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Abstract—Machine learning techniques have been widely
adopted to assist in data analysis in a variety of Internet of
Things (IoT) systems. To enable flexible use of trained learning
models, one viable solution is to leverage all categories of data
from different applications to train a general model, which can
be further tuned for applications through tuning process. This
process incurs additional overhead at the start, but makes later
revision and iteration faster and more flexible. Nonetheless, due
to limited computing capabilities, IoT devices cannot handle the
training process of large datasets. To address this issue, in this
paper, we propose a general framework to adopt transfer learning
in industrial Internet of Things (IIoT) systems. In our study, we
categorize the application space of applying transfer learning
to IIoT systems into four generic scenarios: centralized transfer
learning with large datasets, distributed transfer learning with
large datasets, centralized transfer learning with small datasets,
and distributed transfer learning with small datasets. According
to the characteristics of each scenario, we design workflows to
apply transfer learning technique. To demonstrate the efficacy of
the approach, we apply our transfer learning technique to the
task of IIoT component recognition. We use the known VGG-
16 model and leverage T-Less industrial datasets to evaluate
the performance of our approach in different scenarios. Via
performance evaluation, our experimental results confirm the
efficacy of our approach, which can not only reduce training time,
but also achieve higher accuracy, compared with the classical
convolutional neural network (CNN) approach.

Index Terms—Industrial Internet of Things, Machine Learn-
ing, Transfer Learning

I. INTRODUCTION

Given recent advances in Internet of Things (IoT) tech-
niques, the Industrial Internet of Things (IIoT) is set to
become the key driving force for improving productivity in
manufacturing systems [1], [2]. As a typical cyber-physical
system (CPS), the IIoT system consists of both the cyber and
physical subsystems, which cooperate to collect, transfer, and
analyze data. Based on the analysis results, the monitoring and
control of systems can be improved, enabling automation and
intelligent event response. One key to realizing automation
and intelligence is enabling big computing, modeling, and
data-driven analysis, which can be achieved through tech-
niques such as deep learning [3]. In general, IoT datasets are
transmitted to computing devices, which need to have high
computation capabilities to carry out data analysis. Moreover,
the data transmission process can raise significant overhead
to the network. Clearly, due to the constraints to network and

computation resources in IoT systems, it is quite challenging
to handle transmission and analysis of massive amounts of
data efficiently in IIoT systems.

Machine learning techniques, as viable knowledge discover
approaches, have been widely adopted to assist in data analysis
for applications [4]. Big data analysis techniques have shown
great potential in a number of areas, including image/video
recognition, data categorization, and artificial intelligence.
Machine learning techniques can be a viable solution for as-
sisting in data analytics in IIoT systems. Nonetheless, machine
learning models are designed for specific applications and
training models is time-consuming. To obtain accurate data
analysis results, learning models require a massive amount of
data and incur significant training time, which cannot provide
timely decisions for IIoT applications and may exacerbate the
overhead limitations of network and computation resources.

To address these issues described, several approaches have
been considered. One approach involves deploying the ma-
chine learning model on edge computing devices/servers
instead of a central computing server in order to reduce
network traffic [5]. Nonetheless, the computing resources of
edge computing servers are much lower compared to central
computing servers/datacenters, which further increases the
training time. Another approach involves training a general
model by feeding all categories of datasets from different
applications. Nonetheless, such an approach will increase the
size of dataset collection and storage, and will not obtain the
optimized results for all applications. Thus, how to reduce
the size of datasets and training time while maintaining the
accuracy of learning models is a critical and challenging issue.

To address this issue, in this paper we leverage transfer
learning in IIoT systems to improve the applicability of a well-
trained general learning model, which can be used to avoid
lengthy training times of particularized models for designated
applications. To be specific, based on the size of data and
the way that the machine learning process is deployed in a
distributed or centralized manner, we categorize the entire IIoT
application space into four representative scenarios: central-
ized transfer learning with large datasets, distributed transfer
learning with large datasets, centralized transfer learning with
small datasets, and distributed transfer learning with small
datasets. We design a workflow for each scenario to apply
transfer learning techniques. The basic scheme of our transfer
learning approach is to use a well-trained deep learning model
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as a feature extractor, and then use the extracted features
to retrain a classifier. For different application scenarios, we
extend this basic scheme. Finally, we use the industrial IoT
component recognition as an example to demonstrate the
efficacy of our approach. We choose the T-Less industrial
dataset [6] as the training and testing datasets to reproduce
industrial component recognition tasks. As a result, our pro-
posed approach can significantly reduce the size of training
data and training time, while achieving better training accuracy
compared to the classical CNN-based approach.

To summarize, we make the following contributions:
• Framework: We propose a general framework to adopt

transfer learning in a variety of IIoT scenarios. In detail,
we categorize the entire application space into four sce-
narios based on the amount of data and the way that the
machine learning process is operated in a distributed or
centralized manner.

• IIoT Transfer Learning: We design a transfer learning
approach for each defined scenario in the IIoT sys-
tem. For the centralized transfer learning scenarios with
large datasets and small datasets, we deploy the transfer
learning process on the centralized computing center
that has high computing capacity. For the distributed
transfer learning scenarios with large datasets, we de-
ploy the transfer learning process on the local server
that has relatively small computing capacity. For the
distributed transfer learning scenarios with small datasets,
we leverage the distributed nature of the IIoT system
to deploy multiple transfer learning models on different
local servers, simultaneously. Then, we obtain the final
classification results based on the results of all different
models via a voting mechanism.

• Extensive Validation: We conduct extensive perfor-
mance evaluation to validate the effectiveness of our
transfer learning approach on a representative IIoT sys-
tem, as compared to an existing representative approach
based on classical CNN in different scenarios. Our ex-
perimental results show that our proposed approach can
significantly reduce the size of training data and training
time while achieving better training accuracy than the
existing representative CNN-based approach.

