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ABSTRACT

In the U.S., footwear examiners make decisions about the sources of crime scene shoe impres-

sions using subjective criteria. This has raised questions about the accuracy, repeatability,

reproducibility, and scientific validity of footwear examinations. Currently most footwear

examiners follow a workflow that compares a questioned and test impression with regard

to outsole design, size, wear and randomly acquired characteristics (RACs). We augment

this workflow with computer algorithms and statistical analysis so as to improve in the fol-

lowing areas: (1) Quantifying the degree of correspondence between the questioned and test

impressions with respect to design, size, wear, and RACs, (2) Reducing the potential for cog-

nitive bias, and (3) Providing an empirical basis for examiner conclusions by developing a

reference database of case-relevant pairs of impressions containing known mated and known

non-mated impressions. Our end-to-end workflow facilitates all three of these points and is

directly relatable to current practice. We demonstrate the workflow, which includes obtain-

ing and interpreting outsole pattern scores, RAC comparison scores and final scores, on two

scenarios - a pristine example (involving very high quality Everspry EverOS scanner impres-

sions) and a mock crime scene example that more closely resembles real casework. These

examples not only demonstrate the workflow but also help identify the algorithmic, compu-

tational and statistical challenges involved in improving the system for eventual deployment
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in casework.
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HIGHLIGHTS

• Presented an end-to-end workflow for footwear impression comparisons.

• Using simulated casework example, demonstrated that workflow is implementable in

practice.

• Uses examiner annotation of impressions with algorithmic, quantitative evaluation.

• Uses a multi-stage automated comparison that includes size, design, wear and RACs.

• Uses case-relevant ground-truth-known reference score distributions to interpret com-

parison scores.
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In the U.S., footwear examiners make decisions about the sources of crime scene shoe

impressions using their training and experience but based on subjective criteria. This has

raised questions about the accuracy, repeatability, reproducibility, and scientific validity

of footwear examinations. The 2009 National Academy of Sciences report (1) noted that

forensic footwear identifications rely on aspects of an examiner’s training and experience

that have not been empirically tested for accuracy, repeatability, and reproducibility. The

2016 report by the President’s Council of Advisors on Science and Technology (PCAST) (2)

states, in addition, that subjective methods used in forensic footwear comparisons need to be

transformed to objective methods. PCAST defines objective methods as those “consisting

of procedures that are each defined with enough standardized and quantifiable detail that

they can be performed by either an automated system or human examiners exercising little

or no judgment.” Subjective methods are defined as “methods including key procedures that

involve significant human judgment - for example, about which features to select within

a pattern or how to determine whether the features are sufficiently similar to be called a

probable match.” (See p. 5 in (2).) PCAST found that the scientific validity of footwear

analysis had not been established and encouraged conducting “black-box” studies to assess

“error rates” similar to what had been done by the forensic latent fingerprint community.

Several black box studies in forensic footwear have been performed (e.g., (3, 4)) and more

are still needed.

Developing high-performance computer-based systems that can discriminate impressions

made by different footwear, with very small error rates, has been of great interest for some

time. A survey of the literature reveals that nearly all of the research on the use of al-

gorithms for footwear impression comparisons have “database retrieval” as their focus and

are primarily concerned with discriminating between different outsole design patterns (e.g.,
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(5-9)).

During the investigative phase, given a crime scene impression, often referred to as the

questioned impression, law enforcement agencies would like to determine, for starters, the

make and model of the shoe that produced it. This information could help narrow down the

list of potential perpetrators of the crime in question. The collection of images against which

the crime scene impression is to be compared may therefore consist of a library of outsole

design images from various manufacturers. In some situations, the library may consist of test

impressions obtained from shoes belonging to persons previously apprehended in connection

with different crimes; this could lead to a (non-exhaustive) list of possible perpetrators of the

current crime. It is generally impractical for a human examiner to compare the questioned

impression against every image in a gallery or library of impression images. Recognizing this

fact, researchers have focused on automating the “database search and retrieval” task and

developed various algorithms for this purpose.

While algorithms designed to assess which test impressions among a fixed collection are

most similar to a crime scene impression or whether two impressions come from shoes sharing

a common outsole design are useful, they represent an incomplete mapping of the process

examiners use for evaluating footwear impression evidence. When given a questioned im-

pression and test impression from a shoe of interest, examiners routinely conduct additional

analyses to assess the extent to which wear or randomly acquired characteristic (RAC) pat-

terns seen in a questioned impression may single out the particular shoe of interest from

an envisioned crowd of other shoes of the same make, model, and size. Several publications

have discussed methods for assessing the rarity of RACs (10-15). Quantitative assessments of

similarity between two RACs using various features such as shape, perimeter, and area were

discussed in (16). Models for describing the spatial distribution of RACs were proposed and

investigated in (17, 18). Bayesian approaches for using wear information in interpretation

of footwear evidence have been discussed in (19, 20). Though our focus in this paper is on
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describing a workflow and demonstrating an end-to-end process for footwear comparisons

that could be used in casework, it is expected that previous research by others will play a

role in the development of a system that is casework ready.

In actual cases involving footwear impressions, triers of fact will assess whether the specific

shoe that made the test impression also made the crime scene impression. It is important they

receive as much potentially helpful objective information as possible to aid their decisions.

Our proposed system replaces some of the subjective components in the footwear comparison

process with objective steps that use computer algorithms. When using a computer-based

system to assign an ordinal similarity score between two impressions, information that an-

swers the following questions are important:

• How similar are the test and crime scene impressions?

• How similar to the crime scene impression are test impressions from other shoes?

• What similarity levels have we seen in the past when comparing test and crime scene

impressions known to have come from the same shoe?

• What similarity levels have we seen when comparing test and crime scene impressions

from two different shoes of arbitrary make, model and size?

• What similarity levels have we seen in the past when comparing test and crime scene

impressions from “close non-matches” (e.g., two different shoes of the same make,

model, size, side, and outsole manufacturing mold)?

Though the answers to these questions, by themselves, do not tell us whether or not the

questioned impression was made by the shoe of interest, their answers form an empirical

basis for subsequent subjective interpretation and can help investigators, lawyers, judges,

and jurors alike with the decisions they make throughout the investigative and judicial

processes.
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Workflow

Currently a footwear examiner in the United States will often follow the following work-

flow. Compare the questioned impression Q and the test impression K with respect to

outsole design (same design or different designs), the sizes of shoes responsible for the im-

pressions (same size or different sizes), the degree and location of wear observed, and any

apparent RACs. Based on these comparisons the examiner will arrive at a conclusion, often

following the guidelines outlined by the Scientific Working Group for Shoeprint and Tire

Tread Evidence (SWGTREAD) (21). This conclusion is a key component of the examiner

report and, when called for, is offered to the court during testimony. The concerns expressed

by the NAS and PCAST reports pertain to the ‘subjective’ nature of the comparison process

used by forensic footwear examiners. As mentioned above, both reports have expressed the

need for quantitative assessments of footwear evidence using scientifically valid methods,

including the use of algorithmic, automated methods.

We believe the current workflow performed by examiners can be augmented with computer

algorithms so as to improve in the following three specific areas and thus increase the overall

level of objectivity:

1. Quantification of the degree of correspondence (or lack thereof) between Q and K for

each attribute (design, size, wear, RACs).

2. Reducing the potential for cognitive bias without affecting overall performance in

separating mated impression pairs from close non-mates.

