
Apply Quantum Search to the Safety Check for Mono

Operational Attribute Based Protection Systems

Vincent C. Hu

 Computer Security Division

National Institute of Standards and Technology

Gaithersburg, U.S.A. 20899

vhu@nist.gov

Abstract. Interrelated computing device’s system such as IoT, RFID, or

edge device’s systems are pervasively equipped for today’s information ap-

plication and service systems, protecting them from unauthorized access i.e.

safety is critical, because a breach from the device may cause cascading ef-

fects resulting to data lost or even crash of the whole information system.

However, to determine a protection system’s safety is proven to be unde-

cidable unless the system has limited management capabilities. And even

with such limitation, it is too expensive to perform a safety test in term of

computation time when a device has more than hundreds of subjects which

is not uncommon for interrelated computing devices. Nevertheless, the re-

quired exponential computing time for safety test can be significantly re-

duced to its square root if computed by quantum algorithm. In this paper we

demonstrate an application of quantum search algorithm to reduce the com-

putation time for safety test for limited (i.e. mono operational) protection

systems which are based on attribute-based access control model. The im-

provement of the performance allows the safety test for interrelated compu-

ting device’s system to be much less expensive to compute.

Keywords: Access Control; Protection System; Quantum Algorithm; Secu-

rity Model; Quantum Search.

1 Introduction

Interrelated computing device’s systems (ICDSs) [1] such as IoT, RFID, edge

device’s or similar systems are pervasively equipped for today’s information ap-

plications and services [2], protecting these systems from unauthorized access i.e.

safety is critical, because a breach from an ICDS may cause cascading effects

leading to data lost or even crash of the whole system[3]. Further, as Attributed-

Based Access Control (ABAC) [4] model is getting more applied for access con-

trol [5], an ICDS may apply ABAC for its access control mechanism. We call

such protecting system the Attribute Based Protection System (ABPS), which

also includes its access control policy management functions.

2

The safety for an ABPS is to ensure that it is impossible to leak access privi-
lege (perform actions to objects) from authorized subjects to unauthorized subjects
through any changes of access state. And safety test is to verify if the safety of the
system is maintained after any order of access control policy changes. To test that
in worst case obviously requires checking access control policy updates evoked by
all possible sequences of policy management functions. By HRU1[6] theory, such
test is proven to be undecidable unless the ABPS is limited to be mono opera-
tional, which is restricted to have only one primitive commend for each policy
management function.

An ICDS’s ABPS can be mono operational, because its access control requires
limited management capability. But even that, the exponential computation time
(NP-Complete) for safety test is still too expensive [7], because subjects, objects,
and actions as exponential variables of computing time for most ICDSs can easily
reach to hundreds if not thousands. Nevertheless, it can be significantly improved
by applying quantum search algorithm, which reduces the computation time to the
square root of the time required by classical algorithm, thus, allows the safety test
for ICDS’s ABPS to be minimum computable.

This paper is divided into six sections, section I is the introduction, Section II

describes the ABPS, Section III explains the safety test algorithm that applied to

mono operational ABPS, Section IV introduces quantum algorithm modified from

quantum search algorithm for the privilege leak detect process of safety test algo-

rithm. Section V demonstrates the performance comparison between quantum and

classical algorithms in terms of computation time, and Section VI is the conclu-

sion.

2 Attribute Based Protection System

Attribute Based Access Control (ABAC) is an access control method where sub-
ject requests to perform actions on objects are granted or denied based on assigned
attributes of the subject and objects, environment conditions, and a set of rules
specified by those attributes and conditions [4] called ABAC policy, which given
the values of the attributes of the subject, object, and environment conditions and
their relations make it possible to determine if a requested access should be au-
thorized.

