
NISTIR 8365

A Collaborative Robot Work-Cell
Testbed for Industrial Wireless

Communications

Yongkang Liu
Mohamed Hany

Karl Montgomery
Richard Candell

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8365

NISTIR 8365

A Collaborative Robot Work-Cell
Testbed for Industrial Wireless

Communications

Yongkang Liu
Mohamed Hany

Karl Montgomery
Richard Candell

Intelligent Systems Division
Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8365

May 2021

U.S. Department of Commerce
Gina M. Raimondo, Secretary

National Institute of Standards and Technology
James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce

for Standards and Technology & Director, National Institute of Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this document in order to describe
an experimental procedure or concept adequately. Such identification is not intended to imply

recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency or Internal Report 8365
Natl. Inst. Stand. Technol. Interag. Intern. Rep. 8365, 101 pages (May 2021)

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8365

Abstract

A new testbed design for assessing the performance of wireless techniques in support of
industrial operations is proposed. For this, a collaborative robot work-cell manufacturing
scenario, which serves as the emulated cyber-physical system model in the testbed was
developed. Specifically, the information exchanged between networked work-cell compo-
nents, e.g., programmable logic controllers, robotic arms, and machining tools, was carried
out via messages of industrial communication protocols; network connections employed
were both Ethernet-based wired links and alternative wireless interfaces. A measurement
framework was introduced to collect various system events from both work-cell operations
and network traffic; a distributed clock synchronization scheme was developed to ensure
the temporal consistency of measurement records at distributed sources. To facilitate of-
fline performance analysis and data exploration, a new data pipeline was adopted that uses
the graph database for testbed data management. The testbed has been in use in evaluating
industrial wireless performance by the NIST team and industrial partners.

Keywords

Cyber-physical system (CPS); smart manufacturing; testbed; wireless communications.

i

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table of Contents
1 Introduction 1
2 Related Work 2
3 Overview of the Testbed Architecture 4
4 Production Modules 5

4.1 Work-Cell Workflow 6
4.2 Supervisor 7

4.2.1 Scheduler 8
4.2.2 HMI 9
4.2.3 Job Buffers 10
4.2.4 Production Tasks 10

4.3 Tooling Machines 12
4.4 Robots 15
4.5 Coordination between Work-Cell Modules 16

4.5.1 Coordination in Initialization 18
4.5.2 Coordination in Job Operations 20

5 Network Components 26
5.1 Communications in Work-Cell Applications 27

5.1.1 Remote HMI Operations 27
5.1.2 Supervisor-CNC Machines Interactions 28
5.1.3 Supervisor-Robots Interactions 29
5.1.4 Robotic Subsystem Communications 29
5.1.5 A Summary of Communication Traffic 30

5.2 Networking Architecture 30
5.3 Wireless Extension 32

6 Measurement Framework 35
6.1 Measurement Data Collection 36

6.1.1 Operational Data Collection 36
6.1.2 Network Traffic Captures 37

6.2 Time Synchronization 39
6.2.1 Precision Time Protocol 40
6.2.2 Timestamp Formats 41

7 Data Management 42
7.1 Graph Database 42

7.1.1 Graph Data Model 42
7.1.2 Building Blocks 43

7.2 Data Importing Pipeline 47
7.2.1 Data Preprocessing 48
7.2.2 Feature Extraction 48
7.2.3 Graph Insertion 48

ii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

7.2.4 Graph Tuning 49

8 Data Analysis & Graph Exploration 49
8.1 Graph Database Schema 49
8.2 Experiment Configurations 51
8.3 Preliminary Results 52

9 Conclusion 55
References 56
Appendices 60
A Communication Messages in the Testbed 60

A.1 Basic Packet Format 60
A.2 ADS/AMS 62
A.3 Modbus 65

B Beckhoff PLC Development 68
B.1 PLC Data Collection 68

B.1.1 Start a PLC Measurement 68
B.1.2 Adding New PLC Variables in the Subscription List 70

B.2 PLC Time Synchronization 72

C Translating Testbed Data to Graph Database 75
C.1 Graph Nodes, Relationships, and Their Properties 75

C.1.1 Nodes 75
C.1.2 Relationships 80

C.2 Data Importing Flow 81
C.2.1 Overview 81
C.2.2 Packet Dissection 83
C.2.3 Coupling Packet Captures in Communication Links 83
C.2.4 Cypher Queries and Python-Neo4j Interface 85

D Testbed Equipment Specifications 87
E Network Diagrams in Testbed Experiments 88
F Acronyms 91

List of Tables
Table 1 Feature comparison with existing industrial wireless evaluation platforms 3
Table 2 Specifications of sampled data flows between work-cell components 32
Table 3 Measurement data timestamp settings via PTP 40
Table 4 ADS commands 63
Table 5 Nodes and their property tags in the graph for static objects 75
Table 6 (:Message) nodes and their property tags in the graph 77
Table 7 (:Transaction) nodes and their property tags in the graph 78

iii

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 8 Physical action nodes and their property tags in the graph 79
Table 9 QoSReport nodes and their property tags in the graph 80
Table 10 Relationships and their creation conditions in the graph 81
Table 11 Testbed hardware and software specifications 87

List of Figures
Fig. 1 The NIST industrial wireless testbed architecture 4
Fig. 2 Product modules in the testbed 5
Fig. 3 Illustration of work-cell interactions in a tooling path 6
Fig. 4 Function modules in the supervisor PLC. 7
Fig. 5 Work-cell HMI and the control functions 9
Fig. 6 State machines of orders and queues 11
Fig. 7 The online order editor module in HMI 12
Fig. 8 Architecture of the CNC machine emulator 13
Fig. 9 CNC state machine 14
Fig. 10 A UR3 collaborative robot system 15
Fig. 11 The state machine of the UR3 robot in the work-cell 16
Fig. 12 The flow diagram in a UR3 robot cycle 17
Fig. 13 Timeline of initialization steps. 19
Fig. 14 Reset coordination between work-cell modules 20
Fig. 15 Coordination in a tooling procedure 20
Fig. 16 Module interactions in a part transition case 22
Fig. 17 Module interactions in a part inspection case 25
Fig. 18 Communications for remote HMI operations 27
Fig. 19 The supervisor-CNC Communications 28
Fig. 20 The supervisor-robot communications 30
Fig. 21 Communication between the robot controller and the F/T sensor 31
Fig. 22 Work-cell network architecture using full wired Ethernet connections 33
Fig. 23 Wireless extension to the work-cell network architecture 33
Fig. 24 Illustration of Layer 2 forwarding through the Ethernet-WLAN adapter 34
Fig. 25 The testbed measurement framework 35
Fig. 26 Network traffic test access point (TAP) device 38
Fig. 27 Network traffic probes in the testbed network 38
Fig. 28 Packet header samples from TAP and wireless sniffer captures 39
Fig. 29 PTP time synchronization using LinuxPTP 41
Fig. 30 Data processing flow from factory work-cell to database 43
Fig. 31 The single-run testbed data model in the graph database 44
Fig. 32 Realized schema of the graph database 50
Fig. 33 Wired baseline physical action time 52
Fig. 34 Wireless baseline physical action time 53
Fig. 35 Wireless with 2500 pps traffic physical action time (run 1) 53

iv

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 36 Wireless with 2500 pps traffic physical action time (run 2) 53
Fig. 37 Wireless with 2x1250 packets/s traffic physical action time 54
Fig. 38 Histograms of Transaction Latency for Various Experimental Scenarios 54
Fig. 39 Histograms of Physical Action Time for Various Experimental Scenarios 55
Fig. 40 Construction of a TCP/IP-Ethernet data packet 60
Fig. 41 TCP header 61
Fig. 42 IP header 61
Fig. 43 UDP header 62
Fig. 44 ADS packet frame 63
Fig. 45 Handshakes of ADS message transactions in a WireShark trace file 64
Fig. 46 Construction of a Modbus TCP data packet 65
Fig. 47 Modbus register address 66
Fig. 48 Modbus function codes 66
Fig. 49 Modbus function of reading holding registers 66
Fig. 50 Modbus function of presetting single register 67
Fig. 51 PLC measurement data in CSV 68
Fig. 52 PLC measurement configuration in XML 69
Fig. 53 Load PLC measurement configuration in HMI 69
Fig. 54 The design of PLC measurement 71
Fig. 55 Time synchronization between PLC and time server through PTPv2 72
Fig. 56 PTP end-to-end delay mechanism 73
Fig. 57 Distributed clock adjustment in PTP time synchronization 73
Fig. 58 Implementing the pipeline of importing testbed data into GDB 82
Fig. 59 Multiple network captures in a control command transaction 84
Fig. 60 Graph nodes in a control command transaction 84
Fig. 61 Graph nodes and the established relationships in a control transaction 85
Fig. 62 Coupling procedures to pair network captures in a communication transaction. 86
Fig. 63 Testbed network diagram with only work-cell connections 88
Fig. 64 Network diagram with full wired connections and measurement data links 89
Fig. 65 Testbed network diagram with wireless connections 90

v

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

1. Introduction

Wireless applications are among key enabling technologies in smart manufacturing inno-
vations that promise flexible deployment capability and mobile support for data transmis-
sions on the factory floor [1]. Emerging wireless techniques, such as recent wireless lo-
cal area networks (WLAN), also known as Wi-Fi 6, and the fifth-generation (5G) cellular
networks, are anticipating to land their killer applications in industrial communication sce-
narios for which they are planning technical deployment routes. As industrial plants are
complex cyber-physical systems (CPS), general wireless communication metrics cannot
fully meet the need of comprehensively evaluating wireless impact onto manufacturing ac-
tivities which are closely related to production efficiency and operation safety. Among
the first attempts, standard development organizations (SDO) have proposed multiple clas-
sification methods of identifying different industrial communication use cases and their
specific performance requirements, e.g., latency and reliability metrics [2]. Measurement
sciences that assess wireless techniques in support of manufacturing practices are essential
to the success of industrial wireless communications [3].

The National Institute of Standards and Technology (NIST) has been sponsoring indus-
trial wireless performance studies in its long-term research program entitled “Trustworthy
Systems, Components, and Data for Smart Manufacturing” [4]. As a key supporting unit
in this program, the industrial wireless system (IWS) lab at NIST anticipates low-latency
and high-reliability wireless communications would play an important role in manufactur-
ing areas. Wireless links can support real-time process monitoring and automation control,
which involve various industrial devices, such as programmable logic controllers (PLCs),
field sensors and actuators, and machine tools. In addition, it is anticipated that there will
be a mixed network topology with wired and wireless connections that carry standardized
and proprietary industrial communication messages. These new features raise challenging
issues in the design and implementation of industrial wireless communications. However,
limited system models and testing platforms are readily available for engineers to evaluate
emerging industrial wireless solutions in real environments.

This report presents our recent measurement activities at NIST in collaboration with
industrial partners. A testbed was designed by replicating various data flows in a managed
production environment for the purpose of evaluating the impact of industrial communi-
cation systems on the factory automation processes. A collaborative robot work-cell was
emulated as the CPS model whose service requirements are representative of a typical
industrial application. The testbed characterizes deterministic and reliable communica-
tion needs between work-cell components in a machine tending application. Measurement
methods were utilized to ensure the compliance and consistency of the observed data from
distributed monitoring points regarding production states and network traffic. A time syn-
chronization design was used to keep the collected data records aligned in time. Experi-
ments were performed with the Ethernet-based wired configuration and the wireless alter-
native using WLAN devices. A data workflow based on the graph database (GDB) tech-
nique was developed to streamline the processing and analysis of heterogeneous testbed

1

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

data in exploring CPS performance factors. Since the testbed design has been partly intro-
duced in our earlier publications [5–7], this report aims to serve as a comprehensive review
of the testbed architecture, component module details, related measurement activities, and
lessons learned from these implementations. The report’s goal is to assist industrial engi-
neers, wireless designers, and CPS researchers when they are designing similar evaluation
platforms and dealing with typical industrial wireless system models. Note that cybersecu-
rity discussions of industrial wireless communications are not in the scope of this report.
Interested readers can refer to the peer project in the NIST program [8].

The remainder of this report is organized as follows. Section 2 briefly discusses the
related work of the testbed project. Section 3 provides an overview of the testbed architec-
ture. Hereafter, design topics are elaborated in the following sections. Production-related
modules including the Supervisor, computer numerical control (CNC), and robots are in-
troduced in Section 4; the network design is addressed in Section 5 where both wired and
wireless networking issues are discussed; the measurement framework is described in Sec-
tion 6. The testbed data are stored and managed in a non-relational (NoSQL) database
organized by a graph whose model and processing flow are defined in Section 7. We will
explore the latency performance of the selected communication links in Section 8. The pre-
sented experimental configurations and preliminary analysis results are used to showcase
the capability and potentials of this testbed. In the end, Section 9 will summarize the main
takeaways and discuss the future work of the testbed.

2. Related Work

Trending efforts on developing evaluation methods and tools for emerging industrial wire-
less communications can be classified into three major areas: theoretical analysis, simula-
tions, and testbed platforms. Based on field measurements of industrial radio channels and
traffic traces, statistical models have been developed to characterize channel propagation
features, interference variations, and usage patterns. For example, NIST has performed
a series of channel measurement campaigns in different topographical sites to understand
the industrial channel characteristics [9]. Considering the complexity of modern manu-
facturing processes, both network performance and manufacturing productivity need to
be captured thoroughly, especially when transmissions are closely associated with process
precision and plant safety. Therefore, performance evaluation is still mainly conducted
through computer simulations and in testbed platforms with real hardware configurations.

The computer simulation approach has been widely used in studying the performance
of networked systems, which can flexibly adjust the studied network scale while tuning
configuration parameters in various regular/extreme test cases. Recently, the co-simulation
of physical processes and associated network activities has gained the attentions of CPS
researchers. For example, a co-simulator design, that combines the production pipeline
and wireless network operations into an integrated discrete-time framework, was proposed
in [10, 11]. However, the trustworthiness of simulation results to estimate the real system
performance largely relies on the model accuracy and the computational complexity which

2

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

often point to the opposite directions given the simulator’s limits. Therefore, it is criti-
cal to design a testbed platform for both validating theoretical models and demonstrating
the performance of industrial wireless solutions in realistic operational and environmen-
tal configurations, which is a convincing approach to encourage the adoption of emerging
techniques.

Table 1. Feature comparison with existing industrial wireless evaluation platforms (reprinted from
[7])

Application
Domain

Use Case System Setup Data Collection Evaluation
Physical
System

Wireless
Network RF Factor Physical Network

Data
Process

CPS
Metrics

This
work

Factory
Automation

Robotic
Work-cell

HW (PLC,
robots, 10 -
125 Hz updates)

HW (WLAN
IEEE 802.11b/g/n
as presented)

Indoor (Lab),
managed WLAN
interference
radios in 2.4 GHz

Device
logging,
remote
access

Ethernet
/WLAN
sniffer

Pipeline,
scripts,
graph
database

Control
delay,
system
failure

Aminian
2013 [12]

Process
Automation

Dual-Tank
level control
as presented

SW (by
Simulink)

SW (Wireless
Mesh with
IEEE 802.15.4),
HIL (tentative)

SW
Simulator
logging

Simulator
logging

Visual
inspection,
scripts

Control,
I/O

Jecan
2018 [13]

Process
Automation

Industrial
Wireless
Network

No
HW (WirelessHART
plus ISA100.11a) Indoor (Lab) No

Network
manager scripts No

Ding
2015 [14]

Process
Automation

Wireless
Sensor &
Actuation

HW (valve
control, 1 Hz
updates)

HW (WirelessHART,
ISA100.11a)

Indoor (factory),
managed Zigbee
and WLAN in
2.4 GHz

No
Packet
sniffer scripts No

Liu, Q
2018 [15]

Process
Automation

Wireless
medical
telemetry

HW (operation
room surgical
monitoring)

HW (WLAN
IEEE 802.11b/g/n)

Indoor (multiple
rooms separated
by walls)

Health
database
(MySQL)

WLAN
signal
analyzer,
JPerf

scripts
Database
requests

Fink
2013[16] Robotics Robot teams

HW (mobile
AGVs) HW (IEEE 802.15.4)

Indoor (two
office/lab
buildings)

Location
reported
at 5 Hz

Signal
strength
reported
at 5 Hz

scripts No

Liang
2019 [17]

Factory
Automation AGV, safety

HW (mobile
AGVs) HW (WIA-FA)

Indoor (industrial
sites)

Device
logging,
field
measures

Signal
analyzer,
spectrum
analyzer,
network
analyzer

scripts
Motion
distance
error

Candell
2015 [18]

Process
Automation

Chemical
process
control

HIL (process
simulator, PLC,
sensors)

HW (IEEE
802.15.4-TDMA) Indoor (Lab)

Simulator
logging No scripts

Process
control

Liu, Y.
2016 [19]

Process
Automation

Chemical
process
control

SW (process
simulator)

SW (IEEE
802.15.4-TDMA)

SW (PER-SNR
curves)

Simulator
logging

Simulator
logging scripts

Process
control
safety

Notes: HW: hardware testbed; SW: software simulation; HIL: hardware-in-the-loop simulation.
“scripts” stands for the data processing that uses specific code/program to treat experiment data in the performance evaluation.

Various industrial scenarios have been considered to address the featured operational
and environmental factors in the production site. Table 1 summarizes recent efforts on
building testbeds for industrial wireless communications. Details of the comparison can be
found in our earlier publication [7]. A work-cell, serving as the atomic production unit in
modern manufacturing factories, has been identified as a promising industrial communica-
tion scene to observe the impact of communications on factory operations. Besides, new
techniques can be introduced into measurements to improve the accuracy of data capture
and facilitate data processing and analysis. Among them, time synchronization protocols
and database techniques are examples that are playing a very important role. The former,

3

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

e.g., Network Time Protocol (NTP)) and Precision Time Protocol (PTP), equips measure-
ment devices with the tuned clocks synchronized to the same time server so that the cap-
tured local events can be realigned in a single timeline for the global view of various events
and their interactions with each other [20]. The latter, e.g., GDBs, enables advanced data
management schemes to organize heterogeneous measurement records and facilitate data
exploration to get insights of CPS operations [7]. Some of the design and measurement
work has been presented in our earlier publications [5–7]. This report serves as a refer-
ence document to provide more details in constructing the testbed and enabling the data
workflow for further evaluation efforts.

3. Overview of the Testbed Architecture

Fig. 1. The NIST industrial wireless testbed architecture

The NIST industrial wireless testbed is a work-cell level evaluation platform which
generates typical communication sessions between production modules and enables close
examination of transmission performance in communication links using wired or wireless
technologies. As shown in Fig. 1, the architecture consists of subsystems including pro-
duction modules, network components, a measurement framework, and data tools for man-
agement and analysis. Production modules are components of the work-cell manufacturing
system that participate in job-oriented operations, such as order processing, task schedul-
ing and assignment, tooling procedures, and machine tending. Network components are
networking devices and the communication infrastructure, if there is any, on the factory
floor. They are used to connect production modules to each other and enable their com-
munications for information exchange and process control within and beyond work-cell

4

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

fences. These two subsystems can form various industrial system use cases in the testbed
experiments with corresponding configurations. The measurement framework probes into
selected objects and connections to collect data, such as manufacturing progress, machine
status, link quality, and network health. Rounds of experiment data will be transferred to a
centralized data management system which manages records from heterogeneous sources
and of different formats. We can utilize data analysis tools to explore the stored data for
insights of the production process, the underlaying network, and their correlation. In the
designed architecture, individual subsystems are connected by predefined interfaces and
integrated as a complete evaluation process. Design details of each one will be elaborated
in the following sections.