3. Providing an empirical basis for examiner conclusions by developing a reference database

of ground-truth-known pairs of impressions containing known mated impressions and known

nonmated impressions (preferably using close non-matches as well as arbitrary pairs of im-

pressions) and demonstrating how the quantitative summaries of the degree of correspon-

dence (or lack thereof) perform in casework-like scenarios in their ability to discriminate be-

8



tween impressions made by the same shoe versus impressions made by different, but closely

matching, shoes. Currently, examiner interpretations are primarily supported by unspecific

phrases like “training and experience” or “expert judgment.” This step would increase the

support available to an examiner to include a demonstrable collection of data showing how

successful the current analytic step has been in past, similar instances. Champod et al.

discuss how to establish the most appropriate database for source level propositions (22).

Therefore, the focus of this paper is to propose a workflow that may be viewed as a

fine-tuning of the current practice and that points (1), (2), and (3) above.

Point (1) is addressed by discussing approaches for quantification of the degree of agree-

ment/disagreement between features in Q and K for each of the four areas of focus (design,

size, wear, RACs). We do not identify the best metrics to be used for each area of comparison

as this requires, within each area of comparison, in-depth studies of candidate metrics, those

already available as well as new proposals, and this is deferred to future work.

Point (2) is addressed by incorporating, in our workflow, the capability for computing the

comparison metrics without a side-by-side comparison of Q and K. When more than one

examiner is available, the proposed workflow allows for Q and K to be annotated by different

examiners. When only one examiner is available, the examiner is to first fully annotate

Q before seeing K or the corresponding shoe. This is somewhat akin to the practice by

fingerprint examiners where they mark minutiae on Q and on K independently, without

looking at them side by side. This is a major contribution of our proposed workflow to

reduce potential cognitive bias. It is well-known that cognitive bias can create significant

problems in forensic science (23).

Point (3) is a major project in itself. In this paper we only show what is possible if an

adequate reference database is available. This is demonstrated by using an example database

of ground-truth-known pairs of impressions created in our laboratory primarily for purposes
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of demonstration.

In addition to the three specifically targeted points of improvement, we believe our pro-

posed workflow can integrate current practice with algorithms to improve repeatability and

reproducibility.

Forensic evaluation of evidence (including algorithmic evaluation) generally consists of

steps that may be grouped into two categories: (1) measurement and (2) interpretation.

In the context of footwear impression comparison, the measurement step (when performed

algorithmically) consists of analyzing the footwear impression images and computing nu-

merical summaries of the degree of correspondence/non-correspondence between Q and K.

Although there are many different approaches for arriving at such numerical summaries one

can generally identify methods that perform well in terms of their ability to discriminate be-

tween mated and nonmated pairs of impressions. The numerical summaries can be evaluated

empirically using ground-truth-known data.

The interpretation step involves judging the weight of the presented evidence which in-

cludes examiner findings communicated via verbal descriptions and numerical summaries of

degree of correspondence. Reference distributions associated with the numerical summaries

of interest based on casework-similar, ground-truth-known, comparisons provide the context

to help the decision maker assess the strength of evidence. This is a personal assessment

by the decision maker and there is no single, unique, weight of evidence value that can be

computed by others for universal use. Furthermore, computing and presenting a strength of

evidence number, such as a forensic likelihood ratio (LR), rather than providing the empiri-

cal information available to help triers of fact and other decision makers assess the strength

of the presented evidence, is a controversial topic that has yet to be settled, at least in the

U.S.

Therefore, this paper does not focus explicitly on characterizing weight of evidence, using
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either a number or a verbal scale. By focusing on developing repeatable and reproducible

methods for quantification of the agreement/disagreements between Q and K, we hope to

provide additional tools to examiners who can then better support their findings since they

can provide empirical bases for their judgements.

While we prefer to focus on empirically grounded summaries in favor of subjective prob-

abilistic interpretation, nothing specific to the footwear comparison discipline precludes one

from developing LR systems for footwear comparisons; in fact, the metrics used as part of

this workflow may themselves serve as inputs to any LR system that one may develop in the

future.

Fingerprint and firearms evaluations have made greater progress toward the quantitative

and automation goals set forth by the NAS and PCAST reports than have footwear eval-

uations. Unlike fingerprints, footwear outsoles are mass produced, with many replicates

produced by the same physical cast. Much like questioned bullets and cartridge cases, there

are a large number of close non-matches for nearly every questioned shoe impression. This

requires focus on very subtle details, such as wear patterns and RACs, to help separate

true matches and close non-matches. Whereas firearms consistently impress discriminating

information into the metal of bullets and cartridge cases they discharge thereby resulting

in questioned impressions that are frequently of good quality, shoe impressions deal with

imperfect reproductions subject to sub-optimal recovery methods. Additionally, the critical

information from shoe impressions at crime scenes occurs in a wide variety of substrates (e.g.,

ceramic, vinyl, paper, wood) and matrices (e.g., blood, dust, water). This variability makes

it all the more difficult to develop algorithms that consistently extract the small but criti-

cal details that can help distinguish whether a given shoe actually produced the questioned

impression or is simply another shoe of the same make, model, and size.

The workflow described in this paper relies on some level of human pattern annotation

as inputs to the algorithmic comparisons. Other researchers have also presented footwear
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evidence analysis methods that use human annotation. Examples include (10, 11, 14-16),

where the focus is on analysis of RACs. Examples of research where footwear evidence

analysis does not use human annotation include (6, 7, 24, 30, 31), where the focus is on

make/model identification as well as evidence evaluation.

In our approach, users may highlight apparent RAC regions, corner points, regions that

exhibit contact with the outsole surface, or other features. Much like marking minutiae

in latent prints, the markups provide a more stable input for comparison algorithms from

one case to another, hopefully allowing for better algorithm development, training, and ulti-

mately discrimination performance, than what has been previously published. As mentioned

above, potential biases in these manual annotations may be alleviated either by having two

different examiners annotate K and Q, respectively, such that neither examiner sees both the

shoe of interest and the questioned impression or by having a single examiner first annotate

Q before seeing K or the shoe of interest.

The eventual goals of the work described in this paper are to develop quantitative, “more

objective” methods than currently used, to support examiners in each phase of footwear

impression comparisons. By “more objective,” we mean that some comparison process com-

ponents that are typically performed using human judgement have been implemented as

algorithms that do not require human oversight. Our workflow cannot be considered fully

objective as it relies on human annotation of features in the impressions, which is a subjective

process. However, the subsequent comparison algorithms that quantify the correspondence

between two impressions based on these features is objective in the sense that given the same

input set of annotated features, the algorithm will always produce the same value.

To the best of our knowledge, there is no discussion in the literature regarding a detailed,

systematic, end-to-end process that can provide quantitative, empirical support for each step

of the footwear impression comparison process currently used by examiners. This is the topic

addressed in this paper. With further, ongoing refinements, it is envisioned that the system
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will evolve into one that can be deployed in routine casework in the near future.

End-to-End Systems

Our view of an end-to-end system for footwear evidence is a system whose input consists of

two images, a questioned impression (Q) from a crime scene and a test impression (K) from

a known shoe of interest. The output of the system is quantitative information provided to

the examiner, judge, jury, investigator or other interested party that can provide empirical

support for their opinions and conclusions.

In order to gain acceptability by the practitioner community and to conform to existing

SWGTREAD guidelines, it would be desirable for the quantitative evaluation process of

the end-to-end system to closely follow the conventional examiner evaluation process (e.g.,

as reflected in the SWGTREAD (21) conclusion scale). The examiner should be able to

understand how the quantitative information produced by the system is related to the main

elements considered in the conclusion scale – design, size, wear, and RACs. A new footwear

conclusion scale is currently being developed by the Organization of Scientific Area Com-

mittees (OSAC) for Forensic Science. The workflow presented in this paper can provide

quantitative support to footwear impression examiners who conduct their evaluation by se-

quentially considering design, size, wear, and RACs, regardless of which conclusion scale

they use to summarize their findings.