ABPS applies ABAC where a subject si represents a combination of subject
attributes sa1,…sai,...sak the subject is associated with, and an object oi repre-
sents a combination of object attributes oa1,…oaj,...oal that apply to the object.
And the access control policy is managed by the policy management functions.
The ABPS’s access state can be presented by the HRU access matrix (Figure 1)
such that the access control policy rules are mapped to rows and columns with
intersected cells. A cell contains actions that are permitted to perform the accesses
from the subject to the object corresponding to the row and the column, as exam-
ple in Figure 1, shows that subject sj is permitted to perform actions r and w ac-
cesses to object oi, The cell intersected by both row and column of subjects is used
for creating or deleting a subject by another subject. ABPS’s ABAC policy rules

1 We denote the term HRU to be general references to the systems and theories presented in

[5].

3

are mapped to the access matrix by adding permitted access actions into cells and
removing denied accesses actions from cells if the actions existed.

Fig. 1. ABPS access matrix state.

An ABPS’s policy management mechanism, which in general is a set of policy

management functions for creating, updating the ABAC policy rules. The function
is intrinsically equal to access matrix update function such that assign rule func-
tion: “assign action a to object oj to subject sk” is equal to: “add a to the intersect
cell of row sk and column oj” add function, and delete rule function: “delete action
a to object oj of subject sk” is equal to: “remove a in the intersect cell of the row sk
and column oj” delete function. Figure 2 shows an example ABAC rule: “users
with attribute p or q can read device x” maps to HRU access matrix. Therefore, an
ABPS access state is an instance of an HRU access matrix state, and ABAC poli-
cy rules can be configured to rows and columns of an HRU access matrix.

Users/Device ….. device x

…….

Attribute p read

…….

Attribute q read

Fig. 2. ABPS access matrix state

There are six primitive commands for ABPS’s policy management functions,

and their counter parts for access matrix operations are shown in Table 1:

Table 1. ABPS’S and HRU primitive commands mapping.

ABPS primitive commands HRU primitive commands

assign action (a, si = (sa1…..sak), oi =

(oa1…..oaj))

enter action a into (si, oi)

delete action (a, si = (sa1…..sak), oi =

(oa1…..oak))

delete action a into (si, oi)

add subject (si = (sa1…..sak)) create subject si

add object (oi = (oa1…..oak)) create object oi

remove subject (si = (sa1…..sak)) destroy subject si

remove object (oi = (oa1…..oak)) destroy object oi

Subject\Object s1 … sn o1= (….) … oi = (oa1,…oaj,...oal) … om= (….)

s1 = (….)

…..

sj = (sa1,..sai,..sak) r, w

…..

sn = (….)

4

Access state changes after executing sequences of access state change func-
tions can be presented formally by: Q1 Ͱ fn1 Q2 Ͱ ….. fni Qi Ͱ ….. fnm Qm, (Ͱ
means complete the function) where Qi is an access state, and function fni makes
access state change from Qi to Qi+1. The pseudo fni for ABPS policy management
function is:

ABPS_fni (subjects, actions, objects){//* subjects or objects are optional if the

functions are create/destroy subjects or objects *//

if no conflict with current ABAC access control policy

then { execute primitive commands pc1;

execute primitive commands pc2;
….

execute primitive commands pcn ,

that apply to the subjects, actions, and objects

}//*primitive commands update ABAC policy *//

current access control policy Pi = Pi+1

}

And the corresponding fni for HRU access matrix update function is:

HRU_fni (subjects, actions, objects) { //* subjects or objects are optional if the

functions are create/destroy subjects or objects *//

if conditions c1, c2….ck then {

execute primitive commands pc1;,

execute primitive commands pc2;,

….

execute primitive commands pcn ,

that apply to the subjects, actions, and objects

} //*primitive commands update access matrix *//

curent access matrix Hi = Hi+1

}

The steps for checking the conflict of access control policy in ABPS_fni are not

semantically different from HRU_fni’s if condition checks, because satisfying the

current ABPS policy is the same as satisfying the state of HRU matrix, which can

be translated from the ABPS’s policy rules.