The remainder of this paper is organized as follows: In
Section II, we conduct a brief literature review of relevant
studies regarding IIoT and transfer learning. In Section III,
we provide background relevant to our work. In Section IV,
we introduce our approach in detail. In Section V, we present
the evaluation results. In Section VI, we discuss some open
issues and future research directions. Finally, we summarize
the paper in Section VII.

II. RELATED WORK

Before we review the application of transfer learning in
IIoT, we review the application of transfer learning in other
CPS systems. In addition to IIoT, typical examples of CPS
can include smart grids, smart health, smart homes, and smart
manufacturing, among others [7]–[15]. Regarding the smart
grid, a number of research efforts have been conducted using

transfer learning to predict energy consumption [16], [17].
For example, Elena et al. [18] proposed unsupervised energy
prediction in the smart grid using reinforcement cross-building
transfer learning. For the smart transportation system, transfer
learning has been used to perform vehicle classification and
traffic prediction [19]–[21]. For example, Reza et al. [22] de-
veloped a transfer learning model for the classification of truck
body types based on image data, which can achieve an overall
accuracy of 96.5 %. For the smart home, transfer learning has
been used for carrying out daily-activity recognition [23]–[26].

We now review the applicable scenarios of transfer learning
specifically for component recognition in IIoT systems. In this
category, most existing research has focused on optimizing the
accuracy of component recognition [27], [28]. For example,
Lee and Yang [29] used speeded up robust feature (SURF) [30]
to correctly recognize and count industrial components. Chen
et al. [31] designed a classic deep learning-based component
recognition algorithm called Fast R-CNN [32] and achieved
an overall 68 % component recognition accuracy. Likewise,
Cong et al. [33] designed a new k − d tree-based method
for 3-D texture-less component recognition. Note that in the
field of IIoT component recognition, most of the work of
transfer learning has focused on recognizing various industrial
components via image data captured by sensors.

Compared with other existing works, in this paper, we do
not focus on tuning neural network parameters for specific
situations. Instead, we categorize the entire IIoT machine
learning application space into four types of scenarios and
design general workflows for the different types of scenarios.
Further, we demonstrate the efficacy of our designed transfer
learning approach in different scenarios using a real-world
IIoT dataset, as compared to an existing approach based on
classical CNN.

III. PRELIMINARY

In this section, we introduce the background on IIoT,
machine learning, and transfer learning.

IIoT: IIoT uses network infrastructure to connect IoT
devices (e.g., sensors and actuators) to automate industrial
production processes. These IoT devices can assist in ad-
vanced industrial functions, including self-monitoring and self-
diagnosis, among others. From the perspective of CPS, the
IIoT system consists of cyber and physical subsystems. The
synergy of subsystems will lead to a new generation of
industrial production systems. With a variety of data collected
by IIoT sensors, the cyber subsystem can extract the status
of the system and generate proper control signals for IIoT
actuators. For application scenarios, such as computing and
control, processes can be executed in a centralized (i.e., central
computing center) or distributed (i.e., local server/device) man-
ner [34]. A central computing center is usually expensive and
has larger computing capabilities, while local servers/devices
are generally cheaper and have smaller computing capabilities.
In this paper, we consider transfer learning in both centralized
and distributed settings. Note that in different IIoT scenarios,
the places where deep learning can be deployed are different,
and the computing and storage capabilities of the devices that
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are used to conduct deep learning tasks are different. Thus,
how to properly deploy advanced deep learning algorithms
(e.g., transfer learning) on IoT devices in different IIoT
systems is a challenging issue, which may be solved from
various directions.

Deep Learning: Deep learning techniques have been proven
to have excellent performance in regression, classification, and
prediction. To implement the advanced IIoT functions (e.g.,
self-diagnosing) mentioned above, deep learning techniques
are viable. Deep learning uses multi-layer neural networks to
find hidden relationships and features between a variety of
data. Nonetheless, to achieve highly accurate results under the
equivalent deep learning models, sufficient data and computing
power are highly necessary.

Transfer Learning: Transfer learning is a machine learning
technology that enables the transfer of knowledge from a well-
trained machine learning model to a new machine learning
model. To properly leverage transfer learning techniques,
several prerequisites must be satisfied. First, the tasks that
the original model and the new model are trained to achieve
must be related. Second, the data used to train the original
model and the data used to train the new model must have
some common features. After applying the transfer learning
techniques, the new model can use a small amount of data as
a training dataset and obtain good performance. Recently, a
number of research efforts have shown that transfer learning
techniques have broad application across many domains [35].

Fig. 1. Transfer learning

IV. OUR APPROACH

In this section, we present our transfer learning approach to
improve the performance of deep learning-based component
recognition in IIoT systems.

A. Overview

A deep neural network that can carry out highly accurate
component recognition often requires huge labeled datasets
and a powerful computing server. Nonetheless, in the IIoT
system, the computation capacities of IIoT devices are severely
limited [36]. Further, there is no publicly labeled dataset that
includes the most common industrial components. Thus, we
leverage the transfer learning technique to improve the perfor-
mance of machine learning-based component recognition in
IIoT systems.

Fig. 2. Problem space of transfer learning use in IIoT

In this study, we propose a general framework to apply
transfer learning in IIoT systems. Specifically, we transfer
knowledge from other component recognition tasks to models
that will conduct industrial component recognition. We cate-
gorize the use of transfer learning in IIoT systems into four
different scenarios and design a detailed workflow on how to
apply transfer learning to each scenario. We further evaluate
the performance of the transfer learning-based approach under
different scenarios. As a result, compared to an existing ap-
proach based on classical CNN [37], our approach can achieve
higher component recognition accuracy in IIoT systems while
requiring less training time.

