig. S2, with a linear discretization and integrated system–reservoir couplings. Error is measured with

respect to currents I◦ and on–site densities n◦i in the continuum reservoir limit.
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FIG. S4. Error and discretization for the single–site impurity. Convergence of reservoir discretiza-

tions for our single–site impurity (Fig. S2) when increasing the number NW of explicit reservoir sites. This

behavior is quantified through (a) relative error in the steady–state current I and (b) relative error in the

on–site density ni within S. These observables are evaluated at γ?, as defined in the primary manuscript,

and the reference current I◦ is the Landauer limit for continuum reservoirs. Discretizations correspond to

the standard linear (orange dotted line), the linear–logarithmic (green dashed line), and the linear–inverse

(black solid line) arrangements. Results are also provided for additional linear–logarithmic and linear–inverse

discretizations which are the transform of a 1D spatial lattice to the energy basis (green and black crosses).

Model parameters are identical to those of Fig. S2.
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Estimators for the Non–interacting Two–Site Impurity at Weak System–Reservoir Coupling

We previously quantified the convergence of reservoir discretizations for a non–interacting two–

site impurity at weak–coupling (Fig. 6 of the primary manuscript). This analysis may be repeated

by using γs to estimate the optimal relaxation γ?. In doing so, we find that the distinction between

discretizations becomes even less apparent. Nonetheless, γs gives a robust estimate irrespective of

context (Fig. S5), supporting its use with many–body impurities.
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FIG. S5. Validation of the intersection estimator across discretizations. The intersection estimator

γs is used to approximate the optimal relaxation regime γ? in an analysis parallel to Fig. 6 of the primary

manuscript. Convergence is shown for our weakly–coupled (v = ω0/10) two–site impurity (Fig. S2) when

increasing the number NW of explicit reservoir sites. This behavior is quantified through (a) relative error

in the steady–state current I; (b) relative error in the on–site density ni within S; and (c) trace distance of

the system correlation matrix CS and its continuum reservoir counterpart C◦S . Discretizations correspond to

the standard linear (orange dotted line), the linear–logarithmic (green dashed line), and the linear–inverse

(black solid line) arrangements. Results are also provided for additional linear–logarithmic and linear–inverse

discretizations which are the transform of a 1D spatial lattice to the energy basis (green and black crosses).

Parameters, methodology, and labels are otherwise identical to those of Fig. 6.
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Non–interacting two–site impurity at Strong System–Reservoir Coupling

Our primary analysis was performed for a non–interacting, two–site impurity at weak system–

reservoir coupling (v = ω0/10). It is instructive to analyze the same system when the coupling is

strong (v = ω0/2) and the turnover becomes markedly different (Fig. S6). At weak coupling, our

single– and double–site systems have a well–defined valley between current turnover anomalies.

The bottom of this feature approaches the continuum–limit I◦ at the optimal relaxation γ? and

broadens as NW is increased. The behavior changes at strong coupling, where there is now a flat

turnover plateau that intersects I◦ so that I(γ?) = I◦ exactly. This regime is difficult to identify

by visual inspection due to a lack of prominent plateau features (Fig. S6b), though it does lie at

the small–γ side due to a weak virtual anomaly.

Despite the change in plateau architecture, the intersection estimator γs remains robust and

applicable (Fig. S7). In fact, this estimator affords currents I(γs) that steadily approach the

continuum reservoir limit I◦ as NW is increased. The linear extrapolation estimator γ` consistently

underestimates the current, intersecting the turnover near the mid–plateau upturn (as we move

toward smaller γ) that is associated with the virtual anomaly. Interestingly, this estimator performs

poorly for the on–site densities ni, with an error that has already saturated at small NW . Similar

behavior is seen when using CS as a measure for the full state of the system. Linear extrapolation

from the off–resonant profile now intersects the on–resonant plateau at a point away from the

strong downturn regime captured in Fig. S1b.

The estimator γs also delivers robust performance for different discretizations at strong coupling,

as shown in Fig. S8. That is, all mode arrangements accurately assess key physical quantities.

Although currents are formally exact for the optimal estimator γ? in this strongly–coupled limit,

we can nonetheless compare to mean errors of the densities and correlation matrices calculated at

γ?. In doing so, we observe favorable performance in γs when estimating γ? in terms of both error

magnitude and the suitability of different discretizations (Fig. S9).
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FIG. S6. Kramers’ turnover for the strongly–coupled two–site impurity. (a) Turnover in the

steady–state current I of the non–interacting two–site impurity model from Fig 3b of the primary manuscript,

but now at strong S −LR coupling. The extended reservoirs have a linear discretization and the relaxation

γk = γ is mode independent. Scaling is assessed with respect to the number NW of explicit modes in each

reservoir for both on–resonant (solid) and off–resonant (dashed; with a level shift) configurations. (b) Inset

of the data from (a) near the physical regime. The Landauer limit I◦ for continuum reservoirs is shown by

the solid, black horizontal line. Calculations are presented with on–site frequencies ωS,j = 0 · ω0, a coupling

of v12 = (1 +
√

2)ω0/4 between system sites, and strong S-LR coupling v = ω0/2. A bias of µ = ω0/2

is applied between L and R and a temperature kBT = ω0/40 is used for reservoir Fermi distributions.