3 ABPS safety check

HRU defines that:

“given a protection system, we say command c leaks generic action a from

the access state if c, when run on the access state, can execute a primitive opera-

tion which enter a into a cell of access matrix which did not previously contain a”.

from the definition, the safety of ABPS is to ensure unintended subjects cannot
perform protected actions on objects through executing any sequence of policy
management functions (ABPS_fnis described in Section II), such that the permitted
accesses for the action by the original access control policy remains the same

5

during the system’s life cycle. Thus, the safety test is to verify that if the system
remains safe after all possible sequence of policy management functions being
executed. Figure 3 shows the components and relations of an ABPS and its safety
test system.

Fig. 3. ABPS and Safety test system

According to HRU, safety test for general protection systems including ABPSs
is undecidable in term of computation complexity, because to test the safety of a
protection system in worst case obviously requires checking all possible sequenc-
es of access matrix changes evoked by access matrix update functions with all
possible parameters including subjects, actions, and objects, plus that the function
may contain unlimited if condition checks and arbitrary numbers of primitive
commands (Table 1). The undecidability can be proved by configuring the protec-
tion system to simulate the behavior of an arbitrary Turing machine, with a safety
leakage state corresponding to the Turing machine entering a final state [6].

In addition to general protection systems, from HRU’s theory, a restricted type

of protection system called mono operational protection system, which limits

each matrix update function to contain only one primitive command. HRU shows

that determining safety for mono operational protection system is decidable in

NP-Complete, which is proved by reducing a K-clique problem to a safety deci-
sion problem that translating the system’s initial access matrix to an adjacency

matrix for a graph, then test to see if it forms a k-clique before entering an action

a to the access matrix causing safety leak. HRU also shows that only the primitive

command enter can change the access state. To simulates the HRU’s algorithm for

mono operational ABPS safety test, Figure 4 illustrates the algorithm Safety_Test

for an action a. Since a policy management function of a mono operational protec-

tion system contains only one primitive command, and only the enter primitive

command can change the access state, the algorithm needs to tests every possible

sequences of enter commands for all actions, in other words, try all possible se-

quences of primitive enter commands, (optional starting with a create subject

command) of length up the |A||S||O| for each sequence, where |A| is the number

of all actions, |S| is the number of all subjects, and |O| is the number of all objects.

6

The parameters of an enter command are an action-subject-object triplet corre-

sponding to a command sequence, which is identified by a binary number, for

example, if there are two subjects s1 and s2, two objects o1 and o2 , and two actions

a1 and a2 in the ABPS then there are 222 = 8 different enter command, and 28

possible sequences, for instance, the 5th enter command sequence is {enter (a1,

s1, o1); enter (a1, s2, o1)}, and the 24th command sequence is {enter (a1, s1, o1);

enter (a1, s2, o2); enter (a2, s1, o1)}, because the binary form of the sequence 5 is

00000101 and 24 is 00011001, where the bits representations of enter commands

are assigned in Table 2.

Table 2. Example bit number assignment of 2 actions, 2 subjects and 2 objects pairs.

Triplet Assigned bit

(a1, s1, o1) 1st bit

(a1, s1, o2) 2nd bit

(a1, s2, o1) 3rd bit

(a1, s2, o2) 4th bit

(a2, s1, o1) 5th bit

(a2, s1, o2) 6th bit

(a2, s2, o1) 7th bit

(a2, s2, o2) 8th bit

Safety_Test (P1, a) { (1)

H1 = Initial P1; //* map accesses permitted by the ABPS access control policy to

the HRU access matrix *//
(2)

Privilege_leak = 0 ; (3)

i = 1; (4)

For k = 0 to 2|G||S||O| - 1 //* |G| is the number of actions, |S| is the number of

subjects, |O| is the number of objects

*//{ (5)

For all (ax, si, oj) //*(ax, si, oj)  {A S  O}; A is the set of actions, S is the

set of subjects, O is the set of objects *//

{ (6)

If Bitmap (ax, si, oj, k) = 1 //*match si-oj pair to binary number k*//
(7)

enter (ax, si, oj) (8)