4. Production Modules

Fig. 2. Product modules in the testbed

In the NIST testbed, production modules are identified as the work-cell supervisor,
tooling machines, collaborative robots, job buffers, and human-machine interface (HMI)
according to their roles in the production process. Fig. 2 shows a snapshot of production
modules in the testbed.

5

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

In this section, we first specify the generic production workflow to introduce all the
modules. Then, each module will be addressed with its own operation features and design
details, such as the components, state machine, and module interface.

4.1 Work-Cell Workflow

Fig. 3. Illustration of work-cell interactions in a tooling path

Based on available modules, we can develop many different production scenarios in a
typical work-cell. In the first release of this report, the testbed is set to reproduce a simple,
but typical, work-cell operation with collaborative robots, i.e., the machine tending use
case. In the following discussions, we will focus on design issues of realizing this use
case in the testbed. Specifically, work orders for the work-cell are submitted through the
HMI. The supervisor adds received orders into a queue and processes them in the order
assigned by the priority rule. Currently, it adopts the simple “first come, first served”
policy. An order contains a batch of parts to be processed and the work plan specifying
the tooling path, i.e., how each part moves through the work-cell until it is completed.
The manufacturing job on a part can be one or multiple procedures performed in CNC
machines, such as drilling, welding, painting, and heat treatment. Each machine is referred
to as a job stop in the tooling path. Loading zones, or job buffers, are also treated as
independent job stops where parts are temporarily stored waiting for the transfer to next
procedure. There are two robots in the work-cell having different jobs in the production:
one as the operator (OPT) and another as the inspector (INS). OPT moves parts between
job stops; INS checks the part quality after each machine task and reports the inspection
result to the supervisor. CNC machines and robots are the job-level actuators. They all rely
on the supervisor for instructions of the next move. The supervisor, on its own, handles
work orders, schedules operations of machines and robots, and monitors the whole work-
cell status. Fig. 3 illustrates interactions in a simple two-stop tooling path for a single part

6

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

production. The repeated operations provide ample opportunities to collect statistically
significant metrics of both the network and the operation of the work-cell.

4.2 Supervisor

Fig. 4. Function modules in the supervisor PLC. Subsystem functions/programs are in BLUE, and
global variables are in GREEN.

In the work-cell, the supervisor plays the role of a “brain”. It interacts with upper-level
manufacturing managers on behalf of the entire work-cell and manages the equipment,
input materials, and output products in its coverage. Along the part’s tooling path, as
shown in Fig. 3, the supervisor keeps monitoring and manipulating all job stops and robots
that are involved in individual procedures following the work plan. To fulfill its role as
the central controller in the production, we identify the main functions of the supervisor:
production scheduling, interfaces to upper management units or human workers (known
as “northbound” interfaces), interfaces to field components of the work-cell (known as
“southbound” interfaces), and inventory management.

The supervisor of the testbed is deployed in a Beckhoff PLC of the model CX2020.
Accordingly, these functions are implemented in the PLC as shown in Fig. 4. To deal
with different work-cell objects, a modular design is used to manage the PLC’s memories,
computing power, and interfaces. Four major modules defined in the supervisor PLC are
the scheduler (SCHDL), global variable lists (GVL), interfaces, and visualization. SCHDL
makes actuation decisions based on real-time equipment status and production progress.

7

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

When a decision is made, the PLC will generate command messages and send them out
through the interfaces to corresponding external actuators. Among Interfaces, the north-
bound connects to upper-level factory entities, such as manufacturing execution systems
(MES) and enterprise resource planning (ERP) systems, dealing with incoming orders and
status reporting; the southbound, on the contrary, is linked with field devices including ma-
chines, robots, and job buffers. The system-wide data sharing between function modules
takes place in GVL, e.g., caching machine status and control decisions exchanged between
interfaces and scheduler. System variables associated with a specific function or work-cell
component are managed in its GVL instance and are named accordingly, e.g., gvCNC con-
tains four array objects each of which stores the relevant information of a CNC machine
in the work-cell. In addition, the PLC also hosts a human-machine interface (HMI) in the
visualization module for interactions with human staff.

From the perspective of information processing, functions and data memories in the su-
pervisor can be divided into two planes: order-based and job-based. Order-based functions
deal with incoming orders, update of the order status based on real-time production results,
and maintaining the inventory. On the other hand, job-based functions mainly work on
the associated work-cell components and coordinate their production activities following
the schedule. Such a modular design allows the supervisor to easily adapt to the evolving
work-cell tasks and utilize state-of-the-art techniques to leverage individual functions.

4.2.1 Scheduler

The supervisor is deployed in a Beckhoff’s CX2020 PLC, which runs the TwinCAT 3 real-
time engine in a Windows embedded standard (WES) 7 operating system. TwinCAT 3
guarantees determinism of PLC tasks with fixed cycling steps. The cycle time is set to 1 ms
in the testbed. The scheduler function is called at the beginning of each cycle so that the
scheduler checks system status and makes operation decisions at 1 kHz.

The supervisor implements a simple job scheduler which follows a few rules to work.

• Rule 1: Single active order
At any time, the schedule can treat one and only one order in the work-cell. Once an
order is being processed, the other orders should be held until it is completed. When
the scheduler is free for picking the next order, the selection criteria include, but not
limited to, the order’s priority (i.e., the primary factor) and its arrival time in the
queue (i.e., the secondary factor). Since multiple parts in an order can be processed
at different CNC machines simultaneously, the scheduler has to manage production
components and coordinate their actions in the parallel tasks given the work-cell’s
capacity. For example, if the order indicates a tooling path involving two machines,
the scheduler can assign a new part to the machine of Step One after the finished part
leaves for Step Two. Both machines can run at the same time working on parts in
different procedures for the same order.

• Rule 2: Single active robot
Robots are moving objects in the work-cell. For safety reasons, only one robot is

8

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

allowed to move in the work-cell at any time. In other words, the scheduler will
lock one robot in its home position before enabling another robot to work. As shown
in Fig. 3, the production progress is always related with robot moves, either a part
transition between job stops (by OPT) or an inspection (by INS). Specified in this
rule, each time the scheduler can only make one robot, either OPT or INS, work. We
use the term of scheduling window to refer to the moment when the scheduler is free
to choose the next move for the robots.

• Rule 3: In-process parts first
In-process parts are those who have started their tooling procedures in work-cell
machines. In a scheduling window, in-process parts may have finished the work in
current job stops and are waiting for the robot to either perform inspection or transfer
to the next stop. Following Rule 2, they should be served first before any new parts.
Of note, among all pending requests, intra-stop moves, i.e., inspection, are always
prioritized. With multiple part move requests of the same type, the scheduler uses
the round robin method to select the first one to serve in the queue.

As shown in Fig. 4, the scheduler’s main function, SCHDL main, is called to verify the
scheduling window and look for the next move at the beginning of each cycle. Individual
member functions will then create instructions to the selected machine and/or robot based
on the scheduler’s decision and cache them in the corresponding variable lists. In the
same cycle, interface functions will check the saved variables and transmit the newly added
scheduling information to external devices.

4.2.2 HMI

Fig. 5. Work-cell HMI and the control functions

9

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

The work-cell HMI server is deployed in the supervisor PLC as shown in Fig. 5. HMI
serves as the main northbound interface for external communications. HMI displays the
work-cell status collected by the supervisor in multiple windows. Fig. 5 shows the main
window during the operation. Transitions to the other HMI windows provide additional
configuration options other than the default, e.g., measurement setup. Human workers can
remotely monitor and interact with the automated production process in specific windows,
such as placing orders and stopping/resetting the production.

HMI has its own PLC task thread in Beckhoff CX2020 whose priority is lower com-
pared to the job scheduler. The main visualization control function, VisuRules, is called
every 200 ms to refresh the view. It reads the GVL variables, such as gvSch for the sched-
uler, and converts values to strings or Boolean values for respective display objects. It uses
an independent function, VisualControl Order, to handle any update in the online order
editor of the main window. VisualControl Order interacts with gvOrder in GVL to add,
remove, and update orders in the work-cell.

HMI can be accessed directly through the supervisor PLC. The PLC runs a customized
Windows operating system and has fully functioned computer interfaces, such as a video
output and USB ports, HMI can be displayed in a screen connected to the PLC and operated
by input devices such as a mouse. Thanks to the Windows remote desktop connection, we
can also access the work-cell HMI through a remote host that resides in the testbed’s LAN.

4.2.3 Job Buffers

Job buffers are the temporary storage for parts before or after the production which is
comprised of two loading zones in the work-cell, i.e., the input (Queue IN) and output
(Queue OUT) buffers. They also serve as the start and end job stops in a tooling path for
a single part, respectively. The tooling path can be in turn presented as a sequence of job
stops, e.g., < Queue IN >−<CNC1 >−<CNC3 >−< Queue OUT >. In the testbed,
both input and output job buffers are implemented as subsystems in the supervisor and
managed by the function Queue main. The supervisor detects part arrivals/departures in
the buffers with proximity sensors which are connected to the PLC’s digital input module,
one for each.

4.2.4 Production Tasks

Work-cell operations in the testbed are designed around three types of production tasks:
orders, parts, and jobs. Orders are the basic unit of input assignments from upper-level
management systems to a work-cell. An order contains quantities of the requested parts and
their manufacturing specs. Parts move between different machines following the planned
tooling path. A job is always associated with an actuator, i.e., a series of actions are taken
by the actuator in treating the part. For example, a CNC machine serves to drill holes in
the part, or a robot moves the part between the consecutive job stops. Elements used to
describe a job include the commanding body (which assigns it), the execution body (which
performs it), the treated part/object, action(s), and the time.

10

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 6. State machines of orders and queues

In the work-cell, the supervisor is responsible for treating the order-related information.
It receives orders of parts, assembles production instructions for them, and coordinates
work-cell components in the production. At the supervisor, the order module and the queue
module (which manages job buffers) have their own state machines, as shown in Fig. 6. The
scheduler interprets an incoming order and identifies the part’s tooling path in terms of a
planned sequence of jobs at the selected work-cell actuators. Specifically, only the “IN
PROCESS” order is loaded by the scheduler, i.e., one active order is in production. Each
time when a new part is scheduled for the current order, the scheduler assigns a new job
to the input buffer. The part production starts at the input buffer and moves on to the first
tooling machine once it is available. The scheduler keeps tracking the part status until it
finishes the last tooling task and arrives at the output buffer. Then, based on the inspection
results, either a good product or a labeled failure is added into the order’s record. Once the
good part number is fulfilled, the order will move to the “COMPLETE” state. The queue
module will start to process the next pending order by labeling its state to “IN PROCESS”.

Interactions between the order module and the queue module, which are indicated as

11

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 7. The online order editor module in HMI

red dashed arrows in Fig. 6, are mainly through the exchange of variables in the GVL
gvQueue shown in Fig. 7. All the updates in the order module are finally visualized in the
HMI online order editor.

4.3 Tooling Machines

We consider four CNC machines as machining tools in the work-cell. Production processes
for individual jobs in these machines are programmed and managed by their own con-
trollers. The embedded CNC controllers communicate with the other work-cell members,
mainly with the supervisor, for production coordination. Therefore, each CNC machine
is emulated by a separate PLC in the testbed which focuses on characterizing its tooling
behaviors and communication traffic patterns. Each CNC machine consists of a Beckhoff
CX9020 PLC, a part holder, and a proximity sensor. The PLC mimics states of the em-
ulated CNC machine in its tooling cycle and exchanges the instantaneous status and job
information with the supervisor. The part holder represents the machine’s working zone
where the part is treated. The proximity sensor is placed in the holder to monitor the part
arrival/departure and is connected to the PLC’s digital input module.

The testbed is aimed to evaluate the correlation between data transmissions and work-
cell operations which impact the whole system performance. Therefore, the CNC emulator
is focused mainly on mimicking the machine’s behavior with time dependent and statistical

12

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 8. Architecture of the CNC machine emulator

performance features, such as the production efficiency, error and downtime distributions,
and part defects. Meanwhile, the emulators also help shape the work-cell data traffic with
their periodic status updates and on-demand messages during the production.

Following the similar modular design in the supervisor, the CNC emulator also defines
its function modules and GVL in the implemented PLC as shown in Fig. 8. Specifically,
function modules include the state machine (STA), communications (COMM), I/O module
interfaces (IOI)1, and diagnostics (DIAG). The shared system variables between modules
are maintained in GVL, e.g., gvSta maintains variables related with the state machine and
gvSys contains the system-wide information such as the machine’s identification (ID) and
network address.

To fully capture operational and communication activities of a machine tool, the CNC
emulator conducts state-dependent operations and communications characterized by the
state machine, as shown in Fig. 9. The state machine is serviced in the STA function mod-
ule, which contains three main states: initialization (INIT), IDLE, and BUSY. Each main
state contains a few substates, which characterize further details of operations. INIT along
with its substates facilitate the synchronization among distributed nodes whose design will
be discussed with more detail in Section 4.5.1. The substates of the “BUSY” state repre-
sent a series of machine operations regarding a single job. Using either embedded timers

1The IOI functions are further grouped into IOI IN and IOI OUT, respectively.

13

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 9. CNC state machine

or external communication messages, the emulator triggers state transitions. The dwelling
time in each (sub-)state can be either timed according to the machine’s specification, e.g.,
the approximate G-code execution time and material removal rate, or determined by exter-
nal events that trigger state transitions, e.g., a notification message. Randomness can also
be introduced based on statistical machine/production models. Examples of randomness
components in the models include: 1) the time of a tooling procedure; 2) time varying en-
ergy consumption in different states, e.g., power variations in material-drilling processes;
3) tool life estimation; 4) part defect rate; 5) measurement drift between calibrations; and
6) safety related events, e.g., unexpected interrupts due to object intrusion. Using empirical
models and measurement data, we can model the above performance metrics statistically
and regenerate the state-related traffic for the studied machine.

Therefore, the machines emulated in the testbed can be programmed to highlight the
details of real practices to study the network impact on the work-cell performance. Process
variables are modeled in the testbed by focusing on different topics such as 1) the produc-
tion (task) efficiency, e.g., the execution time, material removal rate, energy consumption,
and part defect rate; 2) asset health, e.g., the tool life time, failure probability, and downtime
schedules for calibration and maintenance; and 3) work-cell collaboration, e.g., the clock
drift, coordination precision, and safety. Besides checking the network support on routine
data transmissions as scheduled, the testbed is particularly useful for testing the network
performance in extreme cases with rare occurrences, e.g., the shutdown due to overheat-
ing or power surges. The machine emulator can produce the traffic in different use cases
following the code, such as the recovery from unexpected overload events or in emergency

14

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 10. A UR3 collaborative robot system

cases, and can repeat the case in multiple runs for conclusive experiments or comparative
studies.

The quality of “product” in each job stop is also virtually rendered in the testbed. Each
part quality in a machining process is randomly determined following a statistical model
that mimics the typical defect rate in a real machine. The result is made in the inspection
phase which allows the supervisor to schedule the next move accordingly. According to the
study of the quality and quantity relationship in production systems [21, 22], part failures
are associated with both independent and dependent factors. Independent failures usually
follow a Bernoulli distribution with the uncertainty of temporal independence. On the other
hand, dependent types of failures, which are often referred to as “persistent” or “system-
atic” ones, are those caused by tool failures, such as the broken drill or clog in the painting
tube. In such cases, the failure of product is highly related with the asset failure rate. Since
both types of failures are intuitively decoupled, the testbed carries product failures as well
as the ones in assets to emulate occurrences of exceptions across time. Delivery delay or
loss in communication links also affect operation performance and safety measures.

4.4 Robots

The testbed hosts two Universal Robots UR3 CB-series robots that perform machine tend-
ing in the work-cell. As shown in Fig. 10, each UR3 system consists of a 6 degree-of-
freedom (6 DoF) robot arm, a controller in the control box, and extended UR capabilities
(URCaps) which are accessories including a gripper and a 6-axis force torque (F/T) sensor.
The F/T sensor is further divided into two parts: the sensor unit attached to the end effector
and a compute box connected to the UR3 control box. The UR3 provides a graphical user
interface (GUI), called Polyscope, which serves as the main programming interface in the

15

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 11. The state machine of the UR3 robot in the work-cell

teach pendant. In Polyscope, users can input actuation commands and configure waypoints
using programming wizards. In addition, users can also use the URScript programming
language to assemble scripts for the robot control. In the control box, the UR3 controller
interprets user input to plan the trajectory of the robot arm and dispatches set points to
microcontrollers of individual joints at 125 Hz. At the same rate, each microcontroller
manipulates the corresponding joint with the calculated force and torque.

The controller also acts as the robot’s communication portal to the work-cell. Robots
receive actuation commands from the supervisor and report their status back. In the work-
cell, the OPT’s job of transiting parts can be translated into a sequence of actuation com-
mands in the UR3 script: (1) moving to waypoint A (from the Home position), (2) picking
up the part at A, (3) moving to waypoint B, (4) unloading the part at B, and (5) returning
to the Home position. Setting profiles of actions, such as arm positions at individual way-
points, are stored in the controller and loaded into the program once it starts. Similarly,
INS’s actions in a job include (1) moving to waypoint A (from the Home position), (2)
probing the seated part at A and generating an encoded inspection result, and (3) returning
to the Home position.

To interplay with the supervisor/scheduler and machines in the work-cell, the robot’s
state machine is also divided into two phases: initialization and operation, as shown in
Fig. 11. During initialization, the robot walks through INIT 0 and INIT 1 following in-
structions from the supervisor. In INIT 0, it resets all internal parameters and returns to
its Home position out of the working space; in INIT 1, the robot exchanges its status with
the supervisor and gets ready for any new operation. In the normal operations, the robot
switches states between IDLE and MOVE while reporting the supervisor about its real-time
status through the network.

The UR3 performs a series of status checks at the beginning of its control cycle and
takes actions correspondingly given the state machine. Fig. 12 illustrates the major steps
and branches in a typical control cycle.

4.5 Coordination between Work-Cell Modules

Since work-cell components are collaboratively working in the production, the testbed im-
plements multiple approaches to coordinate these distributed nodes.

16

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 12. The flow diagram in a UR3 robot cycle

17

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

4.5.1 Coordination in Initialization

At the beginning of the testbed experiment, after powering on all components, a phased
initialization process is performed where three steps are taken sequentially:

• INIT 0 Parameter initialization/reset,

• INIT 1 Logic error check and confirmation, and

• INIT 2 Loading ready-to-go state.

The scheduler in the supervisor provisions the whole initialization process over the
work-cell. Fig. 13 illustrates such a process within the supervisor and other remote produc-
tion modules. Red dashed lines refer to state switches triggered by messages. Specifically,
the scheduler triggers its own state transitions right after it receives notifications from the
other sub-modules in the supervisor that acknowledge the completion of designated proce-
dures in the current phase. As shown in Fig. 13, the triggering events are denoted by blue
curved arrows. The scheduler will then dispatch signals in the supervisor to trigger tran-
sitions in the internal sub-modules (shown in red curved arrows). For production modules
in the field and their corresponding interfaces in the supervisor, messages carrying status
information of the counterpart can serve to trigger internal state transitions. For example,
the CNC x interface needs the remote CNC x machine to confirm the reception of restart
command before it switches from INIT 0 to INIT 1. In another case, remote modules wait
for the interfaces to set a start flag before it completes INIT 2 and starts normal operation.
In both cases, messages are denoted by green curved arrows in the illustrated process which
serve as a necessary condition in state transitions. In INIT 2, remote modules first enter the
idling mode getting ready for optional commands from the supervisor. Then the super-
visor’s sub-modules enter the ready mode coordinated by the scheduler. Once the entire
testbed is ready, the production starts from the first order placed into the order module.