Recall that transfer learning is a type of machine learning
technique that transfers knowledge from one solved problem
to another related problem [38]. In our case, we transfer some
knowledge learned from object recognition on ImageNet [39]
to component recognition in IIoT systems. Fig. 1 shows
how to use the well-trained VGG-16 model for the transfer
learning process. Note that VGG-16 is a known convolutional
neural network model that uses the VGGNet structure. Here,
number 16 represents that it has 16 layer networks. As can
be seen in the figure, VGG-16 consists of 5 convolutional
blocks and a full classifier. In each convolutional block,
several convolutional layers (gray blocks) connect together to
extract the features of an image. A max-pooling layer (orange
blocks) is connected to the end of each convolutional block.
A classifier that consists of 3 full connection layers (green
blocks) and 1 softmax layer (blue block) is attached to the
last convolutional block to generate the prediction result. For
the transfer learning process, we replace the classifier of the
original VGG-16 model with our proposed classifier. We use
the convolutional block in VGG-16 as a feature extractor
to pre-process images and extract relevant features about
industrial components. Finally, we train this new integrated
model with the selected industrial datasets, while convolutional
layers of the pre-trained model are frozen during training.

B. Problem Space

Applying machine learning in IIoT systems requires con-
sideration for the characteristics of the IIoT system itself,
especially when considering the use of transfer learning.
For machine learning, the two most important components
are datasets and models. In IIoT application scenarios, the
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datasets for machine learning could be various data collected
by different sensors. Considering the heterogeneity of sensors,
the quantity and quality of data generated by sensors will vary.
The machine learning models can be deployed on either cen-
tralized or distributed computing servers. Generally speaking,
centralized processing servers have relatively large computing
capability, while local computing servers have relatively small
computing capacity. Thus, when we apply transfer learning
into IIoT systems, we should consider where the transfer
learning process should be deployed.

In this study, we propose a general framework to adopt
transfer learning in different IIoT scenarios. As shown in
Fig. 2, we consider the size of datasets as the x-axis and
the location of transfer learning (centralized or distributed)
as the y-axis to define the problem space. In the figure, we
categorize the problem space into the following four scenar-
ios: (i) Scenario A: centralized transfer learning with large
datasets, (ii) Scenario B: distributed transfer learning with
large datasets, (iii) Scenario C: centralized transfer learning
with small datasets, and (iv) Scenario D: distributed transfer
learning with small datasets. For a large dataset, we use all
the images in the original dataset. Particularly, in the T-Less
dataset, this means that there are around 1000 images in each
category. For a small dataset, we only use a portion of the
images from the original dataset. In our case, we randomly
select 300 images for each category in the T-Less dataset.

To evaluate the efficacy of our approach, the dataset is
one of the most important aspects of our study. We select
the 6D pose estimation of texture-less objects (T-Less) as the
dataset for training and testing the proposed transfer learning
approach. The T-Less dataset includes 30 different industrial
components that are captured by a fixed angle camera. The
total dataset consists of 37,800 image files, equaling more than
10 GB. Each component includes 1260 ‘.png’ image files and
each image has a resolution of 480×480 pixels. Those images
show different angles of each component with RGB channels.
Example images are shown in Fig. 4.

Fig. 3. Examples of ImageNet dataset

Fig. 4. Examples of T-less dataset

Based on the T-Less dataset and the source VGGNet model,
we first reshape the images to 224 × 224 pixels. Then, we
randomly divide the dataset into training and testing subsets
of 1000 images and 260 images, respectively, for each com-
ponent. After identifying the training and testing datasets, we

label the datasets from ‘1’ to ‘30’ to denote the 30 different
components. We create a small training dataset that includes
300 images. We leverage the small training dataset to evaluate
the performance of transfer learning in an extreme situation.
Meanwhile, the ImageNet dataset on which the VGGNet was
trained includes at least one million images with more than
20 000 categories. Each category has an average of 1000
labeled RGB images. The categories cover a wide range, from
animals to traffic signs.

C. Learning Models

In this study, two types of learning models have been
designed. One is a transfer learning-based model. In this
model, we use VGGNet as our source model from which
to transfer knowledge. Then, we replace the output of the
VGGNet with our own classifier, which consists of a few
full connection layers. The other model is a light-weight
classification CNN model-based on our prior work [37]. The
CNN architecture is designed specifically for IIoT datasets
and has been tuned for the T-Less dataset. We use multiple
connected convolutional layers as the feature extractor and 2
full connection layers as a classifier.

VGGNet is a known CNN structure for image classification
and object recognition [40]. VGGNet uses multiple convolu-
tional blocks and a classifier with two full connection layers
that represent image features and one full connection layer
for classification purposes. VGGNet applies small filter size
such as 3x3 and 1x1 at the convolutional layer to capture the
most basic information. At the same time, VGGNet adopts a
much deeper network structure than many other CNNs. As a
result, the performance of VGGNet is significantly improved
by combining small filters and deep network structure [41],
[42]. As the pre-trained VGG-16 Model on ImageNet has been
proven to have good generality on other datasets [43], [44],
we use it as a source model for transfer learning.

The architecture of the VGG-16 model that we use in this
study is shown in Fig. 1. The size of the input image is
fixed as 224 × 224, and the intensity of each pixel of the
image is rescaled to the range of (0,1) for better learning
accuracy. Then, the input image is sent to the convolutional
layer, in which only a small filter size (typically 3 × 3) is
used in VGGNet for the convolution operation. The convo-
lution process is defined as C(m,n) = (M ∗ w)(m,n) =∑

k

∑
l M(m− k, n− l)w(k, l), where the size of image M

is m× n and the size of filter w is k × l.
The stride is taken as one with zero paddings to maintain the

size of the feature maps that are generated by the convolution
process. The extracted features are sent to the pooling layer
to reduce the dimensionality. In addition, the pooling layer
can create invariance for small shifts and deformations of
the extracted features. After a few rounds of the convolution
process, max-pooling layers are added after the convolutional
layers. By doing this, it can further reduce the dimensionality
of extracted features and reduce computational time. The stride
for the max-pooling layer is set to 2 with a 2×2 window size.
Note that the max-pooling process could also be beneficial
for extracting superior invariant features, which could lead to
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higher classification accuracy. As we can see in Fig. 1, there
are multiple convolutional layers before the pooling layer. We
consider this structure as a convolutional block, and after 5
convolutional blocks, 3 full connection layers are added as
a classifier. The first two layers have 4,096 neurons and the
third, also known as the Softmax layer, has 1000 neurons
matching the 1000 classes of ImageNet detection targets.
All the hidden layers inside this VGGNet are applied with
activation function ReLU, which favorably increases the non-
linearity of the network.