 {

}

Hi = Hi+1; (9)

If State_Compare (Hi, H1, a) //*check if access state is changed*// (10)

Then { (11)

privilege_leak = 1; (12)

end Safety_Test; (13)

}

else privilege_leak = 0; (14)

7

}

}

Bitmap (ax, si, oj, k) {

i = Numer_map(ax, si, oj) //* translate si-oj pair to binary number*//

For j = 1 to i

If the jth bit of Binary(k) == 1 //*check the match of bits*//

return 1

}

State_Compare (Hi, H1, a){

For each row of si {

For each column of oi {

If (((a in the cell of (si, oi)) of Hi) == ((a in the cell of (si, oi)) of H1))

Then return leak = 0

else return leak = 1; //*privilege_leak state is passed to Safety_Test*//

}

}

}

Fig. 4. ABPS Safety Test algorithm

The Bitmap function translates the action-subject-object triplet of the enter com-

mand to a binary number to match the current sequence number passed to the

function as examples showed in Table 2.

The State_Compare function compares cells in original access matrix H1 to the

new access matrix Hi that might be updated after a sequence of enter commands

were executed, it checks if a privilege leak by action a is found, and the result is

returned to the Safety_Test. Note that the algorithm only checks the safety against

one action a, it is capable of checking multiple actions leaks, and to do that we

need to replace (si, oj) with (si, am, oj), {SO} with {SAO}, 2|S||O| with 2|S||A||O|,

and (a, si, oj) with (am, si, oj) and add a For loop for each am check in the function.
For later discussion of quantum algorithm, we call the For loop from line 5 to

14 in Figure 4 the Leak_Detect process collectively. Hence, the Safety_Test would

require 2|A|||S||O| O(Leak_Detect) computation time (steps) for detecting an ac-

cess privilege leak, where O(Leak_Detect) is the time needed for Leak_Detect

process, which is equal to O(Bitmap) |A||S||O|+O(State_Compare) =

2|A||S||O|, because O(Bitmap) take constant and O(State_Compare) takes

number of steps equals to the size of access matrix: |S||O| times |A| to compute.

Some low power ICDSs’ (e.g. IoT, RFID, or edge computing devices or similar

systems) access control are managed by ABPS, where access control policies are

either embed or deployed by central management system rather than managed by

the device themselves [8]. For instance, RFID devices include independent storage

access control rules, only when the rule needs to be updated, do reading devices

need to communicate with the server, and access control rules can be updated by

the multicast method. In the same security zone, multiple reading devices can

distribute access control rules at the same time, thereby improving the efficiency

of rule updates [9]. In addition, some access control mechanisms allow smart ob-

jects take the authorization decisions based on current context of the processes in

8

use [10]. For those systems with limited access control management capabilities,

the protection systems can be implemented by mono operational ABPS. And these

ICDSs usually accessed by a large number of users risking safety leak [11], plus,

due to frequently adding new and updating old devices, their safety need to be

efficiently verified to satisfy their security and performance requirements of ser-

vices, thus, need an efficient safety test method that classical algorithms cannot

offer.

4 Quantum search algorithm for ABPS safety check

Even the ABPS safety test is decidable but in NP-Complete as described in the

last section, it is still an issue to be efficiently computable for systems having

large number of subjects, objects and actions such might sum up to hundreds if

not thousands of users, because, for example, an ICDS is used by just 10 subjects

(classified by users’ attributes) with only two objects (classified by devices’ at-

tributes) and 3 actions, the safety will take 210×2×3  (21023) computation

time. Thus, it is desirable to improve the exponential computation time (steps) to

be feasible to compute. To reduce the computation time, we propose to adopt the

Grover Quantum search algorithm [12, 13], which performs the transformation

L|x|q = |x|qf(x)  to a black box oracle f to speed up f(x) for multiple x inputs,

where |q is an ancilla qubit for quantum unitary computation. The algorithm finds

with high probability the unique input to the black box oracle function that pro-

duces a particular output value, using just √𝑁 evaluations of the function, where N

is the size of the function's domain.