Thanks to the introduced initialization process, a “soft” online reset scheme is imple-
mented in the testbed. Any time when clicking the “reset” button in the HMI, we can grace-
fully stop the ongoing experiment and reset the whole work-cell. Once reset is flagged, the
scheduler can detect it at the beginning in the next PLC cycle (in 1 ms or less). It dumps all
remaining orders in the queue, clears working status, and restarts from INIT 0. As shown
in Fig. 14, starting from the scheduler, a system-wide reset will first expand from the sched-
uler to all internal modules in the supervisor, then reach out to individual work-cell modules
through the established interfaces.

18

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 13. Timeline of initialization steps.

19

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 14. Reset coordination between work-cell modules

4.5.2 Coordination in Job Operations

Fig. 15. Timeline of the coordination in an intermediate tooling procedure

Multiple production modules are involved in the tooling path. Recall the workflow as

20

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

introduced in Section 4.1, to complete the part processing in a single machine, it needs the
supervisor, both robots, and the machine to work together. The coordination between actu-
ators becomes necessary to fulfill production operations and guarantee the safety. Fig. 15
illustrates the timeline of such coordination in a machining procedure.

Testbed operations are designed as a fully automated process, which needs no physical
contact with parts or actuators by human staff in the production. Workers are anticipated
to manage the work-cell through the HMI remotely. Possible collision risks are only re-
lated with part-oriented interactions between robots and running machines, e.g., when OPT
unexpectedly approaches to a part that is being treated in a fast running CNC. Without well-
established safety rules for work-cell operations, such incidents may interrupt the ongoing
production, or even worse, cause asset damages that brings the work-cell down. Therefore,
we have introduced multiple safety approaches in the job coordination to eliminate risks
and protect the assets. First, the supervisor implements a safety flag in its scheduler to
indicate whether an active robot is moving in the work-cell. It complies with the schedul-
ing Rule 2, i.e., at most one robot is actively operating. Once the flag is set, the locked
scheduler would not assign a new job to another robot so that collisions between robots are
avoided. Second, the moving robot keeps notifying the machine(s) that may be affected
by its maneuvers in the active job trajectory. The machine(s) on watch would not start to
process the part until the robot returns to its Home position, such that it leaves a safe space
for tooling operations. As shown in Fig. 15, the “Robot OUT” message clears such watch
after the acting robot finishes its job. In addition, a logic check is performed at the robot on
the waypoint instruction sent from the scheduler, which prevents the robot from operating
some out-of-date instructions due to transmission failures. Preliminary experimental re-
sults indicate that the introduced approach supports collision-free operations in the testbed
through very light coordination, as low as 1 Hz, in the supervisor-robot link.

In the work-cell, there are two main interaction scenarios, part transition and inspection,
both of which involve multiple machines with different jobs in the respective processes.
Fig. 16 and Fig. 17 illustrate these two cases, respectively.

The main interactions between work-cell (sub-)modules in a part transition scenario are
listed as follow,

• [A (START)] CNC x just finishes the part processing and changes its status to
“COMPLETE”;

• [B] CNC x updates its status to the supervisor via routine status report in its ADS
connection to the supervisor;

– [B1] The COMM module in CNC x loads current status and formulates a status
report triggered by self timer;

– [B2] The COMM module sends the status report to the supervisor (ADS Write);

• [C] The scheduler in the supervisor receives the status and updates it in the machine
status register;

21

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 16. Module interactions in a part transition case

22

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

– [C1] CNC x interface at the supervisor loads the status report;

– [C2] CNC x interface updates the job status;

– [C3] CNC x interface submits the status to the scheduler by writing into the
machine status register;

• [D] The scheduler loads the CNC machine status to make scheduling decisions;

• [E] The scheduler assigns the job of moving the part from CNC x following the
scheduling algorithm (which is independent from the architecture but includes at
least the following information);

– [E1] The scheduler loads CNC x’s status;

– [E2] The scheduler looks for the next hop station from x based on the job type;

– [E3] The scheduler loads the status at the next hop station, i.e., CNC y;

• [F] The scheduler makes the moving scheduling if CNC y is in the “IDLE/EMPTY”
state;

– [F1] The job information is copied from CNC x’s interface to CNC y’s inter-
face;

– [F2] The scheduler sets the new job notification to CNC y (followed by Step
G);

– [F3] The scheduler writes the scheduling information (followed by Step I);

• [G] The new job information is shared with the remote CNC y;

– [G1] The CNC y’s interface at the supervisor detects a new job assigned by the
scheduler;

– [G2] The CNC y’s interface at the supervisor loads the job information;

– [G3] The CNC y’s interface sends the new job information to CNC y via ADS;

• [H] The new job notification updates the machine’s status at CNC y;

– [H1] CNC y’s state machine detects the arrival of new job description;

– [H2] CNC y’s state machine switch to “EXPECT NEW” waiting for the incom-
ing part;

• [I] The Supervisor’s scheduling decision is transformed into the Modbus commands
for the UR3 operator;

– [I1] The Operator’s interface at the supervisor detects the new assignment;

– [I2] The Operator’s interface writes the scheduling information into the shared
Modbus registers that are read/written by the Operator;

23

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

• [J] The Operator obtains the assigned job through Modbus Register Read;

• [K] The Operator follows the job assignment to move the part from CNC x to CNC
y;

– [K1] The Operator removes the part from CNC x (followed by Step L);

– [K2] The Operator places the part into CNC y (followed by Step M);

• [L] The part departs from CNC x and triggers the state transition at CNC x;

– [L1] The state machine at CNC x detects the departure of the part;

– [L2] The state machine at CNC x updates the state as “IDLE/EMPTY”;

• [M] The part arrives at CNC y and triggers the state transition at CNC y;

– [M1] The state machine at CNC y detects the arrival of the part;

– [M2] The state machine at CNC y updates the state as “PART LOADED”;

• [N] The new state at CNC y is reported to the supervisor via routine status report;

– [N1] The communication module at CNC y loads current state and formulates
the report message;

– [N2] The communication module sends the report message to the supervisor
via ADS Write;

• [O] The CNC y’s interface at the supervisor updates the state of CNC y at the sched-
uler (similar as Step C);

– [O1] The interface at the supervisor loads the newly received status report;

– [O2] The interface writes the new state into the Job description;

– [O3] The interface updates CNC y’s state at the scheduler;

• [P (END)] The UR3 OPT returns to its Home position and notifies the supervisor.

Similarly, the main interactions between work-cell (sub-)modules in a part inspection
scenario are listed as follow,

• [A (START)] A part being processed at CNC x requests the inspection;

• [B] COMM of CNC x sends an inspection request via ADS;

• [C] CNC x interface at the supervisor detects the new inspection request;

• [D] CNC x interface at the supervisor sets the flag (ON) in the Inspection Request
variable;

24

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 17. Module interactions in a part inspection case

25

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

• [E] The scheduler of the supervisor collects CNC inspection requests;

• [F] The scheduler picks the inspection CNC target by calling SCHDL Sub INS;

• [G] SCHDL Sub INS assigns an inspection task to the UR3 INS robot;

• [H] The INS interface at the supervisor writes the task into Modbus registers;

• [I] INS retrieves commands via Modbus and executes them;

• [J] INS writes inspection results back into Modbus registers;

• [K] The inspection result is updated from Modbus registers;

• [L] INS finishes the task, returns its Home position, and notifies the supervisor;

• [M] The scheduler at the supervisor waits until both Step K and L are completed;

• [N] The scheduler at the supervisor removes the flag in the Inspection Request (OFF)
and waits for the next call;

• [O] CNC x interface at the supervisor waits until Step K and N are done;

• [P] CNC x interface at the supervisor sends an inspection response via ADS back to
CNC x;

• [Q] CNC x processes the received Inspection Response;

• [R (END)] CNC x interface at the supervisor clears the finished result for the next
call.

5. Network Components

To fulfill the coordination between work-cell modules, a communication network is de-
ployed in the testbed that links distributed modules together and enables communications
with multiple purposes. Besides process variable updates and control commands transmis-
sions in the emulated production, the network also enables data transmissions for the other
testbed functions, such as distributed clock synchronization and measurement data collec-
tion. Therefore, the testbed network needs to carry multiple heterogeneous traffic streams.
In this section, we focus on explaining network components implemented in the testbed
to serve these applications. First, communication traffic needs are identified in the links;
then, the network architecture comprised of wired Ethernet links is illustrated; finally, the
extension to wireless links is discussed.

26

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

5.1 Communications in Work-Cell Applications

As discussed earlier in Section 4 and illustrated in Fig. 15, communications in the work-cell
is centered around the supervisor, which manages the production process and coordinates
various modules. In the network topology, the supervisor also acts as the information hub
and gateway for operational data flows, both internal and external ones. Messages within
and beyond the work-cell are formalized by different communication protocols according
to individual applications including, but not limited to, order handling, part status track-
ing, machine diagnostics, and safety alerts. We will first examine these communication
messages and their requirements on the links.

5.1.1 Remote HMI Operations

Fig. 18. Communications for remote HMI operations and packet samples captured by WireShark

The main configuration and monitoring tasks in the testbed are through the HMI. When
the work-cell HMI is operated remotely, a Windows remote desktop connection is estab-
lished between the host Windows machine and the supervisor PLC as shown in Fig. 18.2

Windows manages such a connection using a proprietary application protocol for Terminal
Server services, which is known as Remote Desktop Protocol (RDP). RDP uses the ISO
Transport Service on top of the TCP (TPKT) protocol in the transport layer. TPKT uses the
particular TCP port 3389 for RDP applications. The RDP traffic presents an on-demand

2Messages are captured at a test access point (TAP) device in the Ethernet link and recorded by WireShark.
The basic structure of Ethernet packets is presented in Appendix A.

27

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

transmission pattern, i.e., RDP messages are transmitted in the link only when the HMI
content needs to be updated in the host’s remote desktop application. For example, if the
remote desktop in the host is minimized, no RDP messages are transmitted in this case.
The traffic load also largely depends on dynamics of the displayed desktop content, such
as how fast it changes and the proportion of dynamic areas compared to the whole view. In
the testbed, the active HMI session exhibits an intermittent and light traffic pattern with an
average throughput less than 100 kbps.3

5.1.2 Supervisor-CNC Machines Interactions

Fig. 19. The supervisor-CNC Communications and packet samples captured by WireShark

3The throughput was calculated during normal operations when the remote HMI main view stayed on the
host desktop and was shown in full screen . In some cases, e.g., when the remote desktop switches between
different HMI views or between HMI and the other Windows views, it may cause a larger instant RDP traffic
up to 1 Mbps.

28

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

In the coordination process as discussed in Section 4.5, the supervisor needs to main-
tain continuous communications with CNC machines for tracking production efficiency
and device health. Various message types are identified in multiple concurrent active ses-
sions in the links. First, the supervisor routinely receives the status update from the CNC
machine so that it can estimate the load at each single job stop, which is reflected in its
scheduling decision. Second, the supervisor also routinely updates the work-cell status to
field machines so that individual production modules have the real-time status of their part-
ners that are used to coordinate their action. Furthermore, there are state-based on-demand
communications, such as the inspection request-response conversions in the links.

In the testbed, the data exchanged between the supervisor (i.e., a Beckhoff PLC) and
CNC machine controllers (i.e., also Beckhoff PLCs) are formatted as Automation Device
Specification (ADS) commands, which are defined in the proprietary communication proto-
col for Beckhoff’s TwinCAT devices known as Automation Message Specification (AMS).
ADS/AMS is a medium-independent protocol. As shown in Fig. 19, ADS/AMS messages
are carried in transmission control protocol/Internet protocol (TCP/IP) packets. The PLC
runtime uses the reserved TCP port 851 as the identifier. Details about ADS/AMS are pre-
sented in Appendix A. The PLC uses the EtherCAT protocol to manage internal data flows
with its terminal modules, such as motion control and I/O modules, which is outside the
scope of this testbed design.

5.1.3 Supervisor-Robots Interactions

Similar to communications in the supervisor-CNC link, the supervisor also exchanges in-
formation with the UR3 robots for status update and job instructions, as shown in Fig. 20.
Modbus is used in the links from the supervisor to UR3 control boxes of OPT and INS,
respectively. Modbus allows data exchange between heterogeneous industrial appliances
through the shared registers. In Modbus link, the supervisor serves as the Modbus server,
which maintains the shared data in its memory. Through Modbus queries, the client can
visit the remote data at particular register addresses. In the testbed, UR3 robots are the
clients who send the write/read commands to the supervisor for updating robot status and
obtaining instructions for the following moves. Modbus messages are identified by the TCP
port 502. Basic information of Modbus communications is also provided in Appendix A.

5.1.4 Robotic Subsystem Communications

Robots are usually equipped with peripherals to better perform in different tasks. In this
testbed, every UR3 robot has one gripper attached to its end effector along with a F/T
sensor. The UR3 control box communicates with peripherals through TCP/IP socket com-
munications. In the testbed, the F/T compute box is connected to the UR3 controller in the
same subsystem switch as shown in Fig. 21. Every 8 ms, the controller updates the com-
pute box once with UR3 system status which is formatted in a TCP package containing
139 values in a 1108 byte payload. TCP messages are sent through the UR3’s TCP port for

29

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 20. The supervisor-robot communications and packet samples captured by WireShark

real-time traffic (30003). The F/T compute box software also updates the controller with
the real-time F/T sensor values at 125 Hz.4

5.1.5 A Summary of Communication Traffic

Table 2 summarizes the emulated data flows in the testbed.

5.2 Networking Architecture

In support of work-cell communications, the testbed first implements fully wired connec-
tions between production modules. Ethernet enables inter-node communications in a wired
medium. First, each production module in our testbed has one or more on board RJ-45 slots
along with built-in Ethernet-based local area network (LAN) adapters (see Appendix D for
network interfaces of individual devices). Second, the identified communication messages

4Current F/T firmware only supports an error-free connection, such as in an Ethernet link, with the control
box. Missed controller updates will result in the link disconnection, which calls a system exception and
pauses the robot operation. It requires a manual reset of the compute box.

30

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 21. Communications between the robot controller and the F/T sensor with packet samples
captured by WireShark

in Section 5.1 are originally designed for the carrier frame structure in terms of TCP/IP-
Ethernet packets (see Appendix A for packet frame structures).

Fig. 22 illustrates the wired networking architecture. The network backbone is formed
by a bundle of two Cisco IE-4000 industrial Ethernet switches. Each IE-4000 switch has
12 gigabit Ethernet ports that provide managed Layer 2 switching functions as well as
advanced features such as the support of time synchronization (e.g., NTP and PTPv2) and
time sensitive networking (TSN). One gigabit port in each switch is reserved for bridging
switches in trunk mode. Therefore, there are in total 22 gigabit ports available for work-cell
communications and the other testbed communication functions.

All production modules, which are also testbed network nodes, use one of their on-
board Ethernet ports for work-cell production communications. The supervisor PLC and
CNC PLCs are directly plugged into the Cisco switch bundle through Ethernet cables.
The UR3 robots have their own sub-network switches to interconnect parts in each robotic
subsystem. Two D-Link unmanaged switches are deployed for robot sub-networks, one for

31

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 2. Specifications of sampled data flows between work-cell components

Link Data Update Rate
Size *
(Bytes) Protocol

Supervisor
-CNC

Status report 1 Hz - 100 Hz 10s ADS
Safety 100+ Hz 10s ADS
Inspection
request/response On-demand 10s ADS

PLC
-Peripheral Motion control 1000 Hz A few ADS

Supervisor
-Robot

Actuation 1 Hz - 50 Hz A few Modbus
Safety 125 Hz A few Modbus

Robot
-Peripheral 6 axis F/T sensor

100 Hz
- 500 Hz

100s
- 1000 TCP/IP

Supervisor
-External

HMI 10 Hz - 50 Hz
100s
- 1000s ADS

IoT >1 Hz
10s
- 100s MQTT

* Note: The size is referred to as the application data size.

each. Each D-Link switch has 8 gigabit Ethernet ports and is linked with the backbone.
The testbed uses IPv4 addresses to manage communication devices. The gateway is

10.10.0.1 and the subnet mask is 255.0.0.0. For individual appliances that have direct
connections to the backbone, they are assigned with IP addresses in 10.10.0.x. For robot
sub-networks, INS subsystem has IP addresses in 10.20.0.x while OPT components have
IP addresses in 10.30.0.x. Specific IP addresses are illustrated in the network diagrams of
Appendix E.

Additional network connections are also planned in the testbed that provide measure-
ment data links and other complimentary features, such as time synchronization services.
These supportive connections will be introduced in the measurement framework of Sec-
tion 6.

5.3 Wireless Extension

Wireless links are added into the testbed network to verify the capability of wireless tech-
nologies in support of mission-critical industrial communications. Upon the first release of
this report, WLAN connections have been implemented in the testbed where one or more
selected Ethernet connections are replaced. Since industrial appliances are originally de-
signed for Ethernet networks, there is no built-in wireless adapter available. We introduce
Intel’s Next Unit of Computing (NUC) devices as Ethernet-WLAN adapters that trans-

32

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 22. Work-cell network architecture using full wired Ethernet connections

Fig. 23. Wireless extension to the work-cell network architecture

late industrial messages between Ethernet frames and WLAN packets. Fig. 23 illustrates
the introduced wireless links in the work-cell network. In this use case, UR3 subsystems
communicate with the rest of work-cell through WLAN links. Specifically, each UR3 sub-
network is equipped with an Intel NUC serving as the Ethernet-WLAN adapter. A Netgear

33

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

AC1900 WLAN router (R7000) is used as the WLAN access point (AP) and connected to
the switch bundle. WLAN connections between NUCs and the AP enable UR3 controllers
and the supervisor to coordinate the OPT and INS operations, respectively. Wireless trans-
missions comply with IEEE 802.11b/g/n protocols. WLAN radio modules negotiate to de-
termine the working mode based on the instant channel quality. One or more background
traffic generators can also be deployed in the working WLAN channels that emulate the
interference in real industrial sites. These traffic generators are performed by extra pairs
of Intel NUCs in the testbed that run iPerf scripts to create user datagram protocol (UDP)
unicast packets as background stress data.

Fig. 24. Illustration of Layer 2 forwarding through the Ethernet-WLAN adapter

NUC by its nature is a barebone computer running Linux operating system (OS), e.g.,
Ubuntu 14.04 used in the testbed. Equipped with network interfaces including Ethernet and
IEEE 802.11b/g/n adapters, NUCs can be programmed to work in different modes to meet
the service requirements of different roles in the testbed. Generally, NUCs are designed
to work in the following roles: Ethernet-WLAN adapter, wireless sniffer, and background
traffic generator/sink.

When working as an Ethernet-WLAN adapter, it converts the received Ethernet frames
to WLAN packets, and vice versa, which is called the Layer 2 forwarding. Compared to
the Layer 3 forwarding at a router which handles IP packets, the NUC first resumes the
in-bound medium access control (MAC) protocol data unit (PDU) (i.e., the IP packet(s)
encapsulated in a MAC frame), repacks it into another MAC frame format, and sends
in the new medium as the out-bound data. Fig. 24 illustrates how the NUC serves as
the UR3 inspector’s Ethernet-WLAN adapter in its communication with the supervisor.