Initial Prototype

The initial version described in this paper is intended to demonstrate the general steps in

the end-to-end workflow. The actual algorithmic components or modules in this version will

undoubtedly be replaced as better performing algorithms continue to be developed.
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To conduct quantitative comparisons between questioned and test impressions, footwear-

related structure in these impressions, that is, design and wear features that derive from

the contact of the shoe with the substrate, need to be identified. Reliably identifying such

features in questioned impressions can be extremely difficult to do automatically because

such features are often partial, occluded, smeared, noisy, distorted, low contrast, derived from

multiple impressions, or occur on a variety of cluttered or highly structured backgrounds.

Automated annotation of such impressions is generally beyond current technology.

Our approach is therefore to have the human examiner annotate the features in the ques-

tioned impression that are necessary to (a) facilitate an alignment or registration between

the questioned impression Q and the test impression K so that corresponding features over-

lap well in impression pairs that are mates or close non-matches, and (b) provide as much

discriminating power as possible between true matches and close non-matches. Algorith-

mically discriminating between different outsole designs is of interest for database retrieval

but of much less interest for evidence assessment since the human examiner will typically be

able to readily discriminate between different outsole designs in casework (assuming there is

enough footwear-related structure in the crime scene impression).

We aim to optimally utilize the respective strengths of human visual perception and al-

gorithmic computation, resulting in a hybrid process combining a human/automated fea-

ture extraction step with a fully automated evaluation of correspondences and discrepancies

among compared impressions resulting in a “comparison score.” Automatically identifying

features in test impressions is often not as difficult as in crime scene impressions because

the quality and clarity of test impressions is usually much higher and the image signatures

associated with contact (often black ink or dark powder) and non-contact (generally white)

are under the control of the examiner. However, reliable identification of RACs in test im-

pressions generally requires examination of both the test impression and the physical shoe

outsole itself. When assessing whether a potential RAC seen in a test impression seems
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more likely to be a reproduction of a true RAC visible on the outsole or more likely due

to a manufacturing defect or artifacts generated during the creation of the test impres-

sion, trained examiners carefully study the outsole and multiple test impressions from it.

Therefore, rather than attempting to automate the RAC finding process using algorithmic

approaches, our workflow relies on identification of RACs in the test impression by a trained

human examiner.

Once features have been identified in each impression of a given pair, the act of comparing

impressions will require no human involvement. The output of the algorithmic evaluation

is a comparison score. Examiners may use these scores in conjunction with a collection of

scores from known match and known non-match (including close non-match) comparisons

performed under casework-similar scenarios to provide empirically supported statements of

their findings during report writing and courtroom testimony.

The steps in the end-to-end workflow are the following:

1. The human annotates the questioned impression. All human annotation of Q is per-

formed without being guided either by the shoe of interest or by a test impression

from it. However, to help identify outsole design features, the human may be guided

by a test impression from a different shoe of the same make and model, or an image

of the shoe outsole of the same make and model, e.g., obtained from the internet. In

general, the human may annotate contact and non-contact regions in Q to aid in sub-

sequent comparison with test impressions. In the workflow proposed here the human

is also asked to oversee placement of “corner points” in Q that are used to achieve

alignment between Q and K. These are points that represent corners of 2D features

in the impressions. If the user provides a contact/non-contact annotation, or if Q is

exceptionally clear, corner points can be automatically extracted in the same manner

as with K (see item 3 below). Otherwise, corner points must be manually placed by
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the user. We plan to enhance our workflow by including examiner annotation of the

quality or clarity of regions in the impression (allowing an analysis of alignment and

comparison scores to be weighted by the confidence that the user has in the extracted

features) and the annotation of potential RACs visible in Q.

2. The human marks up RACs in K (with the aid of the shoe). Each RAC in K is marked

by placing a vertical bounding box around the RAC. RACs are human-annotated in

K only and not in Q. However, in future versions, potential RACs visible in Q may

be annotated as well (as mentioned above). Also, in future versions, RACs in K may

be marked by tracing their boundaries; wear regions in K may be annotated.

3. An algorithm aligns the two impressions. Corner points are automatically chosen in

K, though a user can opt to manually select corner points if desired. The method of

corner detection used here is discussed in (24), which is a minor modification we made

to the FAST algorithm (25). We then use an image registration technique based on

an algorithm for finding “maximum cliques” in graphs (24, 26). This approach has

been previously suggested for matching a questioned fingerprint to a reference finger-

print (27). The maximum clique approach provides a rigid transformation (rotation

and translation) to align the two impressions. Details of the maximum clique image

alignment can be found in (24, 28). Note that, once the two impressions are aligned,

the RAC boxes marked in K may be projected onto Q, thus resulting in a pair of

corresponding regions for each RAC.

4. Algorithms conduct a multi-stage comparison. As with manual examinations, the au-

tomated comparison workflow considers design, size, wear, and RACs. In our current

version, the comparison process is conducted in two stages: (a) outsole pattern compar-

ison and (b) RAC comparison. Correspondences and discrepancies in outsole design,

size, and wear are summarized by an “outsole pattern comparison score.”

Many similarity metrics have been developed and/or suggested for comparison of out-
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sole design impressions – Normalized cross correlation, Phase-only correlation, Fourier-

Mellin Transform, Multi-channel normalized cross correlation, Random forest scores

based on selected features, to name a few. A more complete list of similarity metrics

that have been explored in the literature may be found in (29). See also (24, 30). Our

system uses a similarity metric which is based on the Resnet-50 pre-trained convolu-

tional neural network model (layer ResNet-2bx, as done by Kong et al. (31), for which

the network weights are publicly available. This results in 256 “feature maps” for each

image. We have implemented the Average Phase-Only Correlation (AvPOC) metric

on these feature maps (see (24) for details). It must be emphasized that this paper is

not focused on which similarity metric should be used but on what the role of a simi-

larity metric or a comparison score is in the overall process. A detailed comparison of

the performances of available metrics on various casework-similar footwear impression

comparisons will eventually determine the choice of the similarity metric. The point

to note is that the workflow will not be affected regardless of which metric is selected

during deployment.

The RAC comparison is performed separately on each pair of corresponding RAC

regions. The comparison metric used is the Normalized Cross Correlation (NCC)

(24), although there are many other metrics we could have used as well. Equation (1)

provides the formula forNCC, where xij represents the grayscale value at pixel position

(i, j) in the RAC region of K and yij represents the grayscale value at matching pixel

position (i, j) in the corresponding region in Q. It is worth noting that NCC is

essentially what is commonly referred to as the Pearson Correlation Coefficient (32) in

statistical literature.

NCC =

∑
i,j(xij − x)(yij − y)(√

(
∑

i,j(xij − x)2
) (√∑

i,j(yij − y)2
) (1)
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If human annotation of RAC boundary regions is available (in both Q and K) in

the form of curves that describes the boundary pixels of a RAC, one may use, as an

example, shape distance described in (33) in place of (NCC).

5. Scores from ground-truth-known case-relevant reference comparisons are used to pro-

vide context for all the scores obtained using the casework pair of impressions. A

score by itself cannot help assess strength of evidence. In almost all situations, a score

(even if it is labelled as a likelihood ratio) has to be interpreted in the context of other

scores obtained by applying the comparison process (e.g., algorithm) to similar kinds

of (Q, K) pairs where the ground truth regarding the relationship between the shoe(s)

that left the impressions is known, i.e., known match or known close non-match or

known non-match. When deciding what scores to use as context, one must consider

the relevance of the task completed in obtaining the scores for reference pairs to the

task completed in obtaining the casework score. For instance, reference scores obtained

when comparing RAC regions are irrelevant to interpreting casework scores obtained

when comparing entire outsoles. Similarly, we should not compare scores from a case

with a blurry, partial questioned impression to scores from reference comparisons where

Q is clear and complete.

