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A B S T R A C T

Manufacturing and Industrial Robotics have reached a point where to be more useful to small and medium
sized manufacturers, the systems must become more agile and must be able to adapt to changes in the
environment. This paper describes the process for creating and the lessons learned over multiple years of the
Agile Robotics for Industrial Automation Competition (ARIAC) being run by the National Institute of Standards
and Technology.
1. Introduction

Modern manufacturing is under ever increasing pressure to develop
solutions for highly complex tasks. The increased number of new mod-
els and variants have forced manufacturing firms to shift away from
high-volume/low-mix production to low-volume/high-mix production
in order to meet the demands of a diversified customer base. Customer
satisfaction is crucial in the current economy and requires production as
per customer needs at cheaper rates, with reliability, and high quality.

Small and medium manufacturers (SMMs), defined by the National
Association of Manufacturers (NAM)1 as companies with 2500 or fewer
employees, represent a very important segment of the manufacturing
sector. SMMs make up 99% of all firms, employ over 50% of private
sector employees, generate 65% of net new private sector jobs, and
contributed $2.18 trillion to the economy in 2016. As we move towards
shorter product life cycles and customized products, the future of
manufacturing in the U.S. will depend upon the SMMs’ ability to remain
cost-competitive. Current manufacturing processes in SMMs rely on a
significant amount of manual operations. This is the case of tool and die
makers which are operated by human workers. Although these compa-
nies are capable of offering custom products in a short time (less than a
month), the associated manual operations have high running costs. The
pressures in today’s economic climate leave many SMMs struggling to
find ways to contain manufacturing costs. In recent years, many SMMs
have turned to automation in order to compete with low-cost sourcing.
Coupled with the significant cost reduction, many companies are able
to justify return on investment in one to two years. Among the available
automation strategies, hard automation usually represents the lowest
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first-cost option. Hard automation is a robot or machine that is designed
to perform a specific highly repetitive task. The task is usually a simple
operation or a combination of simple operations. For instance, some
automotive parts (e.g., oil pans [1]) stay the same for years before they
are redesigned. In such a scenario, hard automation is preferred where
the priorities lie in long-term repeatability and quality when retooling
and constant redesign are not necessary.

While hard automation has advantages that include low unit cost,
automated material handling, and a high production rate, one of the
main disadvantages of such a system is its inability to accommodate
product changes in order to meet the demands of a diversified cus-
tomer base. Customer satisfaction is crucial in the current economy
and requires production as per customer needs at cheaper rates, with
reliability, and high quality. For SMMs to be able to satisfy consumer
demand for products with shorter life cycles and a greater variety of
products or variants of existing products, they need to rely on agile
robotic systems. Agility in this context refers to the ability for robots
to think, learn and adapt in order to respond to failures during task
process.

To advance the agility performance of manufacturing robotics as-
sembly systems in unstructured and dynamic environments, the Agile
Robotics for Industrial Automation Competition (ARIAC) was initiated
in June 2017 by the National Institute of Standards and Technology
(NIST) in collaboration with the Open Source Robotics Foundation
(OSRF). ARIAC is designed to be a simulation-based competition to
allow competitors around the world to utilize latest advances in arti-
ficial intelligence and robot planning to address real-world industrial
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challenges pertaining to kitting (or kit building) applications. The
latest iteration of the competition was held between April and May
2020 and introduced a more challenging environment, a new robot,
new scenarios, and new agility challenges. The annual occurrence of
ARIAC is two-fold. First, NIST intends to use the results and knowledge
gained from ARIAC to further its efforts to develop metrics and test
methods to measure robot agility as well as tools for manufacturers
to assess the agility of their robotic systems. Second, ARIAC aims
to encourage competitors to develop the most effective solutions to
address manufacturing processes while keeping the cost down.