34

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Since such conversion is performed by a NUC program in software, it is a type of “soft”
forwarding approach. The entire forwarding process is transparent to end users as the end-
to-end connection is IP-based, whose information is intact in the lower layer process. The
only change in the network is that the NUC adapter is treated as an alias of the served host
along the path. In the case as shown in Fig. 24, all en route devices (i.e., the supervisor,
the Cisco switch bundle, and the WLAN router) address the NUC as the counterpart to the
supervisor in supervisor-INS communications. For instance, the supervisor uses the NUC’s
MAC address, not the INS’s one, in the MAC destination field of a message destined for
INS. Accordingly, the NUC needs to replace it by the INS’s MAC address in the forwarded
packet.

As a wireless sniffer, the NUC uses the iw command, i.e., a new command-line interface
(CLI) configuration utility for wireless devices, to create a virtual interface, associate it to
the physical WLAN interface, and set it in the monitor mode. Once specifying the working
WLAN channel for the virtual interface, we can run TShark or Tcpdump to sniff all WLAN
packets in the channel.

In experiment scenarios considering concurrent WLAN transmissions as the co-channel
interference, extra NUCs can be paired up as background traffic sources and sinks using
Iperf, an Internet network test tool, to generate managed background traffic [23].

6. Measurement Framework

Fig. 25. The testbed measurement framework

Measurements are taken in various points of interest to obtain data showing features of

35

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

the emulated production processes and network operations as well as their relationships.
We have introduced types of measurement apparatus in the testbed and developed a cen-
tralized framework parallel to work-cell operations. As shown in Fig. 25, the developed
measurement framework provides complimentary functions and features that enhance data
collection in the testbed and feed further analysis with trustworthy data. In this section, we
will systematically review individual measurement components. Specifically, data types in
measurements are enumerated and their properties are explained; tools implemented in the
framework for obtaining corresponding measurement data are introduced whose collection
flows are shown as blue arrows in Fig. 25; time synchronization over measurement probes
is also discussed that unifies timed observations from distributed data records, which is
presented as green dashed arrows in the figure.

6.1 Measurement Data Collection

We have identified data classes by their sources, i.e., production modules and network com-
ponents, which are labeled as operational and network-related, respectively. Accordingly,
measurement tools and collection procedures are developed for individual data sets.

Testbed data are managed in the central collector which is a desktop computer running
Ubuntu 18.04 and equipped with one 1 terabyte (TB) solid-state drive (SSD) for data stor-
age, as shown in Fig. 25. The collector has ten gigabit Ethernet ports that can be connected
to testbed apparatus for data collection in the work-cell. Details about the full network dia-
gram are illustrated in Appendix E. Local measurement results, such as the ones collected
at the supervisor PLC and wireless sniffer, are transferred to the collector after individ-
ual experiments. Meanwhile, real-time measurement data, such as the UR3 real-time data
exchange (RTDE) data and network packet captures, are directly recorded at the central
collector who assigns independent measurement links and runtime threads for individual
collection programs. Data is saved with timestamps for post data analysis, and data files
are indexed with the unique name regarding each experiment.

6.1.1 Operational Data Collection

Operational data refer to the recorded process variables and control commands saved during
the operation of production modules. Data from the supervisor, CNC machines, and UR3
robots belong to this class. For individual modules, state-related variables are the primary
data source, which contains rich behavioral information for modeling the digital copy of
state machines and analyzing the operation performance in different situations.

As discussed in Section 4, the supervisor watches over the entire work-cell’s produc-
tion. Therefore, the first measurement point is set in the supervisor as shown in Fig. 25.
Data from the supervisor indicate how the scheduler manipulates individual machinery
operations based on its local view of work-cell status. All GVL variables used by PLC
programs can be routinely reported to the collector as measurement data. Currently, we fo-
cus on testbed data that may affect the scheduler’s decision and coordination performance.

36

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Since status information is reported in a routine manner through the network, network con-
nections may affect the supervisor’s response to any state change in the production process,
which is the main analysis goal in this work.

Optional data at individual CNC machines and robots can also be subscribed that re-
flect the local view of machine status. By comparing the initiation time of a production
command and its real actuation time, it implies the control delay which consists of the
processing time as well as the delay in communication links, which provides the insight
of network impact on production performance. For CNC machines, since emulated CNC
controllers are also implemented in Beckhoff’s PLCs which share the same program ar-
chitecture as the supervisor PLC, their GVL variables can be subscribed in measurements.
Details of measuring PLC data are explained in Appendix B.1. PLC data are recorded at
125 Hz and stored locally in the PLC’s hard drive. Each round of experiment data is saved
in a single CSV file.

For UR3 robots, internal program variables and URCaps’ information are accessible
through the UR’s RTDE interface. RTDE outputs a comprehensive list of robot status vari-
ables such as position, velocity, acceleration, current, voltage, and other critical metrics.
For example, in trajectory planning, both actual and target setpoints of position variables
are collectible. Since RTDE data showcases internal operation status within robot sub-
systems, which are closely related with collaborative robot applications, such as work-cell
safety, we set another set of measurement points at UR3s. RTDE measurement is config-
urable through an extensible markup language (XML) file where it is flexible to subscribe
or remove variables in the measurement output. We refer the interested readers to check
the supported robot state parameters in the RTDE guide [24]. RTDE provides periodic
updates at 125 Hz through the TCP port 30004. The central collector retrieves real-time
RTDE readings through TCP socket connections with control boxes of OPT and INS, re-
spectively. Python scripts are developed here for RTDE data collection outputting results
in CSV files.

6.1.2 Network Traffic Captures

Network traffic data are communication messages that are captured in links between work-
cell appliances. Data types have been identified in the earlier Section 5.1. In the testbed,
we use network test access point (TAP) devices to passively capture Ethernet messages
transmitted in the monitored links. As shown in Fig. 26, a simple TAP is usually equipped
with three Ethernet ports. Port A and B are internally bridged, which enables through traffic
to pass so that the monitored link does not break. During packet forwarding between A and
B, the TAP makes one copy of each through packet and send it to the third port (A � B)
which is connected to a data collector. If the TAP has more than one A � B port on board,
it generates multiple copies of through traffic, one for each.

Fig. 27 indicates locations of TAP devices that we have employed to monitor work-cell
links carrying critical production messages. The central collector (not shown in this figure)
reaches out to each deployed TAP device through a direct gigabit Ethernet link so that

37

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 26. Network traffic test access point (TAP) device

Fig. 27. Network traffic probes in the testbed network

the real-time traffic collection does not affect network load of work-cell communications
or introduce bandwidth competition between TAP links. We refer the interested readers
to check more details of link connections in the full network diagram of Appendix E. The
collector collects link data by using the network protocol analyzer, e.g., TShark/WireShark.
Each TAP link is monitored by an independent TShark thread whose data are saved in a
separate packet capture (PCAP) file.

TAP devices only serve to capture Ethernet packets in wired connections. To further
obtain wireless transmission quality information, we have also employed wireless sniffing
tools in the measurement. Fig. 27 illustrates a wireless data collection case where an Intel
NUC is deployed as a wireless sniffer co-located with the AP. Working in the monitor

38

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 28. Packet header samples from TAP and wireless sniffer captures

mode, the NUC’s built-in wireless adapter is tuned to the AP’s working channel to passively
record any wireless packets sent to it. Only packet captures addressed to the co-located AP
are saved in the PCAP file. The sniffer shares a common antenna with the AP so that
the captured WLAN header information can indicate the channel quality experienced at
the AP’s receiver in UR3-AP links. Fig. 28 illustrates the captured copies of a Modbus
request message recorded at the wireless sniffer (the AP is co-located with) and the TAP
next to the supervisor. The wireless packet capture provides detailed information regarding
transmission settings and channel quality.

6.2 Time Synchronization

Data timestamps are rendered at individual machines, which are synchronized with a cen-
tral time server. Their formats along with the enabling tools are summarized in Table 3.

Since measurements are performed at distributed nodes and saved in multiple formats,
timing information becomes a critical reference, in some cases being the sole one, to rebuild
the process timeline in post data analysis. Therefore, the accuracy of distributed clocks at
measurement devices determines the data quality because they are in charge of rendering
record timestamps. We have introduced time synchronization approaches to guarantee the
trustworthy timing information contained in measurement data.

39

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 3. Measurement data timestamp settings via PTP

Data Recorder
Time
Writer

Reference
Time Format

Time Zone,
Daylight Sav.

Ordinary
clock (OC) PTPv2

PLC
(CSV) CX2020

Meas.
POU

PLC Task
Clock

YYYY-mm-dd
-HH:MM:SS
.xxxxxx (µs)

Yes, Yes EL6688 L3 E2E

RTDE
(CSV)

Central
Collector Python

Linux
Sys. Time

mm/dd/YYYY,
HH:MM:SS,
xxxxxx (µs)

Yes, Yes
NIC
onboard LinuxPTP

TAP
(PCAP)

Central
Collector TShark

Linux
Sys. Time

Epoch time
(sec, ns-resol.) N/A, N/A

NIC
onboard LinuxPTP

Wireless
Sniffer
(PCAP)

NUC TShark
Linux
Sys. Time

Epoch time
(sec, ns-resol.) N/A, N/A

NIC
onboard LinuxPTP

6.2.1 Precision Time Protocol

As discussed earlier in Section 6.1, physical events are captured periodically with recording
steps of milliseconds or longer. For those data, sub-millisecond level clock synchronization
mechanisms, e.g., using the NTP, would be adequate to capture state transitions in system
behavioral studies. However, since our study in the testbed is anticipated to investigate
network events which may last only a few microseconds, it is necessary to have a more
accurate time resolution in data to correctly identify various measured events in time with
clear boundaries of their start and stop moments. Such a precise time measurement is
essential to unveil the correlation between different data sets, especially the ones rendered
from heterogeneous observers. The PTP provides the sub-microsecond level accuracy for
the networked distributed clocks and widely used in timing sensitive networks. In the
testbed, we have introduced PTP to synchronize measurement devices’ clocks.

The testbed deploys the IEEE 1588-2008 (PTPv2) standard which defines PTP, a method
to precisely synchronize computers and devices over a local area network (LAN). A Mein-
berg M900 PTP time server plays as the grand master clock. Individual data collectors,
as introduced in Section 6.1, work as ordinary clocks (OC) in PTP which routinely update
their local time based on synchronization signaling sent by the grand master. OC and the
grand master are connected through the Cisco IE-4000 switch bundle which also supports
PTP. These switches serve as boundary clocks (BC) which relay synchronization signal-
ing messages as well as playing the role of intermediate time reference in the end-to-end
path. These PTP appliances are connected in a tree-like topology with the root at the grand
master.

Different PTP-capable hardware/software tools are deployed at OC for rendering times-
tamps of measurement data. For collectors running Linux, e.g., the central collector and
wireless sniffer, the PTP-capable Ethernet network interface cards (NIC) serve as OC at
local machines. A software tool, LinuxPTP, is used to perform the process of tuning the
local system time to the reference time of the grand master [25, Chapter 23 Configuring

40

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 29. PTP time synchronization using LinuxPTP

PTP using PTP4L]. Fig. 29 illustrates the synchronization process at the central controller,
which runs a Ubuntu 18.04 OS. LinuxPTP contains two programs: ptp4l and phc2sys. The
ptp4l program is in charge of synchronizing the PTP hardware clock (PHC) on the NIC,
i.e., the OC, to the grand master using an end-to-end delay mechanism to measure the clock
offset. Once OC is synchronized, the phc2sys program will then adjust the Linux system
clock according to the PHC. The synchronization is performed in a repeated manner to
ensure the clock offset is always managed. At the central collector, Python scripts use
the datetime library to obtain the system time at the moment of writing RTDE data. For
network captures from TAP devices, the recording time is stamped given the system clock
reading when TShark detects the received packet in the sniffing port.

For PLC, an add-on hardware module, Beckhoff’s EL6688 IEEE 1588 module, is used
to enable the PTP synchronization in a similar way. The EL6688 module serves as the
OC in the synchronization path to the grand master while providing the reference time to
the connected TwinCAT devices, such as the PLC, through internal EtherCAT connections.
The OC routinely measures the time offset between its clock and the PLC’s system clock,
which is also called the task clock (TC), and outputs the offset reading to the PLC program.
At the moment when a PLC record is cached in the program, its timestamp is calculated by
adjusting the current TC time based on the latest offset to the OC. A detailed explanation
of PLC’s PTP synchronization is presented in Appendix B.2.

6.2.2 Timestamp Formats

Besides implementing PTP to ensure the clock accuracy, we have further surveyed various
collection tools in the testbed to verify specific timestamp formats of individual data so
that the timing information can be correctly used in the analysis. The testbed is located in
NIST’s Gaithersburg campus where Eastern Time is used. Given specific dates in a year,

41

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Eastern Standard Time (EST) and Eastern Daylight Time (EDT) are used appropriately.
EST(UTC-5:00) is 5 hours behind the Coordinated Universal Time (UTC); EDT (UTC-
4:00) has a four hour delay from UTC. The Meinberg M900 time server utilizes the UTC
time which is neutral to time zones.

Table 3 illustrates timestamp formats used in individual data files. Linux machines, i.e.,
the central collector and wireless sniffer NUC, maintain their system clocks that are syn-
chronized with the global time server through PTP. For network traffic data, TShark records
in the epoch time which indicates the number of seconds that have elapsed since January 1,
1970 of the UTC time. Therefore, timing information in network traffic data is immune to
the setting of time zone and daylight saving time. However, the local time settings should
be verified before treating production measurement data. RTDE data contain timestamps
made by Python scripts at the central collector. Using the datetime library, the code outputs
the local time in Eastern Time with awareness of daylight saving time. The Linux kernel
takes care of the time zone setting, e.g., enabling/disabling daylight saving time, once it is
configured in the system. On the contrary, for PLC records, such settings need to be manu-
ally verified and transferred to the PLC program as configuration variables, including leap
seconds, time zone, and daylight saving time. In the Meas Main module, the PLC program
calls the time function to obtain the timestamp shown in local time. Appendix B.2 provides
further information about rendering PTP synced timestamps in PLC data.

7. Data Management

A GDB is used to manage data collected from testbed measurements of both network traf-
fic and physical operations. GDBs, as NoSQL databases, don’t specify any predefined data
structure or rules to enforce a fixed structure. Instead, GDBs treat individual data records
as distributed node entities in a random graph and identify relationships as database com-
ponents that link different nodes together. This feature allows GDBs to catch varying states
and dynamics in a complex system and gradually improve data management along with
better understanding of the system. In this section, we introduce graph components devel-
oped for the testbed and the data processing flow that transforms measurement results to
graph entities.

7.1 Graph Database

The testbed GDB is built in the Neo4j desktop application. Neo4j is a native graph database
which manages data and their relationships in an index-free environment. Its official query
language, Cypher, is declarative, i.e., focused on what data to retrieve from the database
instead of how to form queries to obtain the needed results.

7.1.1 Graph Data Model

In a GDB, the data model, which can be roughly analog to the “schema” of relational
databases, illustrates how data records are organized and stored in a graph. However, un-

42

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 30. Data processing flow from factory work-cell to database

like a fixed schema, the data model of GDBs has more flexibility of depicting diverse data
types, content, and connections between different entities whose structure and property pro-
file can update and evolve with more data and/or better observation. A data model contains
different node types with specific properties in the graph and various relationships between
them. We first identify requirements of such a data model and build a graph containing
nodes and relationships that mainly exhibit information regarding networked industrial de-
vices in a factory work-cell [6]. We further populate the previous work-cell data graph by
introducing additional node types characterizing physical actions that are newly captured.
Accordingly, we update the relationships, such as associating individual quality-of-service
(QoS) report data made by the wireless sniffer, with the packets captured at the collocated
receiver. The updated data model provides a comprehensive view of production operations,
information flows, and wireless channel variations in the testbed, which facilitates further
analysis work.

As shown in Fig. 31, an example is illustrated here that summarizes nodes, relation-
ships, and their key properties used in the GDB.

7.1.2 Building Blocks

The graph is comprised of two classes of building blocks: nodes and relationships. The
former represents testbed objects, e.g., work-cell modules and network components, and