Couplings are provided by the integrated approach.
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FIG. S7. Relaxation estimators for the strongly coupled two–site impurity. Convergence of (a) the

current error |I−I◦|/I◦; (b) the mean error of the on–site density 〈|ni−n◦i |/n◦i 〉; and (c) the normalized trace

distance between the system correlation matrix CS and its continuum reservoir counterpart C◦S . Scaling is

provided with respect to the number of explicit modes in each reservoir NW and estimated using γk = γ?

(black square), the linear extrapolation estimator γ` (blue triangle), and the intersection of shifted/unshifted

turnover profiles γs (tan circle). Model parameters are identical to Fig. S6, with a linear discretization and

integrated system–reservoir couplings. Error is measured with respect to currents I◦ and on–site densities

n◦i in the Landauer limit of continuum reservoirs. The I(γ?) scaling is not provided for (a) since the plateau

intersects the Landauer limit and thus the result will be (incidentally) exact.
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FIG. S8. Estimator validation across discretizations for the strongly coupled two–site impurity.

The intersection estimator γs is used to approximate the optimal relaxation regime γ? in an analysis that

parallels Fig. 6 of the primary manuscript. Convergence is shown for our strongly–coupled (v = ω0/2)

two–site impurity (Fig. S2) when increasing the number NW of explicit reservoir sites. This behavior

is quantified through (a) relative error in the steady–state current I; (b) relative error in the mean on–

site density ni within S; and (c) the trace between the system correlation matrix CS and its continuum

reservoir counterpart C◦S . The reference values (I◦, n◦i and C◦S) are taken in the continuum reservoir limit.

Discretizations correspond to the standard linear (orange, dotted line), the linear–logarithmic (green, dashed

line), and the linear–inverse (black solid line) arrangements. Results are also provided for additional linear–

logarithmic and linear–inverse discretizations which are the transform of a 1D spatial lattice to the energy

basis (green and black crosses). Parameters, methodology, and labels are otherwise identical to those of

Fig. 6.
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FIG. S9. Error and discretization for the strongly coupled two–site impurity. Convergence of

reservoir discretizations for our two–site impurity (Fig. S2) when increasing the number NW of explicit

reservoir sites at strong S-LR coupling (v = ω0/2). These observables are evaluated at γ?, as defined in the

primary manuscript. This behavior is quantified through (a) relative error in the on–site density ni within S
and (b) the normalized trace distance between the system correlation matrix CS and its continuum reservoir

counterpart C◦S . The reference values (n◦i and C◦S) are taken in the continuum reservoir limit. Discretizations

correspond to the standard linear (orange, dotted line), the linear–logarithmic (green, dashed line), and the

linear–inverse (black solid line) arrangements. Results are also provided for additional linear–logarithmic

and linear–inverse discretizations which are the transform of a 1D spatial lattice to the energy basis (green

and black crosses). Model parameters are identical to those of Fig. 6.
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Three–Site Model

The three–site impurity is a more complex case, corresponding to a linear chain of sequentially–

coupled sites. These connect to the semi–infinite reservoir L at the first site of the chain and to

the reservoir R at the last site. The Hamiltonian for this arrangement reads

HS =

3∑
j=1

~ωj c†jcj + ~v12 (c†1c2 + h.c.) + ~v23 (c†2c3 + h.c.) (S2)

which, in essence, is a three–site tight–binding model. For simplicity, we adopt on–site energies of

ωj = 0 · ω0, system–site couplings v12 = v23 = (1 +
√

2)ω0/4 and a weak system–reservoir coupling

scale v = ω0/10. Unlike the other cases studied, this model has a current turnover profile that

approaches the continuum limit I◦ from below (Fig. S10). Such behavior precludes estimators

for γ? that minimize |I(γ) − I◦|/I◦, since the current maxima of the anomalies (both Markovian

and virtual) approach I◦ more rapidly than the interstitial, physical regime. We nonetheless

find that the intersection estimator γs remains effective for identifying the physical regime of the

plateau, exhibiting robust scaling for all quantities with respect to increasing NW (Fig. S11).