We consider three ground-truth classes of reference comparisons: known match (KM),

where both impressions are from the same shoe; known non-match (KNM), where the

impressions are from shoes that differ in outsole design and/or size; and known close

non-match (KCNM), where the impressions being compared are at least from shoes of

the same make, model, size, and side. Note that there are several potential classes of

impression pairings that could constitute “close non-matches.” Ideally one would be

able to show that the comparison metrics strongly discriminate between mated pairs

and even the strictest definition of close non-matches, impression pairs from different

shoes of the same make, model, size, and side, produced from the same mold and worn

by different individuals. If an algorithm cannot be shown to discriminate effectively
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between mated pairings and this “closest non-match” group (e.g., due to poor algorithm

performance or limited availability of image pairs meeting this strictest definition of

close non-match pairings), it is also informative to assess how effectively mated pairs

can be discriminated from looser definitions of close non-matches, such as shoes of the

same make, model, size, and side, potentially produced from different molds, as this

still helps inform the general sense of how many shoes are capable of having produced

the questioned impression. When the available number of close non-match comparisons

is small, one might consider including “flipped” impressions from shoes for the opposite

foot to create additional close non-match comparisons, though care must be taken to

assess whether the manufacturing process results in discrepancies in the outsoles of

left and right shoe pairs before treating pairings with flipped impressions as close non-

matches. For the illustrations presented in this paper, we consider impression pairings

from different shoes of the same make, model, and size to be close non-matches. Due

to limited available data, we primarily use comparisons between impressions from both

shoes in a right and left shoe pair, with one of the impressions flipped on the vertical

axis, so that the impressions appear to be from shoes of the same make, model, size,

and side.

Each of the provided reference score collections can be specified by task (i.e., outsole

comparison or RAC comparison), questioned impression clarity (i.e., pristine or more

realistic), and ground truth (i.e., KM, KCNM, or KNM). We provide reference collec-

tions for each combination of these factors, with the exception that we do not provide

KNM RAC collections because examiners only conduct RAC analysis for impressions

that could plausibly be of the same make, model, size and side.

Score collections are labeled pristine when they contain results from comparisons where

both the impressions were made from the Everspry EverOS scanner (34). While these

comparisons do not generally reflect the quality and complexity of comparisons in-

volving actual crime scene impressions, they do allow us to highlight the role of RAC
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comparisons in the workflow. Score collections are labeled more realistic when they re-

sult from comparisons involving questioned impressions collected as mock crime scenes

that more closely reflect casework. Note that each of the aforementioned reference

score collections are taken from our collection of impressions and are used to illustrate

our workflow. It is anticipated that, by collecting a large number of KM, KCNM, and

KNM reference comparisons, reflecting a variety of casework-like scenarios, one will

be able to construct a database that could be used to extract more precisely targeted

case-relevant subsets for actual applications.

For outsole pattern comparison scores in the workflow, the KM, KCNM, and KNM

reference sets all play a role in mimicking the comparison process used by examiners.

Initially, examiners will assess whether the shoe of interest can be eliminated on the

basis of design or size. This corresponds to seeing whether the outsole design compar-

ison score from the current case clearly falls outside the range of scores from the KM

reference collection and within the range of scores from the KNM reference collection

(see, for example, Figure 5(a)). If it appears plausible that the two impressions share

a common design and size, examiners may then evaluate whether observable wear pat-

terns increase or decrease the overall strength of correspondence. Using the reference

score collection (e.g., Figure 5(a)), wear patterns that increase the overall strength of

correspondence would correspond to the observed outsole design comparison score ap-

pearing more likely among the KM reference scores than among the KCNM reference

scores. Wear patterns that decrease the overall strength of correspondence would cor-

respond to the observed outsole design comparison score appearing more likely among

the KCNM reference scores than among the KM reference scores.

After evaluating design, size, and wear information, if an examiner finds it plausible

that two impressions are made by the same shoe, then RAC information will be consid-

ered. Because RACs often fail to reproduce in conditions of crime scene impressions,

failing to find a RAC in Q that was apparent inK is generally not considered exclusion-
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ary. However, as the SWGTREAD criteria for an identification conclusion indicate, the

scenario in which one or more RACs are visible in Q and appear in the same location

and similar to RACs observed in K are viewed as substantially increasing the strength

of overall correspondence. To reflect this process in the algorithmic workflow, we con-

sider a KM RAC comparison score collection, obtained from comparing corresponding

RACs in known matches, and a KCNM RAC comparison score collection, obtained

from comparing an observed RAC with the same outsole region in a KCNM shoe (see

Figure 6 (Bottom)). As with the outsole design, the overall strength of correspondence

would increase when the current case RAC comparison score is high enough to appear

far more likely among the reference KM scores than among the reference KCNM scores.

This would occur when the similarity score for a given RAC exceeds what has been

observed when comparing KCNM impressions. Among reference comparisons involv-

ing Qs that reflect casework, there are expected to be many KM instances in which a

RAC observed in K does not reproduce in Q. This will cause the KM distribution to

produce many scores falling within the range of KCNM scores. This mimics current

subjective RAC evaluations in that a low similarity score for a RAC comparison would

not provide strong exclusionary evidence because low scores can plausibly occur for

KM or KCNM comparisons.

6. Comparison scores from each stage are combined into a final score. Our method to

combine the various scores is to compute a score-based likelihood ratio (SLR) for each

type of score and multiply them together to obtain a final score. This simple approach

is inspired by the Naive Bayes classification strategy (i.e., combining different facets

of evaluation by pretending their results are mutually independent). While there are

limitations to considering SLRs as strength of evidence (35), the present application

only uses probabilistic arguments as the inspiration for developing scores, not to imply

any direct probabilistic interpretation of that score. To obtain SLRs for individual

scores, we use kernel density estimation (36, 37) to convert the background distributions
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into smoothed probability density curves, and then compute, at the point representing

the score obtained for the current case pair, the ratio of the height of the curve for KM

scores to the height of the curve for KCNM scores (see Figure 5 (b)). The logarithm

(base 10) of the SLR, log10(SLR), is then taken, allowing the various scores to be

combined by adding the log10(SLR)s (rather than multiplying the SLRs).

Combining evidence is an age-old topic that has been discussed by a number of authors

(see, for instance, (38, 39) and references contained therein). We have chosen to

use a naive-Bayes approach to illustrate the step of combining evidential information

contained in comparison scores from the different stages of the process. Additional

research comparing different methods for combining evidence will point to the approach

that will be used in the deployment stage.

7. All results are displayed visually. This will make it easier for the examiner to under-

stand, report, and present the quantitative results obtained using this approach. The

visual reports will draw attention to the existing body of relevant empirical informa-

tion that supports more subjective casework interpretations. The visual displays will

be demonstrated throughout the examples shown in the following section.

End-to-End Examples

The workflow described in the previous section is now demonstrated through two examples.

The first example falls under the pristine clarity level and involves comparing two test im-

pressions as K and Q, respectively. This example is intended to illustrate the workflow in

an ideal application where RACs are visible and our current comparison metrics are effec-

tive. The second example involves comparing a test impression with a mock crime scene

impression, representing the more realistic clarity level. This example is intended to be

more recognizable as a potential casework comparison. Collectively, these two examples will
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highlight the importance of choosing reference comparisons relevant to the case at hand.