43

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

A
cto

r
Tra

n
sa

c

�

o
n

M
e

ssa
g

e

PA
R

T
IC

IPA
T

E
D

_
IN

PA
R

T
IC

IPA
T

E
D

_
IN

TX

RX

SUPPORTED

P
h

y
A

c

�

o
n

TO
O

K

S
M

S

R
EP

O
R

TED
_TO

S
n

i�

e
r

COLOCATED_WITH

COVERED

N
tw

k
ID

N
tw

k
ID

HAS

CONNECTED_THROUGH

CONNECTED_THROUGH

HAS

CONNECTED_THROUGH

C
O

N
N

EC
TED

_TH
R

O
U

G
H

A
cto

r

:A
d

a
p

te
r

:W
ire

le
ss

:A
P

:A
d

a
p

te
r

:E
th

e
rn

e
t

:A
d

a
p

te
r

:W
ire

le
ss

:U
E

:A
d

a
p

te
r

:E
th

e
rn

e
t

Q
o

S
R

e

p
o

rt

S
e

n
so

r

S
ta

te

R
o

u
te

S
ta

te

U
R

S
ch

e

d
u

le

TOOK

S
C

H
E

D
U

LE
D

TOOK

TRIGGERED

TO
O

K

GENERATED

COVERED

�
�n

a
m

e
:S

trin
g

, {“
Tra

n
sa

c�

o
n

”}

�
�co

m
m

a
n

d
:S

trin
g

,

{“U
p

d
a

te
 M

B
 re

g
iste

r -1
”}

�
�d

e
ta

ils:S
trin

g
, {“g

o
to

 p
o

si�

o
n

 7
”}

�
��

m
e

S
ta

rt:T
im

e
_

E
p

o
ch

,

{“1
5

6
5

6
2

6
1

7
2

.1
9

2
3

5
9

”}

�
��

m
e

S
to

p
:T

im
e

_
E

p
o

ch
,

{“1
5

6
5

6
2

6
1

7
2

.9
6

6
5

6
4

”}

�
�a

c �

o
n

:S
trin

g
, {“m

o
ve

 a
rm

”}

�
� �

m
e

:T
im

e
_

E
p

o
ch

,

{“1
5

6
5

6
2

6
1

7
2

.1
9

2
3

5
9

”}

�
�n

a
m

e
:S

trin
g

, {“S
M

S
 d

e
te

cto
r”}

�
�lo

ca

�

o
n

:S
trin

g
, {“n

e
a

r n
o

d
e

 A
”}

�
�n

a
m

e
:S

trin
g

, {“m
e

ssa
g

e
”}

�
�p

ro
to

co
l:S

trin
g

, {“M
o

d
b

u
s/

T
C

P
”}

�
�srcM

a
cA

d
d

r:S
trin

g
,

{“0
0

:0
1

:0
5

:1
4

:d
7

:e
1

”}

�
�d

stM
a

cA
d

d
r:S

trin
g

,

{“3
0

:9
c:2

3
:9

9
:7

d
:a

d
”}

�
�p

a
y

lo
a

d
H

e
x:S

trin
g

,

{“0
x2

e
1

6
a

2
e

c2
7

0
4

6
5

4
3

1
3

b

2
6

�

8
7

2
e

b
4

e
0

5
6

3
f”}

�
�n

a
m

e
:S

trin
g

, {“O
p

e
ra

to
r”}

�
�ty

p
e

:S
trin

g
, {“R

o
b

o
t C

o
n

tro
lle

r”}

�
��

m
e

S
ta

rt:T
im

e
_

E
p

o
ch

,

{“1
5

6
5

6
2

6
1

6
9

.2
9

3
7

8
5

”}

�
��

m
e

S
to

p
:T

im
e

_
E

p
o

ch
,

{“1
5

6
5

6
2

6
1

7
5

.3
3

3
5

4
6

”}

�
�o

b
se

rva

�

o
n

S
o

u
rce

:S
trin

g
, {“ca

m
e

ra
”}

�
��

m
e

:T
im

e
_

E
p

o
ch

,

{“1
5

6
5

6
2

6
1

7
2

.1
9

2
5

6
0

”}

�
�S

IR
:R

e
a

l, {1
7

.3
4

}, in
 d

B
 �

�
�n

a
m

e
:S

trin
g

, {“
T

P
-Lin

k
”}

�
�m

a
cA

d
d

r:S
trin

g
,

{“1
4

:cc:2
0

:e
c:3

b
:e

d
”}

�
�n

a
m

e
:S

trin
g

, {“e
th

0
”}

�
�m

a
cA

d
d

r:S
trin

g
,

{“0
0

:0
1

:0
5

:1
4

:d
7

:e
1

”}

�
�n

a
m

e
:S

trin
g

,

{“C
o

n
tro

l_
LA

N
”}

�
�ip

A
d

d
r:S

trin
g

,

{“1
0

.1
0

.0
.5

”}

�
�h

o
st:S

trin
g

,

{“S
u

p
e

rv
iso

r”}

�
�n

a
m

e
:S

trin
g

, {“M
o

xa
”}

�
�m

a
cA

d
d

r:S
trin

g
,

{“0
0

:9
0

:e
8

:6
6

:a
8

:6
3

”}

�
�n

a
m

e
:S

trin
g

, {“e
th

0
”}

�
�m

a
cA

d
d

r:S
trin

g
,

{“3
0

:9
c:2

3
:9

9
:7

d
:a

d
”}

�
�n

a
m

e
:S

trin
g

, {“S
u

p
e

rv
iso

r”}

�
�ty

p
e

:S
trin

g
, {“P

LC
”}

�
�n

a
m

e
:S

trin
g

,

{“O
P

T
_

C
B

_
LA

N
”}

�
�ip

A
d

d
r:S

trin
g

,

{“1
0

.2
0

.0
.2

6
”}

�
h

o
st:S

trin
g

,

{“O
p

e
ra

to
r”}

�

�

m
e

:T
im

e
_

E
p

o
ch

,

{“1
5

6
5

6
2

6
1

7
2

.1
9

2
7

9
3

”}

�
�n

a
m

e
:S

trin
g

, {“Q
o

S
 R

e
p

o
rt”}

�
��

m
e

:T
im

e
_

E
p

o
ch

, {“1
5

6
5

6
2

6
1

7
2

.1
9

1
6

6
7

”}

�
�rssi:In

te
g

e
r, {-7

2
}, in

 d
B

m

�
�M

C
S

:S
trin

g
, {“B

P
S

K
”}

�
�txA

d
d

r:S
trin

g
, {“1

4
:cc:2

0
:e

c:3
b

:e
d

”}

�
�rxA

d
d

r:S
trin

g
, {“0

0
:9

0
:e

8
:6

6
:a

8
:6

3
”}

�
�T

im
e

:T
im

e
_

E
p

o
ch

�
�A

cto
r:S

trin
g

, {“S
u

p
e

rv
iso

r”}

�
�sn

sTy
p

e
:S

trin
g

,

{“P
ro

xim
ity

”}

�
�sn

sV
a

l:In
t, {1

}

�
�T

im
e

:T
im

e
_

E
p

o
ch

�
�A

cto
r:S

trin
g

, {“O
p

e
ra

to
r”}

�
�o

p
tR

o
u

te
F

ro
m

:In
t, {2

}

�
�o

p
tR

o
u

te
To

:In
t, {3

}

�
�T

im
e

:T
im

e
_

E
p

o
ch

�
�A

cto
r:S

trin
g

, {“S
u

p
e

rv
iso

r”}

�
�Ta

rg
e

t:S
trin

g
, {“O

p
e

ra
to

r”}

�
�Ta

rg
e

tA
c�

o
n

:S
trin

g
, {“M

o
ve

”}

�
�w

a
y

p
o

in
tId

1
:In

t, {2
}

�
�w

a
y

p
o

in
tId

2
:In

t, {3
}

Fig. 31. The data model of the graph database used for each operational run of the testbed.

44

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

events that are captured in the production process and network operations, e.g., machine
states and communication messages; the latter is denoted as edges that link two node in-
stances and record their relationships in terms of actions or properties. We will enumerate
nodes and relationships defined for the GDB in the following parts. A thorough review of
their properties can be found in Appendix C.1.

Node Design

To effectively depict testbed operations in the measurement, we define a series of node
types in the graph. For different purposes, nodes can be used to identify testbed compo-
nents, their states, and messages that create varying snapshots of the testbed for further
analysis. They can be found in two main classes depending on what type of objects the
node represents.

The class of static nodes covers testbed setup profiles, which contain testbed compo-
nents, network interfaces, and their settings. These entities are normally predetermined or
collected in the initialization of each measurement. They usually remain constant in each
round of measurements.

Actor A physical component within the factory work-cell such as a robot, PLC, or other
networked item.

NtwkID A network address item for an actor such as an Internet Protocol (IP) address.

SMS A spectrum monitoring service (SMS) observes and records significant spectral events
within the work-cell and may report those events to actors within the work-cell.

Sniffer Measurement device that records all transmissions conducted over the wireless
medium and includes the wireless header information for each wireless transmission
detected.

Adapter Device that serves to connect an actor to a network (adapters are divided into
sub-categories depending on the type of interface to a network).

Adapter:Ethernet A subcategory of adapter representing an Ethernet interface.

Adapter:Wireless A subcategory of adapter representing a wireless interface.

Adapter:Wireless:AP A subcategory of adapter representing a wireless access point in-
terface.

Adapter:Wireless:UE A subcategory of adapter representing a wireless user equipment
interface.

The class of dynamic nodes in the graph captures various system events such as ma-
chine status reports, network traffic, and information flows in the testbed. These nodes are
dynamically added into the graph whose quantities and properties are determined by the
real-time data in the measurement.

45

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Transaction A complete information exchange between two or more actors (multiple ac-
tors may participate in a transaction).

Message A network transmission event that occurs between two actors (messages are es-
sentially packet transmissions captured at the transport layer; multiple messages sup-
port a transaction).

QoSReport Quality of service report of a message (not all messages have a QoS report).

Physical Action (PhyAction) A physical occurrence within the factory work-cell associ-
ated with Actors through multiple time-based relationships.

PhyAction:URSchedule A subcategory of PhyAction representing a schedule decision
made by the supervisor PLC for a robot

PhyAction:SensorState A subcategory of PhyAction representing a real-time reading of
the proximity sensor state in a CNC machine

PhyAction:RouteState A subcategory of PhyAction representing a real-time reading of
the action route in a robot

Graph Relationships

A relationship in the graph denotes an action taken to associate two nodes, either homoge-
neous or heterogeneous ones, which shows their connections in the topology, timeline, or
affiliation. We identify the following relationships in the testbed.

PARTICIPATED IN Actors will participate in transactions. A transaction exists for each
logical set of messages between actors, such as the setting of a Modbus register or
the sending of a command to a robot. Therefore, actors will participate in many
transactions, and multiple actors may participate in a single transaction.

SUPPORTED Messages (i.e., packets between actors) are associated with transactions
through the SUPPORTED relationship. Depending on the protocol and the quality of
the channel, a single transaction could have one or many messages connected through
this relationship.

TX/RX An actor may either transmit (TX) or receive (RX) a message. Both the TX and
RX relationships contain a timestamp in the format of an epoch time which is a float-
ing point number in seconds since January 1, 1970, with a resolution of microsec-
onds.

TOOK When an actor performs a physical action, a TOOK relationship is created between
the actor and the physical action node. This relationship contains start and stop time
properties as well as the source of the observation such as a networked camera.

46

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

REPORTED TO An SMS may be a passive or active listener within a work-cell. When
an SMS operates as an active listener, spectral reports from the SMS may be sent to
an actor such that the actor can respond intelligently to the spectral event. Reports
from an SMS to an actor are captured within this relationship.

COVERED A wireless sniffer keeps monitoring the working wireless channel(s) and ex-
tracts the real-time link QoS information from the sniffed wireless packets, such as
the received signal strength indicator (RSSI). A COVERED relationship links the
QoSReport node with the concurrent Message node received at the same spot. Not
all Message nodes have such a relationship with QoSReport which depends on the
availability of the sniffer collocated with the receiver and any wireless sniffer data
reported during the transmission.

Other relationships shown in Fig. 31 but not explained above are considered self-explanatory.

Closer Examination

The graph data model is designed in a way where nodes and relationships are centered
around Actors. Actors have dual roles in the work-cell operations. In the factory system,
Actors participate in the production operations. In the example of Fig. 31, two Actor nodes
are presented. In this case, Actor “Supervisor” is the supervisory controller, and Actor “Op-
erator” is a robot arm. The Supervisor schedules the production, collects the other Actors’
states, and hosts supportive services, such as SMS. The Operator follows the instructions
of the Supervisor and moves parts between work stations. Meanwhile, Actors also act as
communication nodes which exchange messages between each other through various net-
work interfaces. In Fig. 31, Actors participate in a transaction, which, in this example, is
a Modbus/TCP exchange. The transaction itself is associated with one or more messages
(i.e., packets). Each message associated with a transaction manifests itself as a node in the
graph. Multiple message nodes will exist for each transaction. Additionally, QoS reports
may be associated with each actor node through a collocated sniffer node.

Dynamic event nodes in the measurement, i.e., physical actions, network messages,
information transactions, and QoSReport records, have timestamps representing “measure-
ment time” of the recorded events. Once a new event occurs, a proper relationship would
be added between the actor and the physical/network event node. All timestamps are accu-
rately synchronized to the grand-master clock.

7.2 Data Importing Pipeline

A multi-stage workflow is deployed to feed the graph with instances of nodes, relation-
ships, and their properties that are extracted from measurement data, as shown in Fig. 30.
In the data set, network data are captured from distributed probes in the selected links and
stored in PCAP files, while operational data that come from different PLC and robot con-
trollers are stored in comma separated value (CSV) files. The whole data process contains

47

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

four steps including preprocessing, feature extraction, database insertion, and graph tuning.
Such conversion from raw measurement data to a ready-to-go graph has been automated
by scripts deployed in the central collector, which maintains data repositories and deploys
the Neo4j desktop application. Functions and operation features in individual steps are
discussed next.

7.2.1 Data Preprocessing

Data preprocessing is the beginning of the whole process. In this stage, measurement
data from various sources are verified, cleaned, and formatted in a way to facilitate the
following processing and interpretation. As fore-mentioned, measurement data contains
records collected from heterogeneous modules/devices in the testbed, which may utilize
different data types, sampling rates, time and metric resolution, as well as file formats. For
example, different machines may store records’ timing information in various timestamp
formats depending on local clock preference. In the process, we have unified the data set’s
time format, i.e., using the time epoch with the microsecond resolution. Besides, we have
also deployed packet filters to reduce the size of output data for the following steps, e.g.,
removing uncorrelated packet captures. For example, when treating wireless sniffer data
in experiments with interference links, we have managed to reduce the size of sniffer data,
which was originally of gigabytes, to only a few megabytes with only signaling handshakes
in the studied links.

7.2.2 Feature Extraction

Feature extraction refers to the process of extracting relevant information from measure-
ment data to prepare the data for insertion into the database. Nodes and relationships are
defined by a set of features that share common views. We have developed Bash and Python
scripts that pick the desired features to produce CSV files that are ready for insertion into
the Neo4j database. In this step, a Bash script runs TShark to extract fields of protocol
headers in packet captures and save the field information into CSV files. Each row in these
CSV files will lead to one Message node instance being created which is one packet copy
at the sender or receiver. A Python script was also used to detect physical action changes
and label those state switching moments, which were associated with communication mes-
sages.

7.2.3 Graph Insertion

We load the prepared data into the Neo4j GDB using bulk importing, which can create
multiple new nodes and/or relationships by reading a CSV file once. Neo4j uses Cypher
to construct GDB queries that import data. As the output of feature extraction, each CSV
line contains the information for creating one new node entity and/or pairing two nodes
in a new relationship. Properties of new entities can be assigned explicitly by the column
values of records or inferred from predetermined rules such as some fixed combination of

48

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

nodes and edges in the graph. Multiple types of nodes can be created from the same data
file using one common node template in which each node type has its own subgroup of
properties. For example, Modbus and ADS packets use the same Message node structure
in our graph to manage the common transmission information such as IP addresses and TCP
session identification. Meanwhile, each of these Messages maintains its own application
layer header information in the node properties, e.g., Modbus register addresses and ADS
function codes.

7.2.4 Graph Tuning

Graph tuning refers to any additional modification in the graph after CSV data has been
imported. This step treats a number of cases where the unexplored raw data is coupled
with the imported one to extend/improve the graph. First, in the additive insertion cases,
i.e., when new data is to be added, this step links the newly added nodes to the existing
ones and creates necessary relationships between them. For example, time series data often
uses this method to link consecutive event nodes in the recorded process. Second, there
are cases when further insights of system properties can be obtained by querying existing
database records which lead to new nodes and relationships. For example, Transaction
nodes are built upon Message nodes who participate in the same application transactions;
Message nodes themselves are also the summary of packet data, i.e., packet copies at link
transceivers. Third, it can serve as one input to the feature extraction step by providing
existing graph information for purposes such as coupling data records. For example, cou-
pling QoS reports and Messages in their observation windows used to be an extremely
time-consuming process. On one hand, each Message raw data, i.e., the transmitter or re-
ceiver copy, contains only half of the transmission time window information. On the other
hand, the Cypher query takes a long time to find all eligible relationships as Neo4j would
generate a huge Cartesian product when treating the large sample set. We solved this is-
sue by obtaining qualified Message nodes and feeding them into feature extraction where
a more efficient Python script finds all Message-QoS Report pairs, and later, presents them
in the graph as new COVERED relationships.

The above four steps can perform multiple iterations to treat data and refine the graph
according to the data complexity and requirements. To further demonstrate such a process
in treating experiment data, we enumerate various techniques used in the testbed and show
them in Appendix C.

8. Data Analysis & Graph Exploration

8.1 Graph Database Schema

Once the Neo4j database is populated with testbed data, we can apply Cypher queries to
explore the constructed graph and extract information for assessing the work-cell perfor-
mance and visualizing selected network and operational events within the work-cell. More
advance data science tools, such as Python’s Pandas and Scikit-learn packages, can also

49

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 32. Realized schema of the graph database fully populated after capturing network and
operational data from the industrial wireless testbed.

50

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

be introduced using Python-Neo4j interfaces, details of which can be referred to in Ap-
pendix C.2.4.

Fig. 32 shows the graph schema as a quick check of the Neo4j graph elements (as
proposed in Fig. 31) using the query command, call db.schema.visualization().

8.2 Experiment Configurations

Section 4 and 5 have introduced general configurations on the production modules and
network components, respectively. Additional configuration settings are provided here for
testbed experiments of evaluating the work-cell performance under different network con-
ditions.

During each run of an experimental scenario, the production of 20 parts was emulated.
Each part went through a directed tooling path, i.e., < Queue IN > − < CNC1 > − <
CNC2 > − < CNC3 > − < CNC4 > − < Queue OUT >, which resulted in around 12
minutes of network activity.

We performed four different experimental cases with respect to the communications
network settings, namely,

1. Wired baseline: All links are connected using Ethernet cables to act as a benchmark
for performance comparison (see Fig. 22 for the wired architecture and Fig. 64 for
the measurement diagram);

2. Wireless scenarios: Two wireless links are used to connect the robot controllers and
the wireless AP that is connected to all the other actors in the testbed (see Fig. 23
for the wireless architecture and Fig. 65 for the measurement diagram). The wireless
nodes are Intel NUC devices with IEEE 802.11b/g/n interfaces.

(a) Wireless baseline: The robots’ traffic is the only traffic transferred over the
wireless network;

(b) Wireless communications with a single interference pair: One additional pair of
Intel NUC devices forms an interference link in which 2500 packets per second
(pps) wireless traffic is generated in the same working WLAN channel as the
robot links. The interference link packets have the size of 1000 Bytes.

(c) Wireless communications with two interference pairs: Two additional pairs of
Intel NUC devices form two interference links each of which generates 1250
packets per second (pps) wireless traffic in the same working WLAN channel
as the robot links. The interference link packets have the size of 1000 Bytes.

As shown in the measurement diagrams of Fig. 64 and Fig. 65, we collected network
capture data from TAP devices in the testbed. In wireless scenarios, we also collected wire-
less packet captures at the wireless sniffer to describe the WLAN channel condition. Data
from the supervisor was also collected which included the system states and the supervi-
sory commands. In addition, data from the robots was used to describe the physical actions
taken.

51

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

8.3 Preliminary Results

In this subsection, we use the extracted data from the GDB to study the impact of the wire-
less communications on the physical action performance. The results have been partially
reported in our earlier publications [5], [6], and [7]. The data is being prepared for public
access, e.g., the data presented in [6] is available in [26]. We focus our analysis on the
URSchedule and RouteState progress over time where URSchedule is the dynamic node to
represent a physical action decision at the supervisor and RouteState is the dynamic node
to represent a physical action command received by one of the robots where the command
parameters are stored at the robot registers. Note here that the transaction between a robot
controller and the supervisor is initiated by a request message from the robot controller
and terminated by correctly receiving a response message from the supervisor to the robot
controller as well.

The supervisor makes decisions based on available information about the testbed. Once
it makes a decision, it is reflected on the value of the URSchedule. We define the supervisor
processing time as the time from the instant the decision is taken to the instant when the
wireless transaction is initiated to request a new physical action and it is denoted by TSup.
Then, the transaction latency is the total time spent by all the wireless packets correspond-
ing to an action such that it is the time between the instant, at which the wireless transaction
is initiated by the robot controller to require a new action until the data arrives from the su-
pervisor at the intended robot controller. The wireless transaction latency is denoted by
TW. The robot processing time is the time between the instant the wireless data is received
by the robot controller to the instant when the required action is updated in the RouteState
register indicating the physical action starts. The robot processing time is denoted by TRob.
The total physical action time, which represents the time needed for a supervisor command
to be reflected at the corresponding robot, is denoted by TAct and evaluated through

TAct = TSup +TW +TRob. (1)

0 25 50 75 100 125 150
Action Index

−0.1

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

S pervisor Processing Time
Transaction Latency
Robot Processing Time

Fig. 33. Wired baseline physical action time

In Fig.33-37, we present the values of the three components of the total physical action
time for each run of the testbed. The horizontal axis represents the action index for all the

52

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

0 25 50 75 100 125 150
Action Index

−0.1

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

S pervisor Processing Time
Transaction Latency
Robot Processing Time

Fig. 34. Wireless baseline physical action time

0 25 50 75 100 125 150
Action Index

−0.1

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

S pervisor Processing Time
Transaction Latency
Robot Processing Time

Fig. 35. Wireless with 2500 pps traffic physical action time (run 1)

0 25 50 75 100 125 150
Action Index

−0.1

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

S pervisor Processing Time
Transaction Latency
Robot Processing Time

Fig. 36. Wireless with 2500 pps traffic physical action time (run 2)

operator and inspector actions, while the corresponding time components are shown in the
vertical figure axis.

We present the normalized histograms of the transaction latency and the total physical
action time in Figs. 38 and 39, respectively. Interested readers can refer to [7] for further
discussions on the key factors to these metrics.