Schema in Figure 5 shows the application of quantum search algorithm for

safety test called Safety_Test quantum algorithm, which uses n+1 qubit register

as input (the ancilla 1 qubit is for quantum unitary operation), where N = 2n =

2|A||S||O| is the number of all possible sequences of enter commands, |A| is the

number of actions, |S| is the number of subjects, and |O| is the number of objects

of the ABPS. The output of the algorithm is a number xleak representing a sequence

of enter commands that causes privilege leak by the action a. Notice that instead

of a leak command sequence, the classical Safe_Test algorithm (Figure 4) only

returns a result indicating whether a leak exist. In contrast, the quantum algorithm

returns one of the leak sequence numbers (there could be more than one command

sequence that cause leakages). The black box oracle function f is hence the

Leak_Detect process (from line 5 to 14 of the classical Safety_Test algorithm in

Figure 4).

9

Fig. 5. Quantum Safety Check schema

Safety_Test quantum algorithm requires repeating applications of the Grover

quantum search subroutine shown as the Grover iteration G in Figure 5, where

each iteration move 1/√𝑁 amplitude towards solutions, thus √𝑁 iterations should

suffice to render a xleak. The algorithm is divided into four steps as below

1) Begins with the initial state, n + 1 qubits in the state |0:|0𝑛|0, the ex-

tra |0 is for the quantum unitary operation.

2) The Hadamard transform is applied to establish equal superposition state

|  of all possible numbers of enter command sequences that

|  =
1

√2𝑛
∑ |𝑥 [

|0 − |1

√2
]

2𝑛−1

𝑥=0

Where 0  x  2|A||S||O.

3) Apply the Grover G iteration K=√𝑁/𝑀  times: where M is the number

of sequences of enter command sequences (i.e. xleaks) that cause privilege

leaks. This step can be subdivided into the following three steps:

3.1) Apply the quantum oracle L

𝐿|𝑥|𝑦 = |𝑥|𝑦𝐿𝑒𝑎𝑘 𝐷𝑒𝑡𝑒𝑐𝑡(𝑥)
resulting

|𝑥  (−1)𝐿𝑒𝑎𝑘 𝐷𝑒𝑡𝑒𝑐𝑡(𝑥)|𝑥
Note that each x is a number representing an enter commands sequence, for exam-

ple the number 5 represent the sequence; { enter (g2, s1, o2); enter (g1, s2, o1)} as
shown in Section III. Leak_Detect (x) = 0 for all 0 ≤ x ≤ 2n except the xleak for

which Leak_Detect(x) = 1 indicating the enter command sequence leaks privilege

for action a in the current access control state.

 3.2) Apply the Hadamard transform 𝐻𝑛

|  =
1

√2𝑛
∑ (−1)𝐿𝑒𝑎𝑘 𝐷𝑒𝑐𝑡𝑒𝑐𝑡(𝑥)|𝑥 [

|0 − |1

√2
]

2𝑛−1

𝑥=0

3.3) Performs a conditional phase shift i.e.

|0  |0 and

|𝑥 | − 𝑥, 𝑥  0

10

with every computational basis state except |0, receiving a phase shift of -1, i.e.

the leaking enter command sequence x = xleak  0. The conditional phase shift can

be calculated by applying the matrix operation of

2 |0 0| − 𝐼
where I is the identity matrix.

3.4) Apply the Hadamard transform Hn

4) Measure the first n qubits of |  gets one of the possible leak sequence

xleak.

The quantum algorithm requires √𝑁/𝑀  O(Leak_Detect) [14] of computa-

tion time, where M is the number of enter command sequences that cause leaks, in

other words, there could be multiple leaking xs, so, M implies that there is at

least one leak sequence exist. After the Grover iterations (calls to oracle

Leak_Detect) were performed, one of the M sequences will be measured out with

higher probability than the sequences that may or may not causing leak. The algo-

rithm is a quadratic improvement over the N/M  O(Leak_Detect) calls performed
by classical computer.