Pristine Clarity Example

Figure 1 shows the two images considered in the first example - a test impression on

the left and a “questioned” impression on the right. We use these two Everspry EverOS

impressions to illustrate the various steps in the workflow proposed in this paper, including

RAC comparisons. The long-term goal of our workflow is to help examiners assess the

strength of the evidence by algorithmically comparing outsole size, design, wear, and RACs.

This information should help them support conclusions using, for example, the SWGTREAD

conclusion scale (21).
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Figure 1: Example of two impressions that are input to the end-to-end system: a test impres-

sion (on the left) and a questioned impression (on the right). This example is intended to

demonstrate the entire workflow, including RAC comparisons, in an ideal albeit unrealistic

scenario. In this case, the two impressions are made by the same shoe.

The first step is to annotate Q. The user must decide whether or not to provide a manual

markup of the contact surface seen in the questioned impression to aid the comparison
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algorithms. If contact regions are manually marked, the result will be a binary contact

image which will be used in downstream analysis. For instance, corner points and the region

of interest (i.e., shoeprint boundary) may be automatically extracted from the binary contact

image or the pattern score may be based on comparing the binary contact image with K.

If a binary contact markup is not provided, then pattern comparisons will be performed

between the raw Q and K and the user will need to manually mark the shoeprint boundary

and corner points (see Figure 2(a)). It is not necessary that all corner points be marked but

it would be beneficial to spread points throughout much of the contact region. The reason

for marking corner points is to enable the alignment step. The more spread out the corner

points are, the better the alignment is likely to be. The manual annotation is done in Adobe

Photoshop.
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Figure 2: (a) Manual annotation of the questioned impression with corner points. (b) Manual

annotation of the test impression with bounding boxes around apparent RAC areas.

The next step is to manually annotateK (see Figure 2 (b)). This consists simply of placing

vertical bounding boxes around any apparent RAC areas. The examiner will likely have the

physical shoe available to help do this. Again, this annotation is done in Adobe Photoshop.

After each impression is annotated, the scale visible in each image (in both Q and K) is

used to determine the resolution of the image. A user marks a straight line along the visible

scale (in Adobe Photoshop) and reports the length in centimeters. This length is used to

calculate the number of pixels per centimeter so that the two images can be scaled to the
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pixel density of the image with lower resolution, facilitating pixel by pixel comparisons. In

addition, the region of interest in each impression is manually annotated by marking a closed

polygon around the shoeprint area (again using Adobe Photoshop). By marking the region

of interest, regions of the image known to be outside the shoeprint can be excluded during

comparison.

The next step is to automatically align Q and K. The corner points automatically found

in K for this example are shown in Figure 3.

Figure 4 shows the result of automated alignment using the maximum clique algorithm.

The algorithm obtained its best alignment using 11 corresponding points. These points are

shown in red in the left image and in blue in the middle and right images. Corresponding

areas in the two images for RAC regions are also shown.
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Figure 3: Automatic extraction of corner points in K. (Note that RAC boxes marked

manually are also shown as green rectangles.
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Figure 4: Automated alignment. The middle image shows the overlay obtained, after align-

ment, of K (on the left) and Q (on the right). The overlay of the two RAC boxes in the

middle image shows how RAC boxes marked in the left image can be projected to potential

RAC regions in the right image.

Outsole Pattern Score Evaluation

Figure 5(a) shows the results for automated computation of the AvPOC pattern compari-

son scores using the Resnet-50 features. The scores are computed only within the overlapping

regions of interest in Q and K. Image pixels outside these regions are ignored.

Histograms shown in Figure 5(a) display the reference distribution of scores from 50 KM

pairs (red), 125 KCNM pairs (blue), and 210 KNM pairs involving comparisons of impres-
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sions from shoes of different design and/or size (gray). All 125 KCNM comparisons in this

illustration are between impressions from opposite shoes in the pair of shoes with one of the

impressions flipped to resemble an impression from the same side as the other.

Figure 5: (a) Outsole pattern scores for pristine comparisons. The score obtained using Aver-

age Phase-Only Correlation (AvPOC) for the casework comparison is 0.5591, and is mapped

onto the three score reference distributions in the chart. The red histogram corresponds to

pristine known match (KM) scores, the blue histogram to pristine known close non-match

(KCNM) scores and the gray histogram to pristine known non-match (KNM) scores. The

AvPOC metric easily discriminates between KNM (gray) and KM (red) comparisons. (b)

The AvPOC score for the casework comparison (0.5591) is mapped on the two fitted score

background distributions obtained by smoothing the KM and KCNM histograms in the left

panel using kernel density estimation.

All impressions for these comparisons were obtained using the Everspry EverOS scanner

(34) and were processed as outlined in the above paragraphs. As described in step 4 under

Section 2.1, we used Resnet-50 features to compute AvPOC as the outsole pattern score for

each comparison. The role of the background reference distributions is to provide context

for evaluating the AvPOC score obtained in a pristine comparison.
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It is clear from Figure 5(a) that the scores for KM comparisons (red) are well separated

from those for comparisons involving pristine impressions from two shoes of different make

and/or model and/or size (gray). The general separation exhibited between the KM (red)

and KCNM (blue) scores indicates that the discriminating information used by the AvPOC

metric includes not only size and design, but also wear and, likely to a lesser extent, RACs.

The slight overlap observed between the KM (red) and KCNM (blue) confirms the challenge

of discriminating between the two.

The outsole pattern comparison score for our example comparison is 0.5591, which is seen

to be within the range of scores obtained from the pristine KM reference comparisons and

is higher than any of the scores obtained from the pristine KNM comparisons. This result

would provide empirical support for an examiner’s opinion that design and size evaluations

for the current case do not provide a basis for exclusion; otherwise the current case score

would fall within the KNM range of scores. The obtained score is also higher than any

of those from pristine KCNM reference comparisons. This result would provide empirical

support for an examiner’s opinion that observed wear correspondence for the current case

exceeds what is generally observed among pristine KCNMs. Overall, Figure 5(a) would

support an examiner’s opinion that the current case comparison has strong correspondences

in design, size, and wear.

We next quantify the contribution of the observed outsole pattern comparison score to the

final comparison score in light of the displayed reference comparisons using an SLR. Figure

5(b) shows smoothed versions of the mated and close non-match histograms in Figure 5(a),

obtained using kernel density estimation (36, 37). These smoothed histograms are in fact

probability densities (i.e., the total area beneath either curve is 1). For the probability

density function representing mated comparisons, the height of the curve for an AvPOC

score of 0.5591 is 3.707. For the close non-match curve, the height is 0.019. The SLR is

given by the ratio of these two heights, computed as 3.707/0.019=195.11 or, equivalently,
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a log10(SLR) value equal to 2.29. Figure 5(b) is annotated to show these values. As with

Figure 5(a), Figure 5(b) provides empirical support for an examiner’s opinion regarding the

outsole pattern comparison score. A score that lies mainly within the KM scores (red region)

indicates that this score value falls in a region that has been more frequently seen among

results obtained when comparing KMs than when comparing KCNMs; the log10(SLR) value

in such cases will tend to be positive. A score that lies mainly within the KCNM scores (blue

region) indicates that this score value falls in a region that has been more frequently seen

among results obtained when comparing KCNMs than when comparing KMs; the log10(SLR)

value in such cases will tend to be negative. A score in a region that has occurred nearly

equally often among KM and KCNM comparisons will not have a large effect on the final

comparison score, as the log10(SLR) value in such cases will be nearly zero.