The function for Softmax is softmax(x)i = exi∑n
j=1 exj , where

xi indicates the score inferred by the model for a specific class
i and xj indicates the source inferred by the model for all other
classes. The activation function ReLu is shown as follows:
f(y) = max(0, y), where y is the input of a neuron. The ReLu
activation function simply passes the positive part of the input.
Also, as we classify multiple classes, the loss function that we
use is categorical cross-entropy, which is a softmax activation
plus a cross-entropy loss. The categorical cross-entropy can
be derived by CE = −log

(
exi∑n

j=1 exj

)
, where, xi indicates

the score inferred by the model for a specific class i and xj

indicates the source inferred by the model for all other classes.

Fig. 5. CNN structure

The classical CNN architecture that we use in this study is
based on our prior work [37], shown in Fig. 5. This classical
CNN model consists of 4 convolutional layers and the filter
that we use is 8× 8. We deploy a pooling layer in the model
following each convolutional layer (i.e., the total number of
pooling layers is 4). The convolutional layers and pooling
layers are used for feature extraction and reduction. The hidden
layers also use ReLu as the activation function. In the lower
end, we add 2 full connection layers to classify the input
images. The activation function that we use at the second

Fig. 6. System model

full connection layer is also softmax. Since we use classical
CNN for the same task, we use categorical cross-entropy as
our loss function. Further detail of this light-weight classical
CNN model can be found in our prior work [37].

D. Transfer Learning

In the following, we first introduce the basic scheme of
transfer learning. Then, we present the details of applying
transfer learning to the defined scenarios. Recall from Fig. 2
that we consider four scenarios to which we apply transfer
learning for IIoT systems.

1) Basic Scheme: Based on the principle of transfer learn-
ing [45], we now explain how to apply transfer learning to IIoT
systems. First, we present the motivation for using transfer
learning in IIoT systems.

One of the primary reasons for using transfer learning in
IIoT is that the size of IIoT datasets is relatively small and un-
labeled. Especially compared to the millions of labeled images
in the ImageNet dataset, we consider fewer than 1000 images
of each industrial component (only 300 images in our most
constrained cases). In this case, it is not suitable to train a deep
neural network such as VGGNet from random initialization,
because the training data is not sufficient. Moreover, it would
take considerable time and effort to expand this dataset and
manually label new images. Another reason for using transfer
learning is that the IoT devices in IIoT systems may not
satisfy the high computing performance requirements to train
new deep learning models from scratch. As the depth of the
network increases, more time and computing resources are
required. At the same time, the IoT devices deployed in the
IIoT system are usually cheap and have limited computing
power. To train a new model from scratch, either distributed
or centralized, would take a significant amount of time and
resources, and is likely not feasible on the IoT devices them-
selves. Taking these reasons into consideration, we propose the
use of transfer learning to reduce the requirements of training
dataset size, as well as the requirements for computing and
storage of IoT devices, when training deep learning models in
IIoT.

To describe the transfer learning, we consider that a domain
D = (X,P (X)) consists of a feature space X and a marginal
probability distribution P (X). A task T = (Y, f(.)) also
consists of two components: a label space Y and the prediction
function f(.). Transfer learning aims to improve the prediction
function in the target task TT by using knowledge in the source
domain DS and the source task TS , where source domain DS

is not equal to target domain DT , and the source task TS

is also not equal to target task TT . In our case, the source
domain is the ImageNet dataset and the target domain is the
T-Less dataset. The source task is to predict which of the 1000
categories in ImageNet that the input images belongs to, while
the target task is to predict which of the 30 categories in T-Less
the input image belongs to.

Next, we describe how to apply transfer learning in deep
CNN-based machine learning models. In the deep CNN, the
features extracted from shallower layers normally represent
low-level features, such as color and edges. The features
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extracted from deeper layers represent more complicated high-
level features. We thus use these extracted features to train a
more accurate classifier. As we can see in Fig. 1, in our study,
we replace the classifier (3 full connection layers) in VGGNet
that we mentioned in Section IV-C with another classifier. This
new classifier consists of 3 full connection layers, where the
first two have 4096 neurons and 2048 neurons, and the last full
connection layer has 30 neurons as we only have 30 classes
in the T-LESS dataset.

We use Fig. 6 to show the system model to implement our
proposed transfer learning approach. As the devices of IIoT
systems, sensors and actuators are located at the bottom of
the figure. The sensors collect data and sent it to the local
server. The local servers are located in the middle of the figure.
The local server can serve as not only the gateway of the
IIoT system, but also a small processing center. This local
server can store a certain amount of collected data for simple
processing and then send the data to the central computing
center. The central computing center is at the top of the
figure. It has high computing capability and is responsible
for complex processing such as industrial control algorithms.
After receiving data from local servers, the central computing
center generates the control commands and sends these control
commands back to the local server. Finally, the local server
distributes these commands to individual actuators and the
actuators then execute these received commands. We use this
system model to illustrate all four scenarios introduced in
Section IV-B.

2) Scenario A: Centralized Transfer Learning with Large
Datasets: In this scenario, as the distributed local servers
may not have sufficient computing capability to execute the
transfer learning process, the transfer learning algorithm will
be implemented in the central computing center. The general
workflow for applying transfer learning in this scenario is
shown in Fig. 7. First, various sensors collect data as training
data and send it to the local server, which then forwards
the data to the central computing center. Finally, the central
computing center performs transfer learning.