Since measuring from step (4) will render only one result, however, there

could be cases that has no or multiple leak sequences exist, hence the result could

be a random sequence i.e. mistakenly identified as a leaking sequence. To correct

this inaccuracy, three methods can be applied:

a) A planned fake leak sequence xf : enter (gf, sf, of) is assigned in between line

9 and 10 of Leak_Detect process in the Safet_Test algorithm such that the xf will

be detected as a leak command sequence in √𝑁 time with high probability close

to 100%, because it is the only leak sequence can be detected that makes M = 1.
And if after several runs of the algorithm, the results repeatedly measured to be

the same xf, we can confidently determine that there are no other leak sequences

besides the planned xf.

b) To more precisely determine the number of leak command sequences, com-

bine the Grover iteration G with quantum counting algorithm [14]. The method

is to estimate the number of leak command sequences by quantum counting,

which is an application of the phase estimation procedure to estimate the eigen-

valuses ei of Grover iteration G, which in turn enables determining an approxi-

mate number of leak command sequences M. The method allows us to decide

whether a leak sequence even exists depending on the result number. The phase

estimation circuit used for quantum counting is shown in Figure 6. The function of

the circuit is to estimate  to an accuracy approximate to 2- m (note2).

2 More accurate, m should be m+log(2+1/2ϵ qubits .

11

Fig. 6. Approximate quantum counting circuit for G

c) requires no additional process, but repeatedly running the algorithm enough

times, then analyze the measured results. If there is no command sequence causing

leak, any random sequence number will be measured with the same probabilities

of all other sequence numbers. Such result indicates that there is no concentrate
output of one particular leak sequence number meaning that the possibility of

having a true leak sequence is low, however, this method is reliable only when the

total number of actions, subjects and objects is large enough for the odd that get-

ting a random result, which is true leak sequence is low. Table 3 compares the

three methods.

Table 3. Comparison of testing methods for checking the existence of true leak sequences.

Checking methods If true leak se-
quences exist

It no true leak sequence
exist

Accuracy

(a) Plan fake leak
sequence access xf

Equal probabilities
of getting true leak
sequences xleak and
xf

Fake leak sequence xf
has highest possibility
being measured

Median

(b) Quantum count-
ing by applying
phase estimation

Number of solutions
from phase estima-
tion algorithm > 0

Number of solutions
from phase estimation

of algorithm  0

Hight

(c) No extra step
required but run
the algorithm
enough times

High probability of a
true leak xleak se-
quence is measured

Equal probability for
every sequence will be
measured

Low (reliability
increased by in-
creasing the num-
ber of input (i.e.
subjects and ob-
jects) sequences)

Table 3 shows that the more difficult in implementing the method (as ordered

by methods b, a, and c) the more accurate result it will generate, unless depending

on the number of possible sequences in method c, which if applied to a large

number of total sequences (say no less than hundreds) then the accuracy might

equal or better than method a and b, however, repeating the process of c method is

not as efficient as the other methods. The detail algorithms and comparison of the

three methods is interesting that worth to be discussed by their own topics, due to

the limited space and to keep the discussion on focus, we only briefly introduce

them in this paper.

12

5 Performance of safety check quantum algorithm

We can now summarize the performance improvement of safety test for a mono

operational ABPS by comparing quantum to the classical algorithms. Assuming

there is at least one leak sequence exist, by the quantum safety test algorithm, it

will take √𝑁 × O (𝐿𝑒𝑎𝑘 𝐷𝑒𝑡𝑒𝑐𝑡) while classical safety test algorithm requires N 

O (Leak_Detect) (for simplicity of demonstration, let’s assume M = 1). The differ-

ence is in the order of √𝑁 compared to N = 2|A||S||O|, which is the 2’s power of the

number of actions |A| times the number of subjects |S| times the number of objects

|O| managed by the ABPS system. For ICDSs or applications accessed by large

number of subjects (users classified by attributes) to multiple number objects (de-

vices classified by attributes), the quadratic difference is significant as shown in

comparison listed in Table 4. Note that for the purpose of comparison, the O

(Leak_Detect) is not counted, because both algorithms take the same polynomial

time which does not affect the exponential difference.