53

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

0 50 100 150
Action Index

−0.1

0.0

0.1

0.2

0.3

0.4

Ti
m
e
(s
)

Super isor Processing Time
Transaction Latency
Robot Response Time

Fig. 37. Wireless with 2x1250 packets/s traffic physical action time

0.00 0.02 0.04 0.06 0.08
Transaction Latency (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

No
rm

al
ize

d
Oc

cu
ra
nc

e
Pr
ob

ab
ilit

y

a Wired Baseline

0.00 0.02 0.04 0.06 0.08
Transaction Latency (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

No
rm

al
ize

d
Oc

cu
ra
nc

e
Pr
ob

ab
ilit

y

b Wireless Baseline

0.00 0.02 0.04 0.06 0.08
Transaction Latency (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
Oc

cu
ra
nc

e
Pr
ob

ab
ilit

y

c With 2500 pps Traffic

0.00 0.02 0.04 0.06 0.08
Transaction Latency (s)

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d
Oc

cu
ra
nc

e
Pr
ob

ab
ilit

y

d With 2x1250 pps Traffic

Fig. 38. Histograms of Transaction Latency for Various Experimental Scenarios

54

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Physical Action Delay (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
No

rm
al
ize

d
Oc

cu
ra
nc
e
Pr
ob

ab
ilit

y

a Wired Baseline

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Physical Action Delay (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

No
rm

al
ize

d
Oc

cu
ra
nc
e
Pr
ob

ab
ilit

y

b Wireless Baseline

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Physical Action Delay (s)

0.00

0.02

0.04

0.06

0.08

0.10

No
rm

al
ize

d
Oc

cu
ra
nc
e
Pr
ob

ab
ilit

y

c With 2500 pps Traffic

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Physical Action Delay (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
No

rm
al
ize

d
Oc

cu
ra
nc
e
Pr
ob

ab
ilit

y

d With 2x1250 pps Traffic

Fig. 39. Histograms of Physical Action Time for Various Experimental Scenarios

9. Conclusion

We have presented a new testbed design idea in the study of wireless techniques in support
of industrial operations. The proposed collaborative robot work-cell scenario represents a
wide spectrum of manufacturing activities with data transmission needs to coordinate their
work. The measurement approach and data processing pipeline based on the graph database
provide flexibility in exploring data across the CPS domains. The testbed has been used
in our research work in collaboration with industrial partners to validate and showcase the
capability of recent WLAN products in serving industrial applications. More measurement
events are planned for this testbed to verify emerging industrial wireless techniques, such as
wireless TSN and the next generation WLAN solutions. Further progress will be reported
in future releases.

55

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Acknowledgments

The authors would like to thank Jing Geng at the University of Maryland for helping us to
develop Bash scripts of using TShark in dissecting packet captures. We would like to also
thank our industrial partners, Dave Cavalcanti and Susruth Sudhakaran from Intel Labs,
for their contributions in providing the Intel NUC devices. We would like to thank Tim-
othy Zimmerman, Ya-Shian Li-Baboud, CheeYee Tang, Frederick M. Proctor, and Keith
Stouffer at NIST, for their continuous support and valuable suggestions on the testbed de-
velopment.

References

[1] Liu Y, Kashef M, Lee KB, Benmohamed L, Candell R (2019) Wireless network de-
sign for emerging IIoT applications: Reference framework and use cases. Proceedings
of the IEEE 107(6):1166–1192.

[2] Montgomery K, Candell R, Liu Y, Hany M (2019) Wireless User Requirements for
the Factory Work-cell. The National Institute of Standards and Technology (NIST,
Technical report. https://doi.org/10.6028/NIST.AMS.300-8. URL https://www.nist.
gov/publications/wireless-user-requirements-factory-workcell

[3] Candell R, et al. (2018) Guide to industrial wireless systems deployments. Na-
tional Institute of Standards and Technology Gaithersburg, MD, Technical report.
https://doi.org/10.6028/NIST.AMS.300-4. URL http://nvlpubs.nist.gov/nistpubs/ams/
NIST.AMS.300-4.pdf

[4] NIST (2018) Trustworthy systems, components, and data for
smart manufacturing program, https://www.nist.gov/programs-projects/
trustworthy-systems-components-and-data-smart-manufacturing-program. Ac-
cessed: 2020-09-30.

[5] Liu Y, Candell R, Kashef M, Montgomery K (2019) A collaborative work cell testbed
for industrial wireless communications — the baseline design. 2019 IEEE 28th Inter-
national Symposium on Industrial Electronics (ISIE), pp 1315–1321. https://doi.org/
10.1109/ISIE.2019.8781524

[6] Candell R, Kashef M, Liu Y, Montgomery K, Foufou S (2020) A Graph Database
Approach to Wireless IIoT Workcell Performance Evaluation. 2020 IEEE In-
ternational Conference on Industrial Technology (ICIT) (IEEE), pp 251–258.
https://doi.org/10.1109/ICIT45562.2020.9067199. URL https://ieeexplore.ieee.org/
document/9067199/

[7] Kashef M, Liu Y, Montgomery K, Candell R (2020) Wireless cyber-physical sys-
tems performance evaluation through a graph database approach. Journal of Com-
puting and Information Science in Engineering :1–19,URL https://doi.org/10.1115/1.
4048205.

[8] NIST (2018) Cybersecurity for smart manufacturing systems, https://www.nist.gov/

56

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

https://doi.org/10.6028/NIST.AMS.300-8
https://www.nist.gov/publications/wireless-user-requirements-factory-workcell
https://www.nist.gov/publications/wireless-user-requirements-factory-workcell
https://doi.org/10.6028/NIST.AMS.300-4
http://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-4.pdf
http://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-4.pdf
https://www.nist.gov/programs-projects/trustworthy-systems-components-and-data-smart-manufacturing-program
https://www.nist.gov/programs-projects/trustworthy-systems-components-and-data-smart-manufacturing-program
https://doi.org/10.1109/ISIE.2019.8781524
https://doi.org/10.1109/ISIE.2019.8781524
https://doi.org/10.1109/ICIT45562.2020.9067199
https://ieeexplore.ieee.org/document/9067199/
https://ieeexplore.ieee.org/document/9067199/
https://doi.org/10.1115/1.4048205
https://doi.org/10.1115/1.4048205
https://www.nist.gov/programs-projects/cybersecurity-smart-manufacturing-systems
https://www.nist.gov/programs-projects/cybersecurity-smart-manufacturing-systems

programs-projects/cybersecurity-smart-manufacturing-systems. Accessed: 2020-09-
30.

[9] Candell R, et al. (2017) Industrial wireless systems radio propagation measure-
ments. the National Institute of Standards and Technology (NIST, Technical report.
https://doi.org/10.6028/nist.tn.1951

[10] Li H, et al. (2019) Design space exploration for wireless-integrated factory automa-
tion systems. 2019 15th IEEE International Workshop on Factory Communication
Systems (WFCS), pp 1–8.

[11] Geng J, et al. (2020) Integrating field measurements into a model-based simulator
for industrial communication networks. 2020 16th IEEE International Conference on
Factory Communication Systems (WFCS), pp 1–8.

[12] Aminian B, Araujo J, Johansson M, Johansson KH GISOO: A virtual testbed for wire-
less cyber-physical systems. IECON 2013 - 39th Annual Conference of the IEEE In-
dustrial Electronics Society (IEEE), pp 5588–5593. https://doi.org/10.1109/IECON.
2013.6700049

[13] Jecan E, Pop C, Padrah Z, Ratiu O, Puschita E A dual-standard solution for industrial
Wireless Sensor Network deployment: Experimental testbed and performance eval-
uation. 2018 14th IEEE International Workshop on Factory Communication Systems
(WFCS) (IEEE), pp 1–9. https://doi.org/10.1109/WFCS.2018.8402360

[14] Ding Y, et al. Experimental investigation of the packet loss rate of wireless industrial
networks in real industrial environments. 2015 IEEE International Conference on
Information and Automation (IEEE), pp 1048–1053. https://doi.org/10.1109/ICInfA.
2015.7279441

[15] Liu Q, et al. (2018) Design and Evaluation of a Real Time Physiological Signals
Acquisition System Implemented in Multi-Operating Rooms for Anesthesia. Journal
of Medical Systems 42(8):148. https://doi.org/10.1007/s10916-018-0999-1

[16] Fink J, Ribeiro A, Kumar V (2013) Robust Control of Mobility and Commu-
nications in Autonomous Robot Teams. IEEE Access 1:290–309. https://doi.org/
10.1109/ACCESS.2013.2262013

[17] Liang W, et al. (2019) WIA-FA and Its Applications to Digital Factory: A Wireless
Network Solution for Factory Automation. Proceedings of the IEEE 107(6):1053–
1073. https://doi.org/10.1109/JPROC.2019.2897627

[18] Candell R (2015) A Research Framework for Industrial Wireless De-
ployments. Proceedings of 2015 ISA Instrumentation Symposium URL
https://www.researchgate.net/publication/285396923 A Research Framework
for Industrial Wireless Deployments.

[19] Liu Y, Candell R, Lee K, Moayeri N (2016) A simulation framework for indus-
trial wireless networks and process control systems. 2016 IEEE World Confer-
ence on Factory Communication Systems (WFCS) (IEEE), pp 1–11. https://doi.org/
10.1109/WFCS.2016.7496495

[20] Technical Committee (2008) IEEE Std 1588-2008, IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems.

57

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

https://www.nist.gov/programs-projects/cybersecurity-smart-manufacturing-systems
https://www.nist.gov/programs-projects/cybersecurity-smart-manufacturing-systems
https://doi.org/10.6028/nist.tn.1951
https://doi.org/10.1109/IECON.2013.6700049
https://doi.org/10.1109/IECON.2013.6700049
https://doi.org/10.1109/WFCS.2018.8402360
https://doi.org/10.1109/ICInfA.2015.7279441
https://doi.org/10.1109/ICInfA.2015.7279441
https://doi.org/10.1007/s10916-018-0999-1
https://doi.org/10.1109/ACCESS.2013.2262013
https://doi.org/10.1109/ACCESS.2013.2262013
https://doi.org/10.1109/JPROC.2019.2897627
https://www.researchgate.net/publication/285396923_A_Research_Framework_for_Industrial_Wireless_Deployments
https://www.researchgate.net/publication/285396923_A_Research_Framework_for_Industrial_Wireless_Deployments
https://doi.org/10.1109/WFCS.2016.7496495
https://doi.org/10.1109/WFCS.2016.7496495

Society https://doi.org/10.1109/IEEESTD.2008.4579760
[21] Schick IC, Gershwin SB, Kim J (2005) Quality/Quantity Modeling and Anal-

ysis of Production Lines Subject to Uncertainty, Phase I, Final Report. Mas-
sachusetts Institute of Technology USA, Technical report. Also available as http:
//web.mit.edu/manuf-sys/www/oldcell1/papers/GM PhaseI FinalReport-2005.pdf.
Accessed: 10/01/2020.

[22] Kim J, Gershwin SB (2005) Integrated quality and quantity modeling of a production
line. OR Spectrum 27(2-3):287–314.

[23] iPerf (2019) iPerf2 - A tool that measures network performance of TCP/UDP, https:
//sourceforge.net/projects/iperf2/. Accessed: 2020-10-14.

[24] Universal Robots (2020) Real-time data exchange (RTDE) guide, https:
//www.universal-robots.com/articles/ur/real-time-data-exchange-rtde-guide/. Ac-
cessed: 2020-09-30.

[25] Red Hat (2017) Deployment, Configuration and Administration of Red Hat Enter-
prise Linux 6. Red Hat USA, Technical report. Also available as https://access.redhat.
com/documentation/en-us/red hat enterprise linux/6/html/deployment guide/index.
Accessed: 10/01/2020.

[26] Montgomery K (2020) Measurement and Processed Data From A Graph Database
Approach to Wireless IIoT Work-cell Performance Evaluation, https://data.nist.gov/
od/id/mds2-2242. Accessed: 2020-09-30.

[27] Acromag (2020) Introduction to MODBUS TCP/IP. Acromag USA, Technical
report. Also available as https://www.acromag.com/wp-content/uploads/2019/08/
White-Paper-Introduction-to-ModbusTCP 765B-.pdf. Accessed: 10/01/2020.

[28] Lyon GF (2009) Nmap Network Scanning [Online Edition] (Nmap Project), . Avail-
able as https://nmap.org/book/toc.html. Accessed: 10/01/2020.

[29] Beckhoff (2020) TwinCAT ADS/AMS - Specification. Beckhoff Information System
USA, Technical report. Also available as https://infosys.beckhoff.com/english.
php?content=../content/1033/tcadsamsspec/html/tcadsamsspec adscmds.htm&id=
1605425048011779071. Accessed: 10/01/2020.

[30] Beckhoff (2018) IEEE 1588 external synchronization interface (EL6688). Beckhoff
Information System USA, Technical report. Also available as https://www.beckhoff.
com/english.asp?ethercat/el6688.htm. Accessed: 10/01/2020.

[31] WireShark (2020) tshark - Dump and analyze network traffic. wireshark.org
USA, Technical report. Also available as https://www.wireshark.org/docs/man-pages/
tshark.html. Accessed: 10/01/2020.

[32] Universal Robots (2020) UR CB3, https://www.universal-robots.com/cb3/. Accessed:
2020-09-30.

[33] Robotiq (2020) 2F-85 and 2F-140 Grippers, https://robotiq.com/products/
2f85-140-adaptive-robot-gripper. Accessed: 2020-09-30.

[34] OnRobot (2020) 6 axis Force Torque Sensor, https://onrobot.com/en/products/
hex-6-axis-force-torque-sensor. Accessed: 2020-09-30.

[35] Beckhoff (2020) CX2020 Basic CPU Module, https://www.beckhoff.com/english.

58

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

https://doi.org/10.1109/IEEESTD.2008.4579760
http://web.mit.edu/manuf-sys/www/oldcell1/papers/GM_PhaseI_FinalReport-2005.pdf
http://web.mit.edu/manuf-sys/www/oldcell1/papers/GM_PhaseI_FinalReport-2005.pdf
https://sourceforge.net/projects/iperf2/
https://sourceforge.net/projects/iperf2/
https://www.universal-robots.com/articles/ur/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/real-time-data-exchange-rtde-guide/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/index
https://data.nist.gov/od/id/mds2-2242
https://data.nist.gov/od/id/mds2-2242
https://www.acromag.com/wp-content/uploads/2019/08/White-Paper-Introduction-to-ModbusTCP_765B-.pdf
https://www.acromag.com/wp-content/uploads/2019/08/White-Paper-Introduction-to-ModbusTCP_765B-.pdf
https://nmap.org/book/toc.html
https://infosys.beckhoff.com/english.php?content=../content/1033/tcadsamsspec/html/tcadsamsspec_adscmds.htm&id=1605425048011779071
https://infosys.beckhoff.com/english.php?content=../content/1033/tcadsamsspec/html/tcadsamsspec_adscmds.htm&id=1605425048011779071
https://infosys.beckhoff.com/english.php?content=../content/1033/tcadsamsspec/html/tcadsamsspec_adscmds.htm&id=1605425048011779071
https://www.beckhoff.com/english.asp?ethercat/el6688.htm
https://www.beckhoff.com/english.asp?ethercat/el6688.htm
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.universal-robots.com/cb3/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://onrobot.com/en/products/hex-6-axis-force-torque-sensor
https://onrobot.com/en/products/hex-6-axis-force-torque-sensor
https://www.beckhoff.com/english.asp?embedded_pc/cx2020.htm
https://www.beckhoff.com/english.asp?embedded_pc/cx2020.htm

asp?embedded pc/cx2020.htm. Accessed: 2020-09-30.
[36] Beckhoff (2020) CX9020 Basic CPU Module, https://www.beckhoff.com/english.

asp?embedded pc/cx9020.htm. Accessed: 2020-09-30.
[37] Shuttle (2020) Entry-level Redefined: Fanless 1 liter PC with Intel Gem-

ini Lake (DL10J), http://global.shuttle.com/products/productsSpec?productId=2281.
Accessed: 2020-09-30.

[38] Meinberg (2020) LANTIME M900/PTP, https://www.meinbergglobal.com/english/
products/modular-3u-ieee-1588-grandmaster-clock.htm. Accessed: 2020-09-30.

59

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

https://www.beckhoff.com/english.asp?embedded_pc/cx2020.htm
https://www.beckhoff.com/english.asp?embedded_pc/cx2020.htm
https://www.beckhoff.com/english.asp?embedded_pc/cx9020.htm
https://www.beckhoff.com/english.asp?embedded_pc/cx9020.htm
http://global.shuttle.com/products/productsSpec?productId=2281
https://www.meinbergglobal.com/english/products/modular-3u-ieee-1588-grandmaster-clock.htm
https://www.meinbergglobal.com/english/products/modular-3u-ieee-1588-grandmaster-clock.htm

Appendices
A. Communication Messages in the Testbed

In this appendix, we provide the basic knowledge for understanding various network packet
formats that have been used in the testbed measurements and analysis. Protocol header
information and field values are verified using WireShark packet captures from the testbed
network links.

A.1 Basic Packet Format

Fig. 40. Construction of a TCP/IP-Ethernet data packet (reprinted from [27])

Application messages refer to data exchanged between networked testbed components
for work-cell coordination and other testbed functions. The control information regarding
individual protocol layers is usually concatenated into the packet’s headers and sent along
with data in the medium, such as Ethernet links or wireless channels. Following the OSI’s
7-layer model, the analysis on testbed messages uses the information of following layers
including application, transport, network, MAC, and PHY.

Communication protocols such as ADS, Modbus, RDP, and intra-robot messages use
TCP in the transport layer and IP in the network layer. These TCP/IP packets are originally
designed to carry application data in Ethernet links. Most of network components in the
testbed are equipped with one or more Ethernet ports as the main network interface to the
wired network. Fig. 40 illustrates the layered packet format and header fields of individual

60

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 41. TCP header (reprinted from [28, TCP/IP Reference])

Fig. 42. IP header (reprinted from [28, TCP/IP Reference])

61

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

layers in a typical TCP/IP data packet through Ethernet. If such packets transmit wirelessly,
the wireless protocol header will replace the Ethernet header. The upper layer meta infor-
mation and message data remain intact. Fig. 41 and Fig. 42 illustrate details of TCP and IP
header information, respectively.

Fig. 43. UDP header (reprinted from [28, TCP/IP Reference])

UDP/IP packets also carry a part of the testbed traffic such as time synchronization
messages in both NTP and PTPv2 protocols. Similar to the TCP-based packet format,
UDP-based packets contain the UDP header information, as shown in Fig. 43, in the trans-
port layer.

A.2 ADS/AMS

Beckhoff’s TwinCAT devices, such as PLCs including both CX2020 and CX9020 and their
peripheral terminal modules (if available), use a proprietary communication protocol to ex-
change data and control messages with each other. Specifically, their messages are format-
ted as predetermined industrial functions and command codes, named ADS commands. A
unique ID called AMS Net ID is used to identify each ADS node in the TwinCAT network.
By default, the AMS Net ID is defined as “a.b.c.d.e. f ” where “a.b.c.d” is the device’s IPv4
address and the last two segments “e. f ” are usually set as “1.1”. If the ADS node has multi-
ple AMS interfaces or multiple ADS nodes belong to a subnet, the extra segments can help
specify the hierarchy of TwinCAT network related with the industrial system architecture.
In Beckhoff’s terminology, ADS refers to the physical aspect of TwinCAT devices, while
AMS is for the network side. In this project, the above two terms are used interchangeably.
The implemented TwinCAT devices are often referred to as ADS/AMS nodes/devices.