The transfer learning technique in this scenario follows the
basic scheme that we introduced before. The central computing
center has already stored the well-trained VGGNet model.
Recall from Fig. 1 that, to perform transfer learning, the
central computing center replaces the last three full connection
layers with a new classifier. This new classifier can have a
totally different structure from the original VGGNet classifier.
In our case, the new classifier consists of 3 full connection
layers, the first layer has 4096 neurons, the second layer has
2048 neurons, and the last output layer has 30 neurons. We
use categorical cross-entropy as our loss function as we have
multiple classes. Then, we use the collected data from sensors
to train the transferred model. During the training process, only
the weights of the last 3 full connection layers will be updated,
all the other weights will remain the same. By doing this, we
leverage the well-trained VGGNet as a feature extractor and
only train the classifier.

3) Scenario B: Distributed Transfer Learning with Large
Datasets: In some IIoT systems, distributed local servers
could have sufficient computing capacity to handle the transfer

Fig. 7. Workflow of scenarios A and C

Fig. 8. Workflow of scenario B

learning process and have enough storage capacity to store
a large amount of data. The general workflow for applying
transfer learning in such a scenario is shown in Fig. 8. Similar
to scenario A, the sensors collect data first and transmit it to the
local servers, which forward the data to the central computing
center. In this scenario, the central computing center collects
the data from multiple local servers and forwards the full
dataset back to the local servers. The local serves receive the
data and conduct the transfer learning process. Finally, the
local servers send control decisions to the actuators.

Note that in this scenario, the transfer learning technique
remains the same as the one that we use in scenario A.
The only difference is that the transfer learning process
will be executed at the local servers instead of the central
computing center. Note that this scenario requires the local
servers to have high computing and storage capacities. The
local servers need to have enough space to store all the data
and sufficient computing capability to complete the machine
learning process. Note that, as we have reduced the weights
that need to be trained in the deep neural network, our
transfer learning approach can reduce the computing power
requirements on the local servers compared to the classical
CNN-based approach [37]. Nonetheless, the local servers still
need a large storage space to store all the data.

4) Scenario C: Centralized Transfer Learning with Small
Datasets: In some IIoT systems, the data that sensors can
collect may be limited due to their hardware. The amount
of data transmitted to the central server is limited by the
bandwidth of the networking system in this scenario. Thus, in
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some IIoT systems, there is not much data that can be used to
train deep neural networks. To deal with this issue, we consider
the scenario, in which only a small amount of dataset can be
used to train the neural network model. In our case, while the
T-less dataset is significantly smaller than ImageNet dataset,
it still has around 30,000 samples. To further investigate the
impact of such an extremely small data scenario, we train our
model with only 9000 images and examine the performance
impact of transfer learning. We randomly select 300 images
per class from original dataset as the new training dataset.
The difference between scenarios A and C is the size of data.
Compared to scenario A, scenario C has fewer data to train
the neural network. Using transfer learning in scenario C can
bring greater benefits than using transfer learning in scenario
A as transfer learning has a greater performance benefit on
small datasets. Note that the workflow for applying transfer
learning with small datasets is the same as applying transfer
learning with large datasets.

5) Scenario D: Distributed Transfer Learning with Small
Datasets: The last scenario is applying distributed transfer
learning with small datasets. Fig. 9 illustrates the workflow
in such a scenario. First, the sensors collect data and send
it to the local servers. Then, the local servers directly con-
duct the transfer learning and send classification results to
the central computing center. The central computing center
collects classification results from multiple local servers and
makes the final decision. The central processing center makes
the final classification decision via the majority voting mech-
anism. Specifically, each local server makes a classification
decision to determine the category that the current industrial
component belongs to. The majority voting mechanism treats
these predictions equally and relies on the most votes as the
final classification result. Then, the central computing center
sends the final classification decision to local servers, and the
local server forwards this decision to the actuators.

Note that the transfer learning use in this scenario is
different from the other scenarios. In other scenarios, only
one transfer learning model is trained, while in this scenario,
multiple transfer learning models are trained at different local
servers simultaneously. The transfer learning techniques still
use the basic scheme that we discussed before. Nonetheless,
in this scenario, each local server uses a completely differ-
ent classifier to replace the original classifier in VGGNet.
Specifically, we can use transfer learning to design multiple
deep learning models with different classifiers. These deep
learning models all use VGGNet as the feature extractor. The
new classifiers of these deep learning models have different
numbers of full connection layers and neurons. Each local
server is assigned one of these deep learning models. In the
training phase, each local server uses a different learning rate
to train its own deep learning model. In this way, we make
the configuration of the transfer learning model as dissimilar
as possible. When we use the majority vote mechanism to
make the final classification decision, the diversity of transfer
learning models can make the final classification result more
accurate and stable.

Fig. 9. Workflow of Scenario D

Model Structure Average Accuracy
Transfer Learning with full dataset 98.6%

Classical CNN with full dataset 94.2%
Transfer Learning with small dataset 97.6%

Classical CNN with small dataset 92.1%
Distributed transfer learning with small dataset 99.1%

TABLE I. Learning accuracy of different learning models

V. PERFORMANCE EVALUATION

We have conducted extensive experiments to validate the
efficacy of our transfer learning approach in different scenarios
compared to an existing traditional approach.

A. Methodology

Recall the four scenarios that we discussed in Section IV-D.
Scenarios A and B focus on applying transfer learning with
large datasets in a central and distributed manner, respectively.
For different IIoT systems, the computing capabilities of the
central computing center and the local server can be the
same or different. In this work, we focus on the general IIoT
transfer learning framework, rather than the impact of different
computing capabilities on machine learning algorithms. Thus,
in our experiments, we consider that all the central computing
centers and local servers have the same computing capability.
For those who are interested in IoT machine learning opti-
mization under servers with different computing capabilities,
please refer to our prior work [37].