Table 4. Computation time comparison of classical and quantum algorithms for ABPS

safety test

Number of subjects

times objects

Classical algorithm  O

(Leak_Detect)

Quantum algorithm  O (Leak_Detect)

5 32 5.6568542494492  6

10 1024 32

15 32768 181.0193359838  181

20 1048576 1024

25 33554432 5792.61875148  5793

30 1.073741824109 32768

35 3.43597383681010 185363.8000474  185364

40 1.0995116277761012 1048576

45 3.5184372088831013 5931641.601516  5931642

50 1.1258999068431015 33554432

 The growth of computation time from 5 to 50 (number of subjects times ob-

jects) is about 3.51013 time for classical algorithm, and about 6106 time for

quantum algorithm, obviously, the improvement of quadratic reduction by quan-

tum algorithm allows the safety test to be reasonably performed.

An ICDS’s device in general is accessed by only one public user class (subject

with public attribute) plus one administrator (subject with administrator attribute)

and limited actions available to manage the device, so, at minimum, two subjects

can read and write (most common actions) to the object, thus, only require 2221

O (Leak_Detect) computation steps by classical algorithm for safety test. However,

some ICDSs may have more than one device to be managed, so the access control

policy is deployed from central service to individual device as described in Sec-

tion III. In such cases, the ICDS’s ABPS may apply one-size-fits-all access con-
trol policy to its devices, thus even with limited allowed actions, but has multiple

13

number of administration subjects and device objects. Further even with a single

device (object), it is not uncommon that an ICDS has more than tens even hun-

dreds of subjects and objects. So the computation time for safety test is not practi-

cal by classical algorithm for these systems, but if instead use quantum algorithm,

the difference is enormous even for small number of actions, subjects and objects

as shown in Figure 7, the growth is measured in 1000 computation time per unit

for up to 20 in comparison of classical and quantum algorithm. It shows that there
is not much benefit using quantum algorithms if the number is less than 10, how-

ever, the difference is obvious when the number is greater. Note that the compari-

son is for detecting leak for only one action, if there are multiple actions involved,

the computation time will increase even exponentially greater by |A|, which is the

number of the actions under test as a factor of exponent.

Fig. 7. Computation time comparison of quantum and classical algorithms for safety test

6 Conclusion

To determine the safety of a protection system is to find if there are privilege leaks

from protected actions to unauthorized subjects of the system. HRU shows that for

mono operational protection system, the computation time for the safety test is

decidable, however take NP complete computation time, which is too expensive to

perform for a system with large number of subjects and objects such as ICDS (e.g.

IoT, RFID systems etc.) that applies attribute based access control (ABAC) mod-

el.

We demonstrate that an ABPS (protection system that applies ABAC model) such

as ICDS can be simulated by an HRU access matrix and its matrix management

functions. And adapted from Grover quantum search algorithm, we propose a

quantum safety test algorithm, which determines the safety by returning a com-

mand sequence that will cause access leak for a mono operational ABPS. We

conclude that if N equals to 2|A||S||O| where |A| is the number of actions, |S| is the

number of subjects, and |O| is the number of objects, and each of subject, object

14

represent a set of attributes associate to them, the quantum algorithm for a mono

operational ABPS requires computation steps √𝑁 times the time required for

classical leak detection process, compared to N times the time required for classi-

cal leak detection process, the quantum algorithm reduces the computation time

quadratically. The saving is significant for ICDS or similar systems that its devic-

es usually are accessed by large number of subjects with limited available actions.

In addition to the quantum algorithm, three methods are explained to ensure that

the test result are genuine instead of some random command sequence that does

not but mistakenly rendered as a command sequence that causes access privilege

leak.