It is important to note that the probability densities used in this workflow represent just

one possible way of translating the observed reference comparison scores into smoothed dis-

tributions. For example, applying kernel density estimation with different levels of smoothing

(i.e., different bandwidths) will produce different distribution curves and different score-based

likelihood ratio (SLR) values. Additional uncertainties come from the fact that adding (or

removing) one or two data points from the underlying data set can strongly affect the es-

timated densities, especially when the underlying data set is not very large. We illustrate

the sensitivities related to bandwidth choice and small alterations to the underlying dataset

for this SLR in Appendix A. If one intends the SLR value to be accepted as an interpretive

end point literally providing the ratio between the respective probabilities of obtaining the

observed score under the mated and close non-match comparisons, one should carefully in-

vestigate and characterize the range of plausible values this ratio may have under different

modeling approaches (including alternatives to kernel density estimation) and different cri-

teria for whether a given model is plausible. This concept is described as an “uncertainty

pyramid” and discussed in detail in Lund and Iyer (40). We do not consider or use the SLR

value computed here as an interpretive end point. Rather it is a numerical input required
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to evaluate the overall comparison score, whose discrimination ability we would like to opti-

mize. For this reason, we do not repeat sensitivity evaluations for other SLR computations

presented in this paper. Additionally, to reduce the influence of rounding errors on our

final overall score, we retain many significant figures for each scoring component instead of

rounding each result based on its uncertainty.

RAC Score Evaluation

Recall that an examiner annotates the test impression for RACs by drawing bounding

boxes around features judged to be RACs (see Figure 2(b)). This section discusses the RAC

comparison workflow for Everspry EverOS images as in Figure 1.

Once Q is aligned with K, we can locate the regions or patches in Q that correspond to

the RAC bounding box regions marked in K. For a given RAC region, the normalized cross

correlation (NCC) between the corresponding patches in Q and K is computed according

to Equation (1). The value of NCC is always between -1 and +1 (inclusive). If Q and K

were made by the same shoe we expect the value of NCC to be closer to +1 when computed

for these corresponding patches of pristine impressions. (Note that in the second example,

discussed in a later section, that involves more realistic questioned impressions, we use the

absolute value of NCC as the RAC metric in case the color scale of Q is inverted relative to

K.)

The general steps in the RAC comparison workflow for Everspry comparisons is as follows.

For each RAC marked inK, determine if the corresponding patch in Q is within the shoeprint

boundary (i.e., region of interest). If Q is a partial impression, some portions of the physical

outsole may not have generated pattern information in the impression and some RAC regions

may be outside the portion of the physical outsole that generated the impression. If a given

RAC patch is inside the region of interest for Q, a search is performed in a local neighborhood

around this patch to find the area that has the highest similarity score, in this case normalized
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cross correlation (NCC). The local neighborhood in Q is determined as follows. After Q

has been rotated and translated to fit K, the RAC box in K is projected onto Q, where it

will be aligned with the x− y axes. The resulting box is then enlarged by 1% of the whole

image on each side of the box. This means the total length and total width of the box are

increased by 2% of the image length and width, respectively. This helps account for any

local distortions that may be present in Q relative to K. The maximized NCC value is the

RAC comparison metric used.

Reference KM and KCNM RAC score sets for pristine comparisons were obtained by ap-

plying the above process to the Everspry impression pairs and used to generate the KM

and KCNM distributions in Figure 5(a). This resulted in 640 pristine KM RAC scores and

1600 pristine KCNM RAC scores, which are represented in Figure 6 (Top). To compute

the contribution of a RAC similarity score to the final overall score, we apply kernel density

estimation to these reference score sets and compute the log10(SLR) for each RAC identified

in K. Figure 6 (Bottom) shows the results of RAC comparison for the two RACs annotated

in K (see Figure 2(b)) by the examiner. RAC #1 produced a normalized cross correla-

tion (NCC) score of 0.980. The corresponding score-based likelhood ratio (SLR) value is

3.130/0.047 = 66.596 and the log10(SLR) is 1.82. RAC #2 in the example comparison pro-

duced an NCC score of 0.760, which corresponds to an SLR of 1.267/0.354=3.579 and a

log10(SLR) of 0.55. The charts in these figures provide the examiner with information that

helps facilitate an explanation of contributions from the RAC comparison scores.
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Figure 6: (Top) Normalized cross correlation (NCC)-Score histograms for pristine compar-

isons of known match (KM) (red) and known close non-match (KCNM) (blue) RAC regions.

(Bottom Left, Bottom Right) Algorithm computes comparison scores for RAC #1 and RAC

#2. The RAC regions from Q and K that are being compared are shown at the top of each

panel. The obtained score is placed in the context of KM and KCNM score distributions

obtained from the top panel.

Different Q versus K comparisons will involve different numbers of RACs. Each of these

RAC comparisons has an NCC value and a corresponding log10(SLR) value as explained

above. Results from individual RACs are combined into a composite RAC score, formed

by summing the log10(SLR) values across all RACs in the currently considered Q versus K

35



comparison. In our current example, two RACs have been annotated on the test impression,

leading to log10(SLR) values of 1.82 and 0.55, respectively. Thus, for this example the

composite RAC score is 1.82+0.55=2.37.

Final Comparison Score

The final comparison score is computed by summing the outsole pattern log10(SLR) score

and the composite RAC log10(SLR) score. In our Everspry example (Figure 1) this value is

4.66. Figure 7 shows this score in the context of reference KM and KCNM distributions of

final scores for similar comparisons.
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Figure 7: The final score is the sum of the outsole pattern log10(SLR) score and the composite

RAC log10(SLR) (score-based likelihood ratio) score; its value is 4.66. This chart shows that

value mapped on the two reference final-score histogram distributions corresponding to known

match (KM) and known close non-match (KCNM) comparisons in which two RAC regions

were identified on the test impression and for which Q is pristine.

These reference distributions are based on the number of RACs being compared, as follows.

The final score linearly depends on the number of RACs. Because the final score is the sum of

the outsole pattern and RAC scores, a score which is high if only two RACs are compared may

be low if four RACs are compared. So we generate reference distributions for the final score

which depend on the number of RACs compared. Ideally, the database of comparisons would
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have a collection of pairs sufficiently large to build reference distributions for a comparison

with k RACs. For now, we simulate such distributions using the reference distributions of

outsole pattern and RAC scores. This simulation is described in Appendix B.

The reference distribution in Figure 7 is for 2 RACs. As before, Figure 7 provides the

examiner or any other stakeholder with information for assessing the strength of the evidence

provided by the footwear impression comparison analysis. A score that lies mainly within

KM scores indicates support for the proposition that the casework pair of impressions come

from the same shoe; a score that lies mainly within KCNM scores indicates support for the

proposition that the casework pair of impressions were made by different shoes. A score

that occurs nearly equally often among KM and KCNM scores does not indicate support for

either proposition.

Mock Crime Scene Example

We now consider a more realistic mock casework comparison between the impressions

shown in Figure 8. Figure 9 shows the manual annotation of Q, consisting of the binary

contact region and corner points marked in the contact region.
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Figure 8: Example of two images that are input to the end-to-end system: K (on the left)

and a (mock) Q (on the right). In this case, the two impressions are made by the same shoe.

(Impressions courtesy of Brian McVicker, FBI.)
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Figure 9: Manual annotation of the (mock) Q (left) with contact surface (middle) and corner

points in red (right). (A set of corner points could also have been automatically extracted in

this case due to the high-quality contact surface markup.)

The next step is to manually annotate K (see Figure 10) by placing vertical bounding

boxes around any apparent RAC areas. Corner points are then automatically extracted in

K, and then K and the binary contact image from Q are automatically aligned using the

maximum clique algorithm.
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Figure 10: Manual annotation of K with bounding boxes around three apparent RAC areas.