Within this context, the linear–inverse discretization continues to exhibit robust performance for

all observables. Taken together, our observations underscore how our intersection estimator γs is

generally robust when identifying optimal transport regimes — a fact that holds irrespective of

plateau architecture or the manner in which the thermodynamic limit is approached.
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FIG. S10. Kramers’ turnover for a weakly coupled three–site impurity. (a) Turnover in the

steady–state current I for the non–interacting three–site model of Eq. (S2), taken at weak S-LR coupling

(v = ω0/10). The extended reservoirs have a linear discretization and the relaxation γk = γ is mode

independent. Scaling is assessed with respect to the number NW of explicit modes in each reservoir, for

both on–resonant (solid) and off–resonant (dashed; with a level shift) configurations. (b) Inset of the data

from (a) near the physical regime. The Landauer limit I◦ for continuum reservoirs is shown by the solid,

black horizontal line. Calculations are presented with on–site system frequencies ωj = 0 · ω0, couplings

of v12 = v23 = (1 +
√

2)ω0/4 between system sites, and strong system–reservoir coupling v = ω0/2. A

bias of µ = ω0/2 is applied between L and R and a temperature kBT = ω0/40 is used for reservoir Fermi

distributions. Couplings are provided by our integrated approach.
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FIG. S11. Estimator validation across discretizations for the weakly coupled three–site impurity.

The intersection estimator γs is used to approximate the optimal relaxation regime γ? in an analysis parallel

to Fig. 6 of the primary manuscript. Convergence is shown for a weakly coupled (v = ω0/10) three–

site impurity (Eq. (S2) and Fig. S10) when increasing the number NW of explicit reservoir modes. This

behavior is quantified through (a) relative error in the steady–state current I; (b) relative error in the on–

site density ni within S; and (c) the trace between the system correlation matrix CS and its continuum

reservoir counterpart C◦S . The reference values (I◦, n◦i and C◦S) are taken in the continuum reservoir limit.

Discretizations correspond to the standard linear (orange, dotted line), the linear–logarithmic (green, dashed

line), and the linear–inverse (black solid line) arrangements. Results are also provided for additional linear–

logarithmic and linear–inverse discretizations which are the transform of a 1D spatial lattice to the energy

basis (green and black crosses). Parameters, methodology, and labels are otherwise identical to those of

Fig. 6.
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ALTERNATIVE LINEAR–LOGARITHMIC DISCRETIZATIONS

Method I

The logarithmic discretization from Eq. (4) and Fig. 6 is based on an influence scale that

maintains continuity across the bias window edge. While convenient, continuity is not required.

In fact, we can introduce a more general influence scale,

χlog-alt1(ω) = θ
(µ

2
− |ω|

)
+

α

|ω|θ
(
|ω| − µ

2

)
, (S3)

that is specified by an independent discretization scale Λ = ωk+1/ωk. This is imposed by extending

the bias window level spacing ∆0 to the first logarithmic mode (e.g., Λ = 1 + 2∆0/µ). We then

invoke the definition of our influence scale,∫ µ/2+∆0

µ/2
χlog-alt1(ω) dω = ∆0. (S4)

to establish a relationship α = ∆0
log Λ between these quantities. Unlike the approach of Eq. (4), this

approach has two independent parameters and, thus, while it retains a linear and a logarithmic

sector, it allows for them to be adjusted separately.

We find this alternate arrangement is comparable to the standard linear–logarithmic discretiza-

tion for practical transport calculations (Fig. S12). When working at a discretization scale (Λ = 2.0

to Λ = 3.0) that is typical for the numerical renormalization group (NRG), we find only subtle

variations in the calculated currents. While some deviations are seen at small NW for on–site

densities and the system state, these vanish for a large number of reservoir sites.
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FIG. S12. Error and discretization for an alternate linear–logarithmic discretization. Conver-

gence of the alternate linear–logarithmic discretization of Eq. (S4) at different discretization scales Λ. This

behavior is quantified through (a) relative error in the steady–state current I[γk(α?)]; (b) relative error in

the on–site density ni within S; and (c) the normalized trace distance between correlation matrix CS for

S and its infinite reservoir counterpart C◦S . Discretizations correspond to the standard linear–logarithmic

influence of Eq. (4) of the primary manuscript (black solid line) and the alternate influence scale from

Eq. (S4) with Λ = 2.0 (blue triangles), Λ = 2.5 (green squares), and Λ = 3.0 (red crosses). All data are

from the non–interacting, two–site Hamiltonian of Fig. 3b at weak–coupling (v0 = ω0/10), with integrated

system–reservoir couplings, and relaxations γ = α〈∆k〉B determined by the mean mode spacing within the

bias window µ = ω0/2.
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Method II

Here, we assess a third logarithmic discretization that has been used in prior many–body trans-

port calculations (see Ref. [1]). We construct this by subdividing the reservoir bandwidth W into

bins of width ∆k = |Ωk+1 − Ωk|, where the frequencies Ωk are indexed by k ∈ Z. The sign of k

corresponds to the sign of the associated frequency. We then arrange the Ωk to give Nµ = µ/∆0

linearly spaced bins inside the bias window. Modes far outside the bias window will be distributed

logarithmically (e.g., Ωk+1/Ωk = Λ for k > 0) with Λ setting the logarithmic discretization scale.