References

1. Rouse, M.: Internet of Things (IOT), IoT Agenda, Tech Target,
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT (2019).

2. Voas, J., Kuhn, R., Laplante, P., Applebaum, S.: Internet of Things (IoT) Trust Con-
cerns. NIST Cybersecurity White Paper (2018).

3. Siboni, S., Glezer, C., Shabtai, A., Elovici, Y.: A Weighted Risk Score Model for IoT
Devices. In: SpaCCS 2019 International Workshops proceedings, pp 20-34. Springer,

Atlanta. GA, USA (2019).

4. Hu. V. et. al: Guide to Attribute Based Access Control Definition and Considerations”,
National Institute Standards and Technology”, NIST SP 800-162. (2014).

5. AXIOMATIC: Attribute Based Access Control (ABAC),
https://www.axiomatics.com/attribute-based-access-control/.

6. Harrison, M. A., Ruzzo, W. L., Ullman, J. K.: Protection in Operating System, Com-
munications of the ACM Magazine, Volume 19 Issue 8, pp 461-471 (1976).

7. Xu, Z., Li, X.: Secure Transfer Protocol Between App and Device of Internet of

Things. In SpaCCS 2017 International Workshops, Proceedings, pp 25-34, Guang-

zhou, China (2017).
8. Skarmeta, A. F., Hern´andez-Ramos, J. L., Moreno, M. V.: A decentralized approach

for Security and Privacy Challenges in Internet of Things, IEEE World Forum on In-
ternet of Things, https://ieeexplore.ieee.org/abstract/document/6803122 (2014)

9. Dhillon, P., Singh, M.: Internet of Things Attacks and Countermeasure Access Control
Techniques: A Review, International Journal of Applied Engineering Research ISSN
0973-4562 Volume 14, Number 7 pp. 1689-1698 © Research India Publications.
http://www.ripublication.com (2019).

10. Mali, A., Darade, S.: Security and Privacy in Web-based Access Control in Internet of
Things, Academia,
https://www.academia.edu/28002646/Security_and_Privacy_in_Web-
based_Access_Control_in_Internet_of_Things.

11. Maddison, J.: The Importance of Access Control for IoT Devices”, SECURITYWEEK,
https://www.securityweek.com/importance-access-control-iot-devices (2018).

12. Grover, L.: A fast quantum mechanical algorithm for database search. In Annual ACM
Symposium on the Theory of Computation, page 212-219, ACM Press, New York

(1996).
13. Grover, L. K.: Quantum mechanics helps in searching for a needle in a haystack, Phys.

Rev. Lett, 79(2):325, 1997 arXive e-print quant-ph/9706033 (1997).
14. Nielsen, M., Chuang, I. L.: Quantum Computation and Quantum Information, Cam-

bridge University Press (2000).

https://ieeexplore.ieee.org/abstract/document/6803122
https://www.securityweek.com/importance-access-control-iot-devices

	1 Introduction
	This paper is divided into six sections, section I is the introduction, Section II describes the ABPS, Section III explains the safety test algorithm that applied to mono operational ABPS, Section IV introduces quantum algorithm modified from quantum ...

	2 Attribute Based Protection System
	Fig. 1. ABPS access matrix state.
	Fig. 2. ABPS access matrix state
	There are six primitive commands for ABPS’s policy management functions, and their counter parts for access matrix operations are shown in Table 1:
	The steps for checking the conflict of access control policy in ABPS_fni are not semantically different from HRU_fni’s if condition checks, because satisfying the current ABPS policy is the same as satisfying the state of HRU matrix, which can be tran...

	3 ABPS safety check
	Fig. 3. ABPS and Safety test system
	Fig. 4. ABPS Safety Test algorithm

	4 Quantum search algorithm for ABPS safety check
	Fig. 5. Quantum Safety Check schema
	Fig. 6. Approximate quantum counting circuit for G

	5 Performance of safety check quantum algorithm
	Fig. 7. Computation time comparison of quantum and classical algorithms for safety test

	6 Conclusion
	References