We have conducted several performance comparisons to
evaluate the efficacy of our designed transfer learning approach
on these four IIoT scenarios. Since the dataset itself has a great
impact on the final results of the machine learning algorithm,
we compare our proposed approach with the existing classical
CNN-based approach [37], which uses the same IIoT dataset.
In detail, scenarios A and B have a complete T-Less dataset
as the training data, and the difference between these two
scenarios is whether the transfer learning model is deployed
in the central computing center or the local server. Thus, our
first comparison focuses on accessing the accuracy of the
classical CNN-based approach and our transfer learning-based
approach for the same IIoT component recognition task with
large data. For scenario C, the central computing center only
has a small dataset for training. We evaluate the impact of
data size on the accuracy of transfer learning by comparing
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the accuracy of the classical CNN-based approach and our
transfer learning-based approach for the same IIoT component
recognition task with small datasets. Finally, for scenario D,
the transfer learning models have a small dataset for training
and the transfer learning models are deployed at multiple
local servers. Thus, we compare the performance of transfer
learning in distributed and centralized settings for the same
IIoT component recognition task with small datasets.

To evaluate the performance of different transfer learning
approaches, we randomly divide the IIoT dataset into a training
set and validation set at a ratio of 8:2. Before each training
process, we repeat the dividing process to obtain different
training sets and validation sets. We train each model 20
times and compute the validation accuracy each time. In each
training process, we train our models for 50 epochs. Recall
that we use categorical-cross entropy as our loss function and
categorical accuracy as evaluation metrics. We also record the
timestamp of the training process such that we can further
compare the training time of different scenarios. We have
implemented these models with Python using open source
library TensorFlow 2.01 [46]. We used Adam optimizer to
minimize the loss function during training. All the experiments
were performed on a Windows 10 Server with an NVIDIA
GTX 1070ti GPU.

Our experiments consists of the following cases: (i) Transfer
Learning vs. Classical CNN with Large Datasets, (ii) Transfer
Learning vs. Classical CNN with Small Datasets, and (iii)
Distributed Transfer Learning vs. Centralized transfer learning.
In the first case, we use the original IIoT dataset, which
consists of 30 categories, each category has 1000 images as the
training set and 200 images as the validation set. In the second
case, we use only 300 images for each class in IIoT dataset
and examine the efficacy of our transfer learning approach. In
the last case, we implement our transfer learning approach in
the distributed setting on the same dataset that we use in the
second case. The numerical results after training the model 50
epochs are shown in Table I.

B. Results

In the following, we present the evaluation results. Note
that in all related figures, we use ‘TL’ to represent our
transfer learning approach and ‘CNN’ to represent the existing
classical CNN approach.

Transfer Learning vs. Classical CNN with Large
Datasets: We compare the performance of industrial com-
ponent recognition between our transfer learning-based ap-
proach and the classical CNN-based approach. We evaluate the
performance from two aspects: the accuracy and the training
time needed to reach the defined accuracy. In Fig. 10, we
illustrate the categorical accuracy of the transfer learning-
based approach and the classical CNN-based approach. As
we can see in the figure, our transfer learning approach can

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

improve the overall categorical accuracy on the full (1000
samples per category) datasets by around 4 %. In Fig. 11,
we illustrate the loss of the transfer learning-based approach
and the classical CNN approach. In Fig. 12, we compare
the epochs required for each approach to reach the given
accuracy. The solid line indicates the categorical accuracy
of the test dataset for the transfer learning approach. The
dashed line indicates the categorical accuracy of the training
dataset for the transfer learning approach. The dotted line
indicates the categorical accuracy of the test dataset for the
classical CNN approach. Also, the dash-dot line indicates the
categorical accuracy of the training dataset for the classical
CNN approach.

For the classical CNN-based approach, we can see from the
shadow area of the dotted line in Fig. 10 and Fig. 11 that the
categorical accuracy of the training datasets fluctuates greatly.
This is because there is not enough data to train the CNN
from scratch. The CNN model seems to fit the training set;
however, this model is not general enough. Thus, during the
validation phase, the categorical accuracy is not stable.

For our transfer learning-based approach, the categorical
accuracy of both the training datasets and validation datasets
are quite stable. Also, we can see in Fig. 10 that, in our
multiple experiments, the accuracy difference between dif-
ferent experiments is very small. This is because transfer
learning leverages the knowledge that VGGNet learned from
the ImageNet dataset. Specifically, the features that are used
to complete the classification task in ImageNet can assist
in completing the component classification task of the IIoT
datasets. Moreover, the massive training data in ImageNet
makes the model more versatile and powerful. Thus, our
transfer learning-based approach achieves better and more
stable performance.

We next compare the training times necessary for the
transfer learning-based approach and the classical CNN-based
approach to reach the desired learning accuracy as shown
in Fig. 12. The left side represents how much time that the
transfer learning-based approach needs to achieve the desired
learning accuracy. The right side represents how much time
the classical CNN-based approach needs to achieve the same
level of learning accuracy. As we can see in Fig. 12, the
transfer learning-based approach typically requires 2-3 epochs
to reach an accuracy of 94 %, while the approach based on the
classical CNN approach usually requires 30 epochs to achieve
the same level of accuracy. Also, when the two models are
trained on the same server, the classical CNN-based approach
takes about 17 s each epoch, while our transfer learning-
based approach only takes 3 s for each epoch. Specifically,
to approach any pre-determined learning accuracy, our transfer
learning-based approach always requires fewer training epochs
than the classical CNN approach. In conclusion, the transfer
learning-based approach is much faster than the classical
CNN-based approach in reaching the defined learning accuracy
(i.e., trains faster).