Fig. 44 illustrates components in an AMS message that carries ADS command(s).
Specifically, atop TCP, an AMS message contains three parts: AMS/TCP header, AMS
header, and ADS data/command(s). In an AMS header, the ADS/AMS connection infor-
mation is provided along with an ADS command ID pointing to the contained data section.
Table 4 provides the list of available ADS commands. For ADS commands that involve

62

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 44. ADS packet frame (partially reprinted from [28, TCP/IP Reference])

Table 4. ADS Commands (reprinted from [29])

Command ID Command Description
0x0000 N/A N/A

0x0001 ADS Read Device Info
Reads the name and the version
number of the ADS device.

0x0002 ADS Read
With ADS Read, data can be read
from an ADS device.

0x0003 ADS Write
With ADS Write, data can be
written to an ADS device.

0x0004 ADS Read State
Reads the ADS status and the
device status of an ADS device.

0x0005 ADS Write Control
Changes the ADS status and
the device status of an ADS device.

0x0006
ADS Add Device
Notification

A notification is created in an
ADS device.

0x0007
ADS Delete
Device Notification

It is created before the defined
notification is deleted in an ADS device.

0x0008
ADS Device
Notification

Data will carry forward independently
from an ADS device to a Client

0x0009 ADS Read Write
With ADS Read Write, data will be
written to an ADS device. Additionally,
data can be read from the ADS device.

63

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

process variable operations, e.g., read or write, the target data address of the device is re-
quired. The ADS/AMS protocol allows PLC applications to use the variable name to obtain
the handle of a remote register so that the device can transmit process information without
the knowledge of memory allocation in remote nodes. This feature facilitates the modular
design that is focused on nodal functions in the process and encourages individual devices
to manage their local memory in a distributed way, which agrees with the dynamics and
diversity of industrial applications. In our testbed, we also manage ADS/AMS communi-
cations in such a way.

Fig. 45. Handshakes of ADS message transactions in a WireShark trace file

In Fig. 45, two examples of ADS/AMS transactions between testbed PLCs are demon-
strated. In a complete transaction, three rounds of handshakes are performed: 1) getting
the symbol handle in the remote device by the name, 2) operating the remote symbol using
the returned handle, and 3) releasing the handle. In each round, a request-response conver-
sation forms a two-way communication where the request and response are paired with a
unique 32-bit Invoke ID in their AMS headers. In the first example, a CNC status report is
initiated by the CNC PLC. In the status report, an array of machine status is updated at the
supervisor as a data structure known to both devices. In the second example, the supervisor
sets a one-bit flag in the CNC to notify the clearance of safety alert regarding a moving
robot in the CNC’s working space.

We refer the interested readers to the online Beckhoff Information System for further
details of ADS/AMS communications [29].

64

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 46. Construction of a Modbus TCP data packet (reprinted from [27])

A.3 Modbus

The supervisor communicates with robots through Modbus, which allows the data ex-
change between heterogeneous industrial appliances in the shared registers at the super-
visor. UR3 robots use Modbus TCP in their communications. The Modbus TCP protocol
modifies the original Modbus serial frame and adds new header information atop TCP. As
shown in Fig. 46, a Modbus TCP packet includes a Modbus Application Protocol (MBAP)
header and the Protocol Data Unit (PDU), which contains the tailored Modbus data.

For different register types in Modbus, process variables are accessed through differ-
ent register address groups as shown in Fig. 47. In this testbed, we only consider digital
registers each of which stores a 16-bit numerical data (binary or decimal) referenced in
the 4xxxx segment. Accordingly, the available operations in the supported registers can be
found in Fig. 48.

Fig. 49 and Fig. 50 illustrate examples of formatting Modbus function messages for
reading and writing the registers, respectively. The source and destination port numbers
of the TCP header indicate whether or not the TCP payload contains a MBAP request/re-
sponse: If the TCP source port is 502, one or more Modbus responses are contained; if
the TCP destination port is 502, one or more Modbus requests/requries are contained. Ac-
cesses to different Modbus registers can be managed in parallel Modbus transactions, even
along the same TCP connection. The 32-bit transaction identifier is used in the MBAP
header for transaction pairing between requests and responses. For the query of reading
holding registers, the response returns the requested register values. For the query of writ-
ing a value into the register, the response just repeats the content in the request to confirm

65

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 47. Modbus register addresses (reprinted from [27])

Fig. 48. Modbus function codes (reprinted from [27])

Fig. 49. Modbus function of reading holding registers and capture samples (partially reprinted
from [27])

the reception. In the WireShark, we can dissect the transmitted Modbus data and obtain the

66

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 50. Modbus function of presetting single register and capture samples (partially reprinted
from [27])

useful field information.
We refer the interested readers to the introduction to Modbus TCP/IP for further details

of Modbus TCP communications [27].

67

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

B. Beckhoff PLC Development

B.1 PLC Data Collection

Using TwinCAT function libraries, we have developed a routine data collection approach
in Beckhoff’s PLC programs. In a PLC project, programs are organized as objects, known
as Program Organization Units (POUs), which include programs, functions, and function
blocks. Each POU has its own internal variables that are defined at the file beginning.
Meanwhile, for variables that are shared by multiple POUs, they can be defined and man-
aged in one or separate GVL files which are visible globally in the project. Technically,
all global and local variables can be routinely saved into files for measurement purposes.
Although it is feasible to record variables every PLC cycle (up to 1 kHz), it still depends
on multiple factors that determine the real update rate, such as subscribed data size, cache
capacity, and file open/write speed. In the testbed measurement, the update rate can be
selected within a fixed frequency set with the maximum rate at 125 Hz.

B.1.1 Start a PLC Measurement

Fig. 51. PLC measurement data in CSV

PLC measurement data are saved as records in CSV format, as shown in Fig. 51. Except
the header line on the top, each following row of data contains a list of instant values of
the subscribed PLC variables which are separated by comma. The first column is reserved
for the record time which is retrieved from the PLC’s clock that is synchronized with the
testbed’s time server via PTPv2. The timing accuracy is on the millisecond level to comply

68

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

with the PLC cycling step (as short as 1 ms). Timestamps are later used in analysis to align
events from different sources for reconstructing the measured process in the timeline.

Fig. 52. PLC measurement configuration in XML

Measurement configurations are submitted to the PLC through an XML file as shown in
Fig. 52. In the file, configuration settings are divided into two main sections: initialization
and variable subscription options. The former, labeled in the < meas init > tag, provides
global configuration options, such as file naming rules (e.g., indicating start date/time) and
data update rate; in the latter, we can enable/disable the collection of available variables
as listed in the < meas log sub > tag. The settings are read by the PLC, stored in the
corresponding data structures of the gvMeas GVL, and used by the measurement function
Meas Main in data collection.

Fig. 53. Load PLC measurement configuration in HMI

We start a new measurement from loading the prepared configuration file. As shown

69

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

in Fig. 53, HMI’s main view provides a simple user interface for measurement control.
By clicking the “Load & Start” button, HMI will switch to the view for measurement
configuration. There are three steps here.

• Step 1. Select the measurement configuration file
Click the “Open” button to show the file selection dialog box; Select the configuration
file (*.xml) and click “Load”;

• Step 2. Load the configuration
Click the “Load” button. Check the loaded configuration settings shown in the view.
If the configuration is not as expected, modify the XML file and repeat Step 1 with
the right file. If any error indicator is ON (Errors in reading XML fields), double
check XML tags and file format. Reload the correct file starting from Step 1, or click
“Reset” and then “Load” to reload the opened file after modifications.

• Step 3. Start the measurement
If everything looks good in the loaded configuration, click the “Start” button to start
the measurement and return to the main HMI view. The measurement setup can be
aborted anytime by clicking the “Abort” button to cancel and return to the main HMI
view. The measurement status shows the current log file name and location in PLC.

In the main HMI view, the ongoing measurement is shown with its status. It can be
stopped by clicking the “Stop” button. Repeat the “open-load-start” operations to start a
new measurement.

B.1.2 Adding New PLC Variables in the Subscription List

As shown in Fig. 52, all available PLC variables that can be subscribed in data collection
are listed as logging options in the < meas log sub > tag of XML configuration. We can
enable or disable individual variables in subscription by setting “true” or “false” values,
respectively. For variables that have not been listed, we need to first add them into the list
visible to measurement. Before showing how to add a new measurable variable, let us first
review how measurements are implemented in the PLC.

In the PLC program, all measurement control variables are stored in the gvMeas GVL.
Through interactive operations in HMI, visualization events in measurement-related views,
such as mouse clicks, will load the configuration information from XML into gvMeas.
Once the measurement gets started, PLC will activate data collection based on gvMeas
settings. The Meas Main function is in charge of main data collection tasks which routinely
retrieve the subscribed variable values and write them into the CSV file.

In order to add a new variable into the subscription list, we need to following three steps
that prepare PLC for the new measurement option.

• Step 1. Locate the to-be-subscribed variable(s) in the Supervisor, usually defined
in GVLs

70

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 54. The design of PLC measurement

• Step 2. Register the variable(s) in PLC (hard coded)

– Step 2-1. Add selection indicator(s) In the DUT s/MEAS LOG SUB struc-
ture, add BOOL indicators, one for each newly added variable, e.g., bSupDevTemper
with default FALSE.

– Step 2-2. (Optional) Visualize new indicator(s) in HMI To check if the newly
subscribed variables are loaded in the runtime, add text field(s) in the measure-
ment configuration view of HMI controlled by V ISUs/Visualization MeasCon f ig.
The text variables (STRING) are mapped from the corresponding variable ele-
ments that are newly added into the structure object gvMeas.stMeasLogSub.

– Step 2-3. Add variable(s) in the measurement function In POUs/Meas Main,
update the generation code regarding the header line and data lines with the
newly added variable information. Note that CNC variables are usually orga-
nized in vectors each of which may contain four observable data (from CNC
1–4) or more (as STRUCT). In the CSV file, such variables occupy multiple
columns in the header line and data lines as counted by elements.

– Step 2-4. Compile and build the PLC project Rebuild the project and load it
to the PLC.

• Step 3. Subscribe the data in measurement

71

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

– Step 3-1. Update logging option in XML In the XML configuration file, in the
< plc meas con f ig> element, add new logging items, e.g., < bSupDevTemper >
true < / bSupDevTemper >, where the true values means enabling the collec-
tion of this value in the CSV file. Save the XML file.

– Step 3-2. Update measurement settings in the runtime Stop the ongoing
measurement (if there is any, the measurement status is shown in the main HMI
view). Load the update XML file, check the status on display (option, available
with Step 2-2), and start the new measurement.

B.2 PLC Time Synchronization

Fig. 55. Time synchronization between PLC and time server through PTPv2

Beckhoff’s TwinCAT devices support PTP through an add-on module, the EL6688
IEEE 1588 module. This terminal unit can filter PTP synchronization messages received at
the built-in Ethernet port, synchronize its hardware clock to the selected PTP time server,
and serve as an OC for providing the synced reference time to PLC applications. Fig. 55
illustrates the end-to-end time synchronization path from the time server to the PLC task cy-
cle. Within the TwinCAT system, different modules exchange timing information through
EtherCAT links.

In the network, the synchronization is performed using the end-to-end delay mechanism
to calculate the OC’s offset from the grand master. Fig. 56 illustrates a round of handshakes
that enables the OC to routinely update its clock offset to the selected time server.

The synced OC at EL6688 is also called an EtherCAT Distributed Clock (DC) in Beck-
hoff systems. DC’s offset to the (external) time server clock, DcToExtTimeO f f set, is in
nanosecond. Serving as the local time reference for the PLC, EL6688 also has to keep
measuring the time offset between DC and the PLC’s task clock (TC) and maintain it as

72

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 56. PTP end-to-end delay mechanism

Fig. 57. Distributed clock adjustment in PTP time synchronization

another output variable DcToT cTimeO f f set in nanosecond. Fig. 57 illustrates how the
PLC uses the PTP-synced clock time. When an application calls for the current TC time,
e.g., rendering a timestamp for the measurement record, it is calculated in Eq.(2) [30].

tUTC
TC =GetCurDcTaskTime()+DcToT cTimeO f f set+leapSeconds+DcToExtTimeO f f set

(2)
where the GetCurDcTaskTime component is the instant time reading from the system clock
at the PLC, the two offset values, i.e., DcToT cTimeO f f set and DcToExtTimeO f f set, are

73

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

read from the PLC’s interface to DC. Note that TwinCAT devices, including EL6688, work
internally with the temps atomique international (ATI) time. To obtain the UTC time, it
requires a further conversion by adding “leap seconds”. In November 2019, there were 37
“leap seconds” [30].

In the saved CSV data, PLC writes the local time information at the beginning of each
record row, which also applies the time zone and daylight saving time adjustments to the
calculated UTC time.

74

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

C. Translating Testbed Data to Graph Database

In Section 7.2, the data importing pipeline has been introduced. This appendix documents
more details of individual procedures in pipeline implementation. First, properties of graph
elements, i.e., nodes and relationships, are summarized in tables for reference in further
data analysis of the graph.

C.1 Graph Nodes, Relationships, and Their Properties

Nodes, relationships, and their properties used by the testbed GDB are summarized in the
following tables. Each property comes with the name and corresponding variable type.
As raw data are stored in CSV files as strings, it refers to these tables in converting CSV
records to correct variable types, e.g., integer or float, when creating property instances.

C.1.1 Nodes

Table 5. Nodes and their property tags in the graph for static objects

Node Label Property Type Value Note

(:Actor)
name String

{“Supervisor”, “CNC-x”, “Operator”,
“Inspector”}

type String {“PLC”, “Robot Controller”}
model String {“CX2020”, “CX9020”, “UR3”}

(:NtwkID)
name String e.g., “CNC-1 LAN”
ipAddr String “a.b.c.d” where a/b/c/d in [0, 255] IPv4
host String the hosting Actor’s name

(:Adapter
[:Wireless
:AP/:UE])

protocol String {“Ethernet”, “802.11”}
name String Port name, e.g., “eth0”
macAddr String “aa:bb:cc:dd:ee:ff”
host String Only for Ethernet NIC, e.g., “Supervisor” Optional

(:Sniffer)

type String {“wireless”}
protocol String {“802.11”}
name String Sniffing port name, e.g., “WLS1”
macAddr String “aa:bb:cc:dd:ee:ff”

As introduced in Section 7.1, a number of static graph nodes are defined in the graph to
represent testbed components and their settings in experiments. Table 5 summarizes these
node types and their properties used in the graph. Specifically, static nodes include Actor,
NtwkID, Adapter (and subcategorical nodes), and Sniffer, which are first created in the
graph and serve as anchor points for later added nodes.

• Actor Actor nodes are testbed components which are networked to take industrial
operations. In the testbed, Actor nodes include the supervisor PLC, CNC controllers,

75

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

and robotic controllers. In the measurement, we collect network traffic from TAP
devices that are collocated with these Actors.

• NtwkID An Actor can also be associated with one or more NtwkID nodes, which
contain the network configuration information about the linked Actor. They are also
created in the initiation phase and linked with the served Actor nodes.

• Adaptor To connect to the testbed network, each Actor employs one or more adapters.
An adapter is a network interface through an Ethernet or wireless link. It can have
additional labels to further specify its role in the network. For example, a Wi-Fi
router can be represented by a node with the label (:Adapter:Wireless:AP); for Wi-
Fi clients in the network, we can use the label (:Adapter:Wireless:UE). Besides,
(:Adapter:Ethernet) is used to label the embedded Ethernet interfaces of industrial
appliances.

• Sniffer Sniffer is a type of device that captures packets in the select medium for
online/offline analysis of communication traffic. Currently we use an Intel NUC
as the wireless sniffer to monitor the link quality in the selected 2.4 GHz WLAN
channel during the testbed operation.

Dynamic nodes denote testbed records that capture physical process status and network
traffic in the work-cell. In current GDB, such nodes include messages, transactions, and
physical actions. Table 6 summarizes graph nodes that represent communication messages
and associated properties. Each Message node is created based on a single network packet
transmitted between industrial devices in the wired/wireless communication link. Packets
in the testbed are mainly of the TCP/IP type. Message properties include both the embed-
ded information in PCAP records and necessary meta data to establish relationships.

Transaction nodes refer to operational transactions between industrial devices to coor-
dinate them in work-cell operations. They can be viewed as the abstract of real network
packets in the application layer. Message nodes and Transaction nodes have the n : n rela-
tionship, i.e., one packet may support multiple transactions (e.g., with aggregated Modbus
messages), or one transaction involves multiple packets (e.g., ADS/AMS handshakes).

76

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 6. (:Message) nodes and their property tags in the graph

Field Property Type Value Note

MAC
macSrc String Source address, “aa:bb:cc:dd:ee:ff”
macDst String Destination address, “aa:bb:cc:dd:ee:ff”

IP

ipSrc String “a.b.c.d” where a/b/c/d in [0, 255] IPv4
ipDst String “a.b.c.d” where a/b/c/d in [0, 255] IPv4
ipLen Integer IP packet length (including IP header) Bytes
ipChksum String “0x0000abcd” Optional

TCP

tcpPrtSrc Integer TCP source port number
tcpPrtDst Integer TCP destination port number
tcpSeqNum String Relative sequence number (in a PCAP) Optional
tcpAckNum String Relative acknowledgement number Optional
tcpChksum String “0x0000abcd” Optional

Appl.

adsCmdId Integer applicable when proto=“ADS” Optional
adsInvokeId String “0xabcd1234”, applicable when proto=“ADS” Optional
adsIndexGroup String “0x0000abcd”, applicable when proto=“ADS” Optional
adsIndexOffset String “0xabcd1234”, applicable when proto=“ADS” Optional
adsMatchCode String Calculated based on selected ADS features Optional
mbTransId Integer applicable when proto=”Modbus” Optional
mbFuncCode Integer applicable when proto=”Modbus” Optional
mbRefNum Integer Modbus register number in decimal Optional
mbRegVal String Value in the Modbus register number Optional
mbMatchCode String Calculated based on selected Modbus features Optional

Meta

msgId Integer
unique in a measurement set, encoded
as a 15-digit integer as “1nnttrrxxxxxxxx”. Global

copyType String By the record source, in {“tx”, “rx”}
proto String {“Ether”, “TCP”, “UDP”, “ADS”, “Modbus”}

transRole String
The role in a transaction, in {“request”,
“response”, “sole”}

rsp2MsgId Integer
the global msgId of the request message
which is responded to, 15-digit

only for
response

txTime Float the epoch time of Message captured at TX
rxTime Float the epoch time of Message captured at RX

rxGlobalMsgId Integer the global msgId of the RX copy, 15-digit
only for
TX copy

msgCopy Integer
for multiple Application messages in the same
TCP payload, copies share the same field
contents of TCP and lower layers

cmdType String Industrial application command type
cmdDetail String Industrial application command detail

tcpRetxMsgId Integer
the global msgId of the Message indicated by
“tcp ana rto frame” field in PCAP

tcpDuplicate
-AckMsgId Integer

the global msgId of the Message indicated by
“tcp ana duplicate ack frame” field in PCAP

77

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 7. (:Transaction) nodes and their property tags in the graph

Property Type Value Note
proto String {“Ether”, “TCP”, “UDP”, “ADS”, “Modbus”}

reqTxId Integer
the msgId of the init Message (Request)
recorded at TX

rspRxId Integer
the 15-digit global Message ID copied from
rxGlobalMsgId of the closing Message (Response) Optional

timeStart Float the txTime of the init Message (Request) node
timeStop Float the rxTime of the closing Message (Response) Optional

status String
{“Open”(init), “Closed”}, switched to
“Closed” once all relationships are created

cmdType String Industrial application command type
cmdDetail String Industrial application command detail

transCopy String
copied from msgCopy of the Request Message,
used in Modbus transactions Optional

mbTransId Integer
copied from mbTransId of the Request,
used in Modbus transactions Optional

Table 7 summarizes node properties regarding a Transaction node. Each Transaction
serves a specific industrial action purpose in processing monitoring and control. Transac-
tions in the testbed include ADS/AMS messages (between the supervisor and CNCs) and
Modbus messages (between the supervisor and robotic controllers).