Figure 11 shows the AvPOC outsole pattern scores obtained from comparisons involving

more realistic Qs. These scores consider the Resnet-50 features only within overlapping

regions of interest in Q and K. Image pixels outside these regions are ignored. Histograms

shown in the left panel of Figure 11 display the distribution of scores from KM pairs (red),

KCNM pairs (blue), and KNM pairs (gray). These reference distributions are generated

from comparisons involving 8 realistic mock Qs. An example is shown in Figure 12. The

KM scores result from comparing the binary contact markup from each mock Q with 5 Ks
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from the shoe that created Q, producing a total of 40 KM outsole pattern scores. The KCNM

scores result from comparing the binary contact markup from each Q with 5 Ks from each

of 5 different shoes of the same make, model, and size, as the shoe that created Q. Two of

these shoes are from the same side as the shoe that created Q. Impressions from the other

three shoes were flipped to appear as originating from the same side as the shoe that created

Q. In total, we produced 200 KCNM outsole pattern scores (120 of which involved flipped

impressions). The KNM scores result from comparing the binary contact markup from each

Q with a K from each of 10 shoes with different outsole designs from the shoe that created

Q, producing 80 KNM outsole pattern scores.

Figure 11: Outsole pattern comparison scores from mock crime scene examples. (Left)

Histogram of known match (KM), known close non-match (KCNM) and known non-match

(KNM) outsole pattern scores. The score obtained using Average Phase-Only Correlation

(AvPOC) for the casework comparison is 0.2100, and is mapped onto the score reference

distributions in the chart. (Right) Kernel density estimates for the KM and KCM outsole

pattern scores. The observed casework score of 0.21 has a corresponding log10(SLR) of 0.19.
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Figure 12: Example of Nike shoe Qs used to generate the reference distributions in Figure

11. Shown on the left is a mock Q obtained by stepping in water to wet the shoe outsole,

then stepping on tile, sprinkling aluminum powder on the tile, and then using a gel lift. In

the middle is a binary contact image manually generated from the left impression. On the

right is K, an Everspry test impression obtained from the same shoe.

It is clear from Figure 11 (left panel) that the scores for the KM, KCNM, and KNM

comparisons involving more realistic Qs are not as well separated as in Figure 5(a), where

the Qs are pristine. This result is consistent with expectations that comparisons are easier

when Qs appear like test impressions than when they reflect typical crime scene conditions.

The outsole pattern score for the case comparison in Figure 8 is 0.2100. As annotated in the

right panel of Figure 11, this translates to an SLR value of 4.50/2.92=1.54 or, equivalently, a

log10(SLR) value equal to 0.19. Had the scores obtained from comparisons with pristine Qs

been used for context, as in Figure 5(b), the score of 0.21 would have had a severely negative
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log10(SLR) value, since 0.21 is lower than most KCNM scores and much lower than all KM

scores among the pristine comparisons. This highlights the importance of selecting reference

comparisons that reflect the general conditions (e.g., completeness, complexity, and clarity)

of the currently considered case.

As with the pristine comparisons, each RAC region annotated on K by the user is com-

pared to the corresponding region of Q after alignment. Note that the corresponding RAC

region used for comparison is obtained from the original Q, not from the binary contact

markup of Q. The top left of Figure 13 provides the KM and KCNM RAC scores obtained

from comparisons involving more realistic Qs. The two distributions are seen to be nearly

perfectly overlapping, although our collection includes far more KCNM RAC comparisons

than KM RAC comparisons. As such, most RAC scores appear nearly equally likely under

either set. This means that these RACs will have little influence since log10(SLR) values will

generally be close to 0.
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Figure 13: RAC comparison scores from mock crime scene examples. (Top Left) Histograms

of known match (KM) and known close non-match (KCNM) RAC comparison scores. (Top

Right, Bottom Left, Bottom Right) Results from RAC regions 1, 2, and 3 in the current

example, placed in the context of kernel density estimates from the KM and KNM collections

of RAC comparison scores shown in the top left panel.
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For instance, as illustrated in Figure 13, the three considered RAC regions in the current

example produced normalized cross correlation (NCC) values of 0.471, 0.359, and 0.687,

respectively. These NCC values have corresponding log10(SLR) values of 0.16, -0.03, and

-0.03 for a composite RAC score of 0.1.

Upon visual inspection, none of the eight mock crime scene impressions used to form

these reference collections show clear signatures of RACs. Adding scores from instances

where the mock crime scene impressions have clear RAC signatures would likely increase the

KM density associated with high correlation values.

Additionally, although effective in pristine comparisons, the normalized cross correlation

(NCC) metric is less effective for RAC comparisons involving realistic Qs. Although each of

the three RAC regions shown in Figure 13 provide clear visual correspondence between K

and Q, yet these regions produce lower NCC values than in pristine comparisons. We will

eventually replace NCC with a more powerful RAC comparison metric to provide better

separation between the KM and KCNM score collections, at least for comparisons involving

high-quality, but realistic, Qs like the example considered in this section. RAC comparisons

involving low-quality Qs are expected to remain very difficult, as these comparisons are

generally challenging even for trained examiners.

The final comparison score for this example is 0.29, formed by summing the log10(SLR)

value from the outsole pattern comparison (0.19) and the composite log10(SLR) value for

the RAC comparisons (0.10). Figure 14 displays this score in the context of final scores

corresponding to KM and KNM comparisons in which three RAC regions are identified

on K and for which Q is more realistic. As seen in Figure 15, and because the KM and

KNM RAC scores are not well separated for the more realistic comparisons, the separation

between KM and KCNM final score distributions does not noticeably improve as the number

of considered RACs increases.
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Figure 14: The final score is the sum of the outsole pattern log10(SLR) (score-based likelihood

ratio) score and the composite RAC log10(SLR) score; its value is 0.29. This chart shows

that value mapped on the two final-score histogram reference distributions corresponding to

known match (KM) and known close non-match (KCNM) comparisons in which three RAC

regions are identified on K and for which Q is more realistic.
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Figure 15: Simulated final score distributions for known match (KM) and known close non-

match (KCNM) comparisons involving a more realistic Q and 1, 5, 10 or 20 RAC regions

annotated in K, respectively.

The reference distribution in Figure 14 is for 3 RACs. As before, Figure 14 provides the

examiner or any other stakeholder with information for assessing the strength of the evidence

provided by the footwear impression comparison analysis. A score that lies mainly within

KM scores indicates support for the proposition that the casework pair of impressions come

from the same shoe; a score that lies mainly within KCNM scores indicates support for

the proposition that the casework pair of impressions are made by different shoes. A score

that occurs nearly equally often among KM and KCNM scores does not indicate support for

either proposition.
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Conclusions

This paper has presented an end-to-end workflow for quantitative evaluation of footwear

evidence. The workflow includes human annotation of the crime-scene impression, human

markup of RACs and other features in the test impression, automated alignment of the two

impressions, a multi-stage automated comparison that includes size, design, wear and RACs,

the use of relevant reference ground-truth-known score distributions to provide context to

interpret the comparison scores, automatically combining all the comparison scores into a

single composite final score, and visual displays to help the examiner understand, document,

and present the quantitative results. The paper has demonstrated the workflow, which has

included obtaining and interpreting outsole pattern scores, RAC comparison scores and final

scores both for comparisons involving pairs of Everspry EverOS scanner impressions and for

comparisons involving more realistic questioned impressions.

Future versions of the system will demonstrate additional and improved components of the

workflow, with the goal of eventually achieving versions that are robust enough to be deploy-

able in casework. The following are some of the additional components and improvements

that require research.

• The comparison metrics we have used, Average Phase-Only Correlation (AvPOC) and

normalized cross correlation (NCC), have been found to be effective for good clarity

impressions, both when comparing Q and K impressions from arbitrary shoes as well

as when comparing impressions from close non-matching shoes (24). However, research

is still required to obtain improved metrics for comparing lower clarity impressions and

for comparing RACs.