Transfer Learning vs. Classical CNN with Small
Datasets: We next evaluate the performance of training our
transfer learning model and the classical CNN model on
extremely small datasets. Similar to the prior experiment,
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Fig. 10. Transfer Learning vs. Classical
CNN

Fig. 11. Transfer Learning vs. Classical
CNN (Loss)

Fig. 12. Transfer Learning vs. CNN
(Time)

Fig. 13. Transfer Learning vs. Classical
CNN

Fig. 14. Transfer Learning vs. Classical
CNN on small datasets (Loss)

Fig. 15. Transfer Learning vs. Classical
CNN on small datasets (Time)

Fig. 16. Distributed Transfer Learning vs. Central-
ized transfer learning (Accuracy)

Fig. 17. Distributed Transfer Learning vs. Central-
ized transfer learning (Time)

we use the accuracy and the training time needed to reach
a pre-defined learning accuracy as two metrics to evaluate
performance. As we can observe in Fig. 13, when trained
on extremely small datasets (300 training samples per cate-
gory), the overall accuracy is reduced. The average validation
accuracy for the transfer learning approach dropped by about
1 %, and the average validation accuracy for the classical CNN
approach dropped by about 2 %. This is because there is not
sufficient training data to train a complex neural network. In
addition, the extremely small training dataset causes overfit-
ting, where the model fits the training data too well, resulting
in a negative impact on the validation accuracy. To address

this issue, we add a heavy drop-out layer (drop-out of 0.5)
on both the transfer learning and classical CNN approaches to
induce extra noise during the training phase.

For the classical CNN-based approach, we can see from
Figs. 13 and 14 that both training accuracy and validation
accuracy have a higher variance than in the first evaluation
scenario, in which the full dataset was used in the training
process. Moreover, the validation accuracy also has a higher
variance than training accuracy. There are a few explanations
for this observation. First, we add a heavy dropout layer, the
dropout layer will randomly disable some neurons from the
previous layer to add more noise to the classical CNN model.
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This can improve the generality of the model, and benefit
the validation accuracy. Nonetheless, these random dropouts
also increase the variance of the training accuracy. Second,
as the size of the training dataset has been largely reduced,
the classical CNN model becomes too complex to train. The
model cannot extract the complex relations among the dataset
with this amount of training data. As a result, the validation
accuracy becomes unstable. The range of validation accuracy
at the same epoch can be around 30 %. Another observation
from the figure is that the average validation accuracy is higher
than the training accuracy. This is also the result of using a
heavy dropout layer. As the dropout layer will not work at the
validation phase, the validation phased can fully utilize all the
neurons in the previous layer to make predictions.

For the transfer learning-based approach, although the over-
all accuracy has been decreased, the variance of the accuracy
has not observed the same impact as the classical CNN model.
There are two explanations for this observation. First, transfer
learning uses a pre-trained model as a feature extractor to
generate a large number of general features as input for
the classifier. The pre-trained VGGNet is trained with a
very large ImageNet dataset so that the extracted features
are more general than the classical CNN model. Even with
heavy dropout, the remaining features are still sufficient to
complete the recognition task. Second, the transfer learning-
based approach trains a much simpler neural network. The
transfer learning-based approach only needs to train the full
connection layers. As the full connection layer is much simpler
than the full classical CNN model, the transfer learning-based
approach can achieve more stable performance with a small
amount of data.

Comparing the time required for the two approaches to
reach a pre-determined accuracy on the extremely small
datasets, we present Fig. 15. The results show that both the
transfer learning-based approach and the classical CNN-based
approach take more epochs to reach the defined accuracy level
than in the first scenario (full dataset). The transfer learning-
based approach takes around 5 more epochs to reach 94 % ac-
curacy, while the classical CNN-based approach needs around
10 more epochs to reach the same accuracy threshold. For
other accuracy thresholds, we can see a similar observation.
Nonetheless, no matter what the desired accuracy threshold,
the transfer learning-based approach is still much faster than
the classical CNN-based approach.

Distributed Transfer Learning vs. Centralized Trans-
fer Learning: Finally, we compare the performance of our
proposed transfer learning approach in a distributed setting
versus a centralized setting, using extremely small datasets.
As shown in Fig. 16, we illustrate the performance of our
transfer learning approach in a distributed setting for scenario
D. From the figure, we can see that distributed transfer learning
approach improves the accuracy by about 1.5 %. At the same
time, the performance of distributed transfer learning approach
is also more stable. This is because we train multiple classifiers
that have different structures. By combining multiple models
to make the decision, we can further reduce the variance of
recognition and achieve higher accuracy.

For different IIoT systems, the size of the data used to train

a local transfer learning model is typically small considering
the resource limitations of the local node and the availability
of data. In contrast, for centralized transfer learning, the cloud
computing center can have a much larger training dataset. In
general, a larger training dataset will result a deep learning
model in achieving higher accuracy in recognizing images.
Nonetheless, it can be seen from Table I that, although three
times the data is provided to the deep neural network, its
accuracy is improved by only 1.0 %. Thus, the improvement
of the recognition accuracy by the dataset size is non-linear.
Once the accuracy of the deep learning model reaches a certain
threshold, it becomes difficult to continue to improve the ac-
curacy of the model simply by increasing the size of the data.
Moreover, the centralized transfer learning model is trained
with the data gathered from all local nodes, which results in the
centralized transfer learning model having higher recognition
accuracy than any single distributed transfer learning model.

Recall from Fig. 2 that we have designed four different
scenarios. Based on the sizes of data in scenarios A through
D, the comparison between CTL and DTL can be divided into
two perspectives: (i) DTL vs. CTL with a large dataset, and
(ii) DTL vs. CTL with a small dataset. With a large dataset,
both local nodes and the central node can reach a very high
accuracy in average. This means that each local node in DTL
will have a similar performance to the central node in the
CTL. Since there are multiple neural network models with high
accuracy working together, the DTL will slightly outperform
the CTL. Nonetheless, the local nodes in DTL will need much
more time to perform the training process compared to the
cloud computing center, considering the limited computation
capacities of the local nodes. With a small dataset, the local
nodes can achieve desirable accuracy within a small time
period by applying the transfer learning techniques as shown
in Fig. 17. Although each local node has a slightly worse
performance than the central node, the DTL uses all the local
nodes to make the decision. As a result, Fig. 16 shows that
DTL has a higher prediction accuracy and smaller convergence
time than CTL in a small dataset scenario.