78

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 8. Physical action nodes and their property tags in the graph

Node Property Type Value Note

(:PhyAction)
action String description to the action
timeStart Float The action start time in the epoch time
timeStop Float The action stop time in the epoch time

(:URSchedule)

actor String the Actor’s name, i.e., “Supervisor”

stateId Integer
unique type index associated with the
Actor (in case an Actor may have
multiple states to collect)

actionId String
unique in the measurement set;
“3”+actorId(2)+stateId(1)+index(8) 14-digit

time Float The epoch time when the state begins

target String
The name of the scheduled Actor, e.g.,
“Inspector”

targetAction String
The action assigned to the target, e.g.,
“inspect”

waypointId1 Integer
The index of job stop 1. For OPT, it is
the part pick-up location; for INS, it is
the inspection location.

waypointId2 Integer
The index of job stop 2. For OPT, it is
the part drop-off location; for INS, it
repeats the set value of waypointId1.

(:SensorState)

actor String the host actor’s name

stateId Integer
unique type index associated with the
Actor (in case an Actor may have
multiple states to collect)

sensorType String
The sensor type of the state source,
e.g., “Proximity” of the part holder
in an CNC

actionId String
unique in the measurement set;
“3”+actorId(2)+stateId(1)+index(8) 14-digit

time Float The epoch time when the state begins
value Integer the state value of the sensor output

(:RouteState)

actor String
The actor robot who is assigned with
this route instruction

By the
scheduler

actionId Integer
unique in the measurement set;
“3”+actorId(2)+stateId(1)+index(8) 14-digit

time Float The epoch time when the route begins
optRoute
From Integer

Job stop index from which the part
is moved by robot

Optional,
OPT only

optRoute
To Integer

Job stop index to which the part
is moved by robot

Optional,
OPT only

inspRoute Integer
Job stop index at which the part is
inspected by robot

Optional,
INS only

79

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 8 summarizes physical action (PhyAction) nodes used in the graph database,
which are built upon production measurement data. A PhyAction node refers to a record of
measured industrial action in work-cell operations. These actions are recorded by external
monitors, such as UR3’s RTDE interfaces and PLC’s recording, other than network sniffers.
Since PhyAction nodes are only linked with Actors, we can load PhyAction nodes into the
graph in parallel with network-related Message and Transaction nodes.

Table 9. QoSReport nodes and their property tags in the graph

Node Property Type Value Note

(:QoSReport)

time Float Packet reception time in epoch
dataRate Integer WLAN data rate in Mbps Radiotap Header

rssi Integer
WLAN signal strength indicator,
in dBm Radiotap Header

channel Integer WLAN channel index, [1, 11] Radiotap Header
txAddr String MAC address of the packet sender
rxAddr String MAC address of the packet receiver

rprtId Integer
unique in a measurement set, encoded
as “2”+SnifferId(2)+index(8) 11-digit

anchorId Integer
The pairing index between a Message
and a QoSReport, unique in the
measurement set

To build
[:COVERED]
relationship

msgId Integer
The global msgId of the Message
that this QoSReport covers

To build
[:COVERED]
relationship

msgCopy
Idx Integer

The index of the covered Message in
all Messages which are covered by
this QoSReport node

To build
[:COVERED]
relationship

msgIpSrc String The source IP of the covered Message
To build
[:COVERED]
relationship

Table 9 summarizes properties used in the QoSReport node which are obtained from
the Radiotap header data of the sniffer’s output.

C.1.2 Relationships

Table 10 summarizes relationships between nodes in the graph. They are created based on
conditions that links two nodes given their properties. Note that relationships are direc-
tional.

80

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Table 10. Relationships and their creation conditions in the graph

Relationship Connect Node To Node Condition(s) Note

TX (a:Actor) (m:Message)
m.ipSrc=n.ipAddr where
(a)-[:HAS]->(n:NtwkID)

RX (a:Actor) (m:Message)
m.ipDst=n.ipAddr where
(a)-[:HAS]->(n:NtwkID)

SUPPORTED (m:Message) (t:Transaction)
(t) is created from (m)

m.transRole=
‘Request’

m.rsp2MsgId=t.reqTxId
m.transRole=
‘Response’

SCHEDULED (u:URSchedule) (r:RouteState)
u.actionId AND r.actionId
are coupled in timeline

Performed separately
for OPT and INS

TOOK (a:Actor) (p:PhyAction) a.name=p.actor

Also apply to
(:URSchedule);
(:RouteState);
(:SensorState)

FOLLOWED (a:PhyAction) (b:PhyAction) a.actionId=b.actionId-1

Also apply to
(:URSchedule);
(:RouteState);
(:SensorState)

PARTICIPATED
IN (a:Actor) (t:Transaction)

(a)-[:TX/RX]->(m:Message)
-[:SUPPORTED]->(t)

CONNECTED
THROUGH

(a:Actor)
(n:Adapter
:Ethernet) a.name=b.host

For built-in Ethernet
interface(s)

(n:Adapter
:Wireless:AP
/:UE)

a.name AND b.macAddr
Specified in
experiments

NEXT (a:PhyAction) (b:PhyAction) a.actionId AND b.actionId
Call Neo4j APOC’s
node link function

COVERED (q:QoSReport) (m:Message)
m.msgCopy=q.msgCopyIdx
AND m.msgId=q.msgId

TRIGGERED (t:Transaction) (r:RouteState)
t.reqTxId AND r.actionId
are coupled in timeline

Modbus commands,
performed separately
for OPT and INS

HAS (a:Actor) (n:NtwkID) a.name=n.host Static
GENERATED (w:Wireless) (q:QoSReport) (w) ->(q) w/ a single Sniffer
COLOCATED
WITH (w:Wireless) (a:Actor) a.name AND w.name

Specified in
experiments

C.2 Data Importing Flow

C.2.1 Overview

To streamline data processing steps, a software package is developed. Fig. 58 illustrates its
main function modules and highlights the data pipeline along which measurement data are
converted into graph elements by the graph data model addressed in Section 7.1.1. The code
is mainly written in Python 3.6.6, which also employs Neo4j Desktop 3.5.6 as the GDB
application. Using the Neo4j bolt driver, the Python script can visit the Neo4j database with
the embedded Cypher query statements. In addition, Bash scripts use TShark’s functions

81

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 58. Implementing the pipeline of importing testbed data into GDB

82

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

to dissect network packet captures for header information of different network protocols.
As shown in Fig. 58, network traffic data and production modules are treated according

to their own data features. In the preprocessing (PREPROC) stage, network captures in
PCAP files are first processed by a packet dissection tool to extract multiple fields from
the encapsulated packet headers and save them into separate columns in CSV files. In
this tool, Bash scripts use TShark’s protocol libraries to resume header fields from packet
bytes. These fields will later serve as either properties of packet-oriented graph nodes, such
as Messages and Transactions, or pairing conditions to create relationships showing the
communication history. In the next stage, i.e., feature extraction (FEAT EXTR), separate
packet copies will be paired according to interconnections in transmissions, such as two
copies captured on both ends of a link. These pairing information will also be saved as
additional meta data in CSV files and used to build the graph. Next, in graph database
insertion (GDB INSRT), rows of CSV files will be imported into the GDB to create nodes
and relationships. However, it is not the end of the building process. The graph tuning
(GRF TUN) stage takes further actions to create more relationships to link nodes together
regarding their explicit and implicit connections in the network. Such operations may run
solely within GDB, however, it is more common to utilize intermediate graph information
combined with raw data to unveil more insight relationships.

In a similar way, OT data collected from work-cell modules, i.e., PLC and robot data,
are treated in parallel. For example, in PREPROC, OT data are first downsampled to filter
out constant variable readings and keep records indicating state transitions. Such operations
are purposed for cleaning raw data and reducing computing load of following steps. In GRF
TUN, different node events are assorted by time so that delays in communication networks
and control processes can be studied in analysis.

C.2.2 Packet Dissection

To treat the packet capture data collected by WireShark instances in the PREPROC stage,
we utilize the command-line tool called TShark to dissect captured packets in the raw data
files of PCAP and access the packet header information [31]. The content of selected
packet header fields will be extracted and saved as CSV data where each row represents the
information of one packet capture while columns store the meta and header fields. CSV
files are exported to the next step for further process before importing the data into the
graph.

C.2.3 Coupling Packet Captures in Communication Links

In the FEAT EXTR stage, the main task to create relationships between graph nodes. Find-
ing a relationship relies on the engineering knowledge of work-cell operations and network
flows to couple discrete event records. Such techniques are widely used in treating our
testbed data. As an example, we will showcase how to pair distributed packet copies as
well as defining transactions that trigger industrial control actions.

83

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

The coupling can be classified into two different types. Type I is to couple packet
records in CSV files based on their relationships in link transmissions and communication
protocols; Type II is to link the external add-on data with the existing graph.

Fig. 59. Timeline illustrations of multiple network captures in a control command transaction

As shown in Fig. 59, we can find the copies of packet captures related with a message
transmission in the capture files at both transceivers. As a transaction includes the two-
way message exchange, then we have to find four packet captures in order to create two
Message nodes and one Transaction node in the graph. The timestamp embedded in each
capture record is the main reference information used in the coupling process.

Fig. 60. Graph nodes in a control command transaction

84

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 61. Graph nodes and the established relationships in a control transaction

Fig. 60 illustrates the graph nodes that are rendered based on the packet captures. Four
Message nodes will be created directly from the PCAP data. Accordingly, Message prop-
erties will be set by corresponding CSV columns. Note that a Message node is designed to
contain the properties related with both the “TX” and “RX” copies of a real message. We
will combine the Message copies of the same message, e.g., REQ@TX and REQ@RX,
to leave only one node, i.e., REQ@TX. The nodes shown in the dashed circles will be
removed from the final graph to reduce the size.

Fig. 61 shows the result of the coupling processing related with a control transaction.
Further details at individual steps can be found in Fig. 62.

C.2.4 Cypher Queries and Python-Neo4j Interface

Cypher is Neo4j’s query language that interfaces with the GDB runtime. With a SQL-
like syntax, Cypher also provides drivers in common programming languages, such as C,
Python, and Java, which use the bolt protocol.

In the GDB-related operations, we use Python 3.6.6 to send Cypher queries to the run-
ning graph in Neo4j Desktop 3.5.6 which returns the requested data for further analysis.
There are a few available Python packages on the Python-Neo4j interface, such as neo4j
and py2neo. Their main difference is the format of embedding Cypher queries in a Python
script.

For example, the Python code using ph2neo can be written in the following way.

from py2neo import Graph

g = Graph("bolt :// localhost:7687", auth=(’neo4j ’, ’1234’))

query = """

MATCH (p:Message)

RETURN p.msgId as ID, p.ipSize as Size

limit 3

85

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

a Nodes imported from packet captures b Build TX relationships

c Build RX relationships d Create the Transaction node

e Set Transaction properties f Final view

Fig. 62. Coupling procedures to pair network captures in a communication transaction.

"""

a = g.run(query).data() % return the query data as a list of

dictionaries

a = g.run(query).stats () % return the query statistics

In the above sample code, the query asks for the “msgId” and “ipSize” information of
at most 3 Message nodes from the graph. A Neo4j Graph object is first initialized with
the graph address and authentication information. The Cypher query is then set as a string
variable and sent to the database by the run() function. The data() functions returns the
query result as a list of dictionaries. Each dictionary, i.e., one matched Message node out
of the returned 3, contains key-value pairs, e.g., the “ID” and “Size” keys which are the
alias of the requested properties, respectively.

86

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

D. Testbed Equipment Specifications

Table 11. Testbed equipment hardware and software specifications. Numbers in the parentheses
denote the quantities of equipment components.

Equipment Hardware Software

Central data collector (1)

hostname RIVA OS
Ubuntu 18.04.1
desktop 64-bit

CPU Intel Xeon E5-2620 2.4 GHz (1) UR3 TCP/IP client RTDE Python driver

Memory 16 GB DDR4 2400 MHz (4)
Packet capture &
measurement TShark

Hard drive 1 TB SSD (1) Time sync linuxptp
Network Gigabit Ethernet ports (10)

Data processor &
GDB server (1)

hostname Fishbone2 OS
Windows 10 Enterprise
64-bit

CPU Intel Xeon E-2186G 3.8 GHz (1) GDB server Neo4j Desktop 3.5.6
Memory 16 GB DDR4 2666 MHz (4) Python 3.6.6
Hard drive 1 TB SSD (1)
Network Gigabit Ethernet ports (2)

Collaborative robots (2)
Make/Model

Universal Robots UR3 6-DoF
CB-series [32] Software 3.12.0

Peripheral
Robotiq 2-Figure 2F-140
gripper (1) [33]

Peripheral
OnRobot 6-axis HEX Force
Torque sensor (1) [34]

Supervisor PLC (1)
Make/Model Beckhoff CX2020 [35] OS

Windows Embedded
Standard (WES) 7

Terminal
Beckhoff EL6688 external
sync interface (1) [30] PLC IDE

Beckhoff TwinCAT
3.1 Build 4020.28

Terminal
Beckhoff EL1808 digital
input (1) TC3 libraries

TC1200, TF1800,
TF6421

CNC emulator
PLCs (4)

Make/Model Beckhoff CX9020 [36] OS
Windows Embedded
Compact (CE) 7

Terminal
Beckhoff EL1808 digital
input (1) PLC IDE

Beckhoff TwinCAT
3.1 Build 4022.14

TC3 libraries TC1200

Ethernet-WLAN adapter
/WLAN sniffer (7)

Make/Model
Shuttle DL10J NUC
“Intel NUC” [37] OS

Ubuntu 14.04 server,
Linux kernel 4.10,
64-bit

CPU
Intel Gemini Lake J4005
Dual Core

Packet capture&
measurement TShark, Tcpdump

Memory 4 GB DDR4 2400 MHz (2) Traffic generation Iperf v2.0.14a
Hard drive 250 GB SSD (1) Time sync linuxptp

Network
Gigabit Ethernet port (1);
Intel Wireless-AC 9560 (1)

PTP-capable switches
(2)

Make/Model Cisco IE-4000-8GT4G-E IOS
ie4000-universalk9-
mz.152-4.EA5

Network Gigabit Ethernet ports (12)

Non-PTP switches (2)
Make/Model D-Link 8-port DGS-108
Network Gigabit Ethernet ports (8)

Wireless AP (1) Make/Model
Netgear AC1900 WLAN router
R7000 (1) Firmware

DD-WRT
V3.0-R40559

TAP devices (7) Make/Model
Shark TAP Gigabit network
sniffer

Time server (1)
Make/Model

Meinberg M900/GPS PTPv2
grandmaster [38] Firmware 6.24.014

Network NTP (1); PTP (1)

87

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

E. Network Diagrams in Testbed Experiments

Fig. 63. Testbed network diagram with only work-cell connections

88

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 64. Testbed network diagram with full wired connections and measurement data links

89

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

Fig. 65. Testbed network diagram with wireless connections

90

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

F. Acronyms

5G The fifth-generation
ADS Automation device specification
AGV Automated guided vehicle
AMS Automation message specification
AP Access point
ATI International atomic time, or “temps atomique international” in French
BC Boundary clock
CLI Command-line interface
COMM Communication
CPS Cyber-physical system
CPU Central processing unit
CSV Comma-separated values
DC Distributed clock
DDR4 Double data rate 4
DIAG Diagnostics
DoF Degree-of-freedom
E2E End-to-end
EDT Eastern daylight time
ERP Enterprise resource planning
EST Eastern standard time
EtherCAT Ethernet for control automation technology
F/T Force torque
FEAT EXTR Feature extraction
GDB Graph database
GDB INSRT Database insertion
GRF TUN Graph tuning
GUI Graphic user interface
GVL Global variable list
HDD Hard disk drive
HIL Hardware in the loop
HMI Human-machine interface
HW Hardware
I/O Input and output
ID Identification
IDE Integrated development environment
IEEE Institute of Electrical and Electronics Engineers

91

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

IN Input
INIT Initialization
INS Inspector
IOI I/O module interface
IP Internet protocol
ISO International Organization for Standardization
IT Information technology
IWS Industrial wireless systems
LAN Local area network
MAC Medium access control
MB Megabyte
MBAP Modbus application protocol
MES Manufacturing execution systems
NIC Network interface cards
NIST National Institute of Standards and Technology
NoSQL Non-relational or non-SQL
NTP Network time protocol
NUC Next unit of computing
OC Ordinary clock
OPT Operator
OS Operating system
OT Operational technology
OUT Output
PCAP Packet capture
PDU Protocol data unit
PER Packet error rate
PHC PTP hardware clock
PHY Physical
PLC Programmable logic controllers
POU Program organization units
pps Packets per second
PREPROC Preprocessing
PTP Precision time protocol
PTPv2 Precision time protocol version 2, also known as IEEE 1588-2008
QoS Quality of service
RDP Remote desktop protocol
RSSI Received signal strength indicator

92

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

RTDE Real-time data exchange
RX Reception or receiver
SCHDL Scheduler
SMS Spectrum monitoring service
SNR Signal-to-noise ratio
SQL Structured query language
SSD Solid-state drive
STA State machine
SW Software
TAP Test access point
TB Terabyte
TC Task clock
TCP Transmission control protocol
TDMA Time division multiple access
TPKT ISO transport services on top of the TCP
TSN Time sensitive networking
TX Transmission or transmitter
UE User equipment
UR Universal Robots
URCaps UR robot’s extended capabilities, i.e., accessories
UTC Coordinated universal time
WES Windows embedded standard
WIA-FA Wireless networks for industrial automation - factory automation
WLAN Wireless local area network
XML Extensible markup language

93

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8365

	Introduction
	Related Work
	Overview of the Testbed Architecture
	Production Modules
	Work-Cell Workflow
	Supervisor
	Scheduler
	HMI
	Job Buffers
	Production Tasks

	Tooling Machines
	Robots
	Coordination between Work-Cell Modules
	Coordination in Initialization
	Coordination in Job Operations

	Network Components
	Communications in Work-Cell Applications
	Remote HMI Operations
	Supervisor-CNC Machines Interactions
	Supervisor-Robots Interactions
	Robotic Subsystem Communications
	A Summary of Communication Traffic

	Networking Architecture
	Wireless Extension

	Measurement Framework
	Measurement Data Collection
	Operational Data Collection
	Network Traffic Captures

	Time Synchronization
	Precision Time Protocol
	Timestamp Formats

	Data Management
	Graph Database
	Graph Data Model
	Building Blocks

	Data Importing Pipeline
	Data Preprocessing
	Feature Extraction
	Graph Insertion
	Graph Tuning

	Data Analysis & Graph Exploration
	Graph Database Schema
	Experiment Configurations
	Preliminary Results

	Conclusion
	References
	Appendices
	Communication Messages in the Testbed
	Basic Packet Format
	ADS/AMS
	Modbus

	Beckhoff PLC Development
	PLC Data Collection
	Start a PLC Measurement
	Adding New PLC Variables in the Subscription List

	PLC Time Synchronization

	Translating Testbed Data to Graph Database
	Graph Nodes, Relationships, and Their Properties
	Nodes
	Relationships

	Data Importing Flow
	Overview
	Packet Dissection
	Coupling Packet Captures in Communication Links
	Cypher Queries and Python-Neo4j Interface

	Testbed Equipment Specifications
	Network Diagrams in Testbed Experiments
	Acronyms