As with Method I, this permits independent adjustment of the linear and logarithmic sectors. The

full distribution of Ωk is then defined to interpolate between these limits,

Ωk =


∆0 · k, if |k| ≤ Nµ/2,

∆0 ·
(

sinh
[(
k∓Nµ

2

)
log Λ

]
log Λ ± Nµ

2

)
if |k| > Nµ/2.

(S5)

This set is used to specify mode placement, assuming that the extremal bins bounded by the band

edges at ±W/2. We take two approaches to define the modes ωk. In the first, we place modes at

the midpoint of each bin so that ωk = [Ωk+1 + Ωk]/2. The second follows Ref. [1], where we set

ωk =


Ωk+1−Ωk

log(Ωk+1/Ωk) if |Ωk|, |Ωk+1| > µ/2,

1
2 [Ωk+1 + Ωk] otherwise.

(S6)

We introduce couplings vjk that reproduce the integrated weight within each bin and relaxations

γk that are specified by the mode spacing in the bias window (as used in Fig. 6).

In practice, the discretization specified by Eq. (S5) is insensitive to how modes are placed within

a given frequency bin (Figs. S13 and S14, respectively). Furthermore, it scales more efficiently for

currents than the standard linear–logarithmic method from Eq. (4), provided that NW is small.

This is not surprising, as transport is dominated by states in the bias window and the method of

Eq. (S5) favors this region. Nonetheless, the observed benefit saturates beyond the number of modes

typical for most many–body simulations (NW ≈ 128), while the saturation point has a moderate

dependence on the discretization scale Λ. Such behavior is also expected, as the bandwidth outside

the bias window is heavily coarse–grained and relevant correlations may be missed. This is also

reflected through a saturation in on–site densities and without a well-defined trend for the error in

the system state.
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This behavior is not unexpected for a two parameter family. The lin-log discretization of the

main text links ∆0 and Λ, taking the continuum limit of both together. Method I and II, however,

have independent adjustment of these two parameters. When they are not balanced, this can cause

a saturation in error as further decrease of one parameter (towards the continuum limit) can not

capture what is missing due to the fixed value of the other parameter.
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FIG. S13. Error and discretization for an alternate (Method I) linear–logarithmic discretization.

Convergence of the alternate linear–logarithmic discretization of Eq. (S5) at different discretization scales

Λ. Here, the reservoir modes are defined by placing them at the center of each discretization bin. This

behavior is quantified through (a) relative error in the steady–state current I[γk(α?)]; (b) relative error in

the mean on–site density ni within S; and (c) the normalized trace distance between correlation matrix CS

for S and its infinite reservoir counterpart C◦S . Discretizations correspond to the standard linear–logarithmic

influence scale of Eq. (4) of the primary manuscript (black circles) and the alternate influence scale from

Eq. (S5) with Λ = 2.0 (blue triangles), Λ = 2.5 (green squares), and Λ = 3.0 (red crosses). All data are

from the non–interacting, two–site Hamiltonian of Fig. 3b at weak–coupling (v0 = ω0/10), with integrated

system–reservoir couplings, and relaxations γ = α〈∆k〉B determined by the mean mode spacing within the

bias window µ = ω0/2.
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FIG. S14. Error and discretization for an alternate (Method II) linear–logarithmic discretiza-

tion. Convergence of the alternate linear–logarithmic discretization of Eq. (S5) at different discretization

scales Λ. Here, the reservoir modes are defined according to Eq. (S6). This behavior is quantified through

(a) relative error in the steady–state current I[γk(α?)]; (b) relative error in the mean on–site density ni

within S; and (c) the normalized trace distance between correlation matrix CS for S and its infinite reser-

voir counterpart C◦S . Discretizations correspond to the standard linear–logarithmic influence scale of Eq. (4)

of the primary manuscript (black circles) and the alternate influence scale from Eq. (S5) with Λ = 2.0 (blue

triangles), Λ = 2.5 (green, squares), and Λ = 3.0 (red, crosses). All data are from the non–interacting,

two–site Hamiltonian of Fig. 3b at weak–coupling (v0 = ω0/10), with integrated system–reservoir couplings,

and relaxations γ = α〈∆k〉B determined by the mean mode spacing within the bias window µ = ω0/2.
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