We also compare the time required to reach a target accuracy
for both approaches in scenario C (i.e., centralized transfer
learning with small datasets) and scenario D (i.e., distributed
transfer learning with small datasets). Because the lower accu-
racy threshold is reached by both approaches very quickly, it
is hard to discern any difference. Thus, we focus on the higher
accuracy threshold. As can be seen in Fig. 15, our distributed
transfer learning approach takes about 2 epochs to reach the
95 % accuracy, while the centralized transfer learning approach
needs around 10 epochs. As the accuracy threshold continues
to increase, this difference becomes more pronounced. This
also benefits from multiple models in the distributed transfer
learning approach. Devices (e.g., sensors) in the IIoT system
are typically distributed to different locations and connected
via wireless networks. For centralized transfer learning, all
training data gathered from sensors will be transmitted to the
cloud computing center, resulting in data transmission latency
calculated by the total amount of data divided by the data
transmission rate. For distributed transfer learning, as IIoT
devices conduct transfer learning locally, the learning result
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is transmitted instead of the original data. Considering that
the learning result is much smaller than the original data, the
transmission latency of distributed transfer learning will be
much smaller than that of centralized transfer learning.

VI. DISCUSSION

The mechanism of transfer learning brings new directions
for rapidly training deep neural networks in IIoT systems. We
could extend our work from three perspectives: CPS, transfer
learning algorithm design, and practical application, which
have different focuses and can be leveraged in support of one
another.

CPS: From the perspective of CPS, exploration of transfer
learning task space should be considered. A typical CPS
usually consists of both cyber and physical subsystems. In
cyber subsystems, control, computing, and networking are
essential components interacting with each other and adding
new functions to traditional industrial systems (e.g. production
automation, self-diagnosis, self-repair, etc.). At the same time,
the control complexity of these new functions is also very
high, and traditional optimization control methods cannot take
into account all components and subsystems well. Machine
learning has been increasingly applied to the optimization
of complex systems due to excellent performance with high-
dimensional variables [2]. One future direction is to continue
to explore what complex control tasks in CPS can be optimized
by machine learning techniques.

Transfer Learning Algorithm Design: From the per-
spective of transfer learning algorithm design, we should
focus on customizing existing transfer learning algorithms
for different application scenarios. Transfer learning has a
number of branches. Different transfer learning algorithms
are tailored to solve different problems. Due to the black-
box nature of machine learning algorithms, it is difficult to
express transferred knowledge. Thus, it is difficult to find
theoretically optimal machine learning models for applying
transfer learning in all environments. Nonetheless, we can still
customize existing transfer learning algorithms according to
specific application scenarios. Recall the discussion of the CPS
perspective, after we discover valuable application scenarios
in CPS, how to design the most suitable transfer learning
algorithm for a designated scenario is an interesting problem
to explore. Based on the research conducted in this paper,
when designing a distributed transfer learning approach, we
shall consider the computing limitations of IIoT devices and
take advantage of the distributed nature of the IIoT system
itself.

Under ideal conditions, an IIoT system should have high
computing capabilities, network conditions, and data transmis-
sion rate. Since computation and transmission latency are very
low, we can focus on designing and tuning the neural network
to maximize its performance (i.e., accuracy) with a sufficient
volume of data. Nonetheless, in some cases, the IIoT system
may have limited computing and network resources. As such,
the deep neural network training time and transmission latency
will become key factors affecting the performance of the IIoT
system. On one hand, if we train our deep neural network

on local nodes that have low computing capacity, the training
time will be large, but the transmission latency will be small
since we do not need to transmit the data gathered from local
nodes to the cloud computing center. On the other hand, if
we decide to transmit all the data to the cloud computing
center first, and train the deep neural network model in the
cloud computing center, the transmission latency will be large,
and the training time will be small. Thus, when we design
deep transfer learning algorithms for IIoT systems with limited
resources, we should consider how to reduce the combined
training and transmission latencies according to the resource
limitations of the specific IIoT system.

Practical Applications: From the perspective of practical
applications, we should validate the feasibility of a variety of
proposed approaches. After we design a transfer learning so-
lution for a specific environment, we need a realistic platform
to actually implement the proposed approach and evaluate its
efficacy. Collecting and analyzing problems encountered in
real-world scenarios can assist in improving the design of sce-
narios and algorithms. The complexity of the actual application
environment is quite difficult to simulate. A realistic experi-
mental platform that can reflect these complex interactions
will greatly contribute to future research on applying transfer
learning in CPS and IIoT systems. Further, federated learning
is a distributed learning approach that can provide low latency
and reduce power consumption in the model training process,
especially in IIoT devices with limited resources. Federated
learning shares some characteristics with our proposed transfer
learning framework. Thus, we can integrate federated learning
techniques into our proposed transfer learning framework to
further improve the learning performance of IIoT systems. For
example, in a realistic scenario with multiple IIoT systems,
each system may operate its learning process using federated
learning. The learning results from one system can be shared
with another system via transfer learning.

VII. FINAL REMARKS

In this paper, we proposed a general framework to adopt
transfer learning in different IIoT scenarios. Based on the
amount of data and the way that the transfer learning process
is performed (either a centralized or distributed manner), we
categorized the problem of applying transfer learning in IIoT
systems into four scenarios. We also designed a general work-
flow for applying transfer learning in each scenario defined.
To demonstrate the efficacy of our approach, we applied
our approach to recognize the industrial components in a
general IIoT system using the T-Less industrial dataset. Via
comprehensive experiments, we demonstrate that, compared
to the existing approach, our proposed approach can achieve
faster learning with more stability with little training data, and
does so in all scenarios.
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