• As we see with the mock crime scene impressions, the clarity of questioned impressions

varies greatly. In this paper, crime scene clarity is only considered at the level of

“pristine” versus “more realistic.” However, a more nuanced approach for taking clarity
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into account is necessary for evaluating how similar, or relevant, reference comparisons

are to casework comparisons and to indicate how challenging it is to tell contact regions

apart from non-contact across different regions of a crime scene impression. We plan to

investigate methods for examiner annotation of the quality/clarity of the crime scene

impression.

• Future implementations will include quantitative metrics for describing a comparison’s

“type” to facilitate selection of relevant reference comparisons. For example, when

selecting which reference comparisons should be used to provide context for the outsole

pattern scores, it is important to select those comparisons that reflect the general

conditions of the currently considered case. These general conditions may include, for

example, the completeness and clarity of the outsole pattern in Q and the complexity

of the outsole pattern in K. Clarity could be numerically represented using the manual

annotations discussed in the previous bullet point. In particular, after alignment one

can identify which regions of Q correspond to the shoe outsole as seen in K. Using the

pixels inside this region, one could compute an average clarity value after assigning each

clarity level a numeric value. Alternatively, one could simply report the proportion of

the identified region each clarity level (assigned in Q) occupies. Outsole complexity

could be represented by the proportion of pixels in K that fall on feature edges (i.e.,

the concentration of edge pixels). For RAC comparisons, one might consider the size

of the RAC as observed in K and local clarity in the corresponding region of Q as

comparison “type” features. For overall outsole comparisons and RAC comparisons,

respectively, the corresponding comparison “type” features would be evaluated for any

incoming case comparison and a distance would be computed between the case features

and those from every available reference comparison. The reference comparisons for

which the “comparison type” metrics are close to those of the considered case would

be deemed most relevant and used to form the reference distributions that provide

context for the similarity scores obtained in the case comparison.
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• Real crime-scene impressions involve many deformations due to the flexibility of out-

soles. The alignment method we use in this paper is rigid alignment (i.e., rigid transla-

tion and rotation). When a RAC in K is projected onto Q, we search around the local

neighborhood of the projected patch in Q to account for local distortions. We plan

to develop approaches for performing a more accurate flexible alignment for optimally

matching contact regions in the crime scene impression with contact regions in the test

impression.

• For future versions, we plan to explore the annotation of potential RACs visible in the

questioned impression, annotation of RACs by tracing their boundaries, annotation

of wear regions in the test impression (allowing wear to be explicitly analyzed), and

metrics for RAC comparisons that take into account the difficulty of finding RACs in

most crime scene impressions.

• Deploying our workflow in casework will require a more complete database of reference

comparisons that provides a reasonable coverage of the factor space (by which we

mean combinations of quality levels, levels of partialness, complexity of outsole design

patterns, lifting methods, substrates, etc.)

• In the future, we plan to map output scores to the prevalent examiner conclusion scale

(e.g., SWGTREAD conclusions (21) or OSAC conclusions) by calibrating the scores

from our workflow with examiner judgements when such data become available.

This paper has presented a feasible implementation of a workflow for an end-to-end system

that can provide quantitative support for evaluation of footwear evidence by examiners. We

have demonstrated the workflow on two scenarios, a pristine comparison set and a more

realistic mock crime scene comparison set. We are currently developing a new version of

the system that will implement many of the desired improvements enumerated above. With

future refinements, it is envisioned that the system will evolve into one that can be deployed
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in routine casework.
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Appendix A - Sensitivity of Score-Based Likelihood Ra-

tios (SLRs)

The density plots in Figure 16 are shown to illustrate how the curve heights that are used to

compute a score-based likelihood ratio (SLR) can change with different bandwidth choices

(top panel of figure) or when a single additional score is added to the existing set of KCNM

scores (bottom panel of figure). We chose to illustrate the effect of adding a value to the

set of KCNM scores instead of the KM scores because the observed score of 0.5591 from the

considered example is higher than any of the observed KCNM values and density values in

distribution tails are particularly unstable when using kernel density estimation.

During kernel density estimation each observed value is replaced by a small bell curve

(normal distribution) whose peak is located at the observed value. The curve in the bottom

panel reaches its minimum at 0.5591 because adding a score of 0.5591 to the existing set of

KCNM scores would cause the largest increase to the estimated KCNM density for a score

of 0.5591. The curve is roughly symmetric around 0.5591 because the contribution of the

added point to the estimated density at 0.5591 falls off as the small bell curve for the added

point slides away to either side of 0.5591. Looking carefully at the middle set of density plots

in the bottom panel, you can see the bell curve for the added value create a shoulder in the

overall blue density at 0.5591. As the score added to the KCNM set increases, the small bell

curve for the added score pulls away to the right, with its distribution eventually appearing

almost entirely above the score 0.5591.
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Figure 16: (Top) Relationship between the bandwidth (i.e., smoothing parameter) applied

to the known close non-match (KCNM) and known match (KM) scores during kernel den-

sity estimation and the resulting log10(SLR) value for the observed outsole pattern score

of 0.5591. Mated and close non-match kernel density estimates are shown for bandwidth

choices of 0.01, 0.015, 0.02, 0.025, and 0.03, respectively. The vertical lines in the density

plots show the position of the observed score, 0.5591. (Bottom) Relationship between the

value of a single score added to the set of KCNM scores and the resulting log10(SLR) value

for the observed outsole pattern score of 0.5591, evaluated using a bandwidth of 0.023. Mated

and close non-match kernel density estimates are shown for added values of 0.45, 0.5, 0.55,

0.6, and 0.65, respectively. These density plots are cropped to remove the top portions of

the density curves to increase the visibility of the effect of the added value on the KCNM

distribution. The vertical lines in the density plots show the position of the observed score,

0.5591.
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Appendix B - Reference Distributions for Final Scores

The reference distributions for final scores are based on the number of RACs being compared.

We simulate such distributions using the reference distributions of outsole pattern and RAC

scores. The simulated distributions are constructed as follows:

1. Assume we need to simulate a reference distribution of final scores that are from pairs

with k RACs compared.

2. We have separate reference distributions of outsole pattern scores and RAC scores.

3. Suppose we want to simulate N values representing the final score distribution for KM

comparisons involving k RACs.

4. Repeat (a), (b), (c) N times.

(a) We randomly select an outsole pattern score from the reference distribution for

KM pattern scores.

(b) We randomly select k RAC scores from the reference distribution for KM RAC

scores.

(c) We find the log10(SLR)s for the k RAC scores in step (b) and add them to the

pattern score from step (a). This gives a simulated final score for a KM compar-

ison.

Thus we generate the N final scores to represent the reference distribution for KM

comparisons involving k RACs.

5. Suppose we want to simulate N values representing the final score distribution for

KCNM comparisons involving k RACs.

6. Repeat (d), (e), (f) N times.
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(d) We randomly select an outsole pattern score from the reference distribution for

KCNM pattern scores.

(e) We randomly select k RAC scores from the reference distribution for KCNM RAC

scores.

(f) We find the log10(SLR)s for the k RAC scores in step (e) and add them to the

pattern score from step (d). This gives a simulated final score for a KCNM

comparison.

Thus we generate the N final scores to represent the reference distribution for KCNM

comparisons involving k RACs.

For pristine comparisons, we considered values of k equal to 0 through 20 since this range

should cover all situations in our experiments. These distributions are shown in Figure 17.
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Figure 17: Reference distributions for final scores of pristine comparisons based on the num-

ber of RACs marked up in K. Distributions for 0 to 20 RACs are precomputed. Here only

12 of those 21 distributions are displayed.
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