This paper describes ARIAC with a focus on the 2020 iteration. The
paper is organized as follows: Section 2 provides a literature review
of the different efforts that address robot agility and performance
metrics. Section 3 discusses well known robotics competitions which
NIST investigated prior to ARIAC. Section 4 describes the evolution of
the ARIAC platform and environment. Section 5 provides an overview
of ARIAC components and how they interact with competitors’ systems.
Section 6 focuses on the metrics that were implemented to measure
the performance of competitors’ systems. Section 7 summarizes lessons
learned from past competitions and addresses new ways to approach
future competitions.

2. Agility and performance metrics

According to the Oxford dictionary,2 agility is defined as ‘‘the ability
to move quickly and easily’’. In manufacturing terms, agility refers to
the idea of responding effectively to changing customer needs in a
volatile marketplace by handling product variety and by introducing
new products quickly [2,3]. In the context of this paper, we define
agility as ‘‘the ability of a robot system to succeed in an environment of
continuous and unpredictable change by reacting efficiently and effec-
tively to changing factors". While there is no agreed upon definition of
robot agility in the literature, this definition is consistent with proposed
definitions of agility which involves not only robot agility but also
agility of the manufacturing process as a whole [4,5].

Robotic systems need to be able to operate safely in collaboration
with humans or other robots, be easily tasked and re-tasked, and be
integrated into the rest of the enterprise seamlessly and quickly. These
systems can greatly help small and medium manufacturers facing rising
raw material and labor costs, stiff prices and offshore competition,
quality concerns, skilled worker shortages, worker safety issues, and
limited resources that hinder growth and profitability. Once the role
and the definition of an agile robotic system are given, we need a
way to measure the agility of such a system. Defining and measuring
agility will allow manufacturers to select the right system to address
challenges such as (1) swapping robots in and out without introducing
extended downtime or reprogramming, (2) fast re-planning when a new
order is provided to it, or (3) responding to changing environmental
conditions (e.g., non-fixtured tray moves), due to new product designs.

A literature review for robot agility shows only a few examples
that address assembly-type manufacturing use cases and change cases.
For the assembly-type use cases, Quinn et al. [6] describe an example
assembly task with four plastic parts that get snapped and inserted
together. This is described as a typical light assembly task for the
workcell being tested, which includes two robots working together.
Frei and Di Marzo Serugendo [7] describe an example assembly of
an adhesive tape roll dispenser assembly, which is a slightly more
complicated assembly than the first use case as it requires a screw for
locking the pieces together. The authors also described a change case
in the assembly of the adhesive tape roll dispenser assembly, where
the environment gets changed to a different locking method for the
assembly process, in this case, changing from a screw-lock assembly
method to a snap-fit method of assembly. Another change use case was

2 https://en.oxforddictionaries.com.
2

described by Gou et al. [8], wherein three cases are described. The first
case is used as a baseline to compare performance for the other two
cases. The second case is a new high priority order coming into the
system to invoke a re-prioritization. The third case is a variation on
the second, but the re-prioritization is caused in this case by a machine
breakdown, causing the system to adjust to absorb the workload.

Measuring the agility of a robotic system provides relevant infor-
mation to manufacturers for better choosing and using robotic systems.
Measuring the efficiency of robotic systems in completing a task is one
of the main criteria to assess a robot system’s agility. The efficiency
is measured with time metrics. Time metrics for agility may consist
of cycle time, planning time, and changeover time. The cycle time
(amount of time per unit) is the period required to complete one cycle
of an operation, or to complete a function, job, or task from start to
finish. The planning time is an estimate of time the robotic system
spends planning before carrying out any action that performs a task.
The changeover time is the time taken by a robot to automate the
configuration of the equipment settings for changing over from one
product to another. Some of these time metrics have been explored by
Downs et al. [9] where the authors describe multiple test methods run
in different scenarios for kit building.

Although not discussed in this paper, a comparative study with
human workers may be necessary to assess the agility of a robot
system. For example, one can study the required person-hours needed
to perform a task compared to the time taken by a robotic system to
perform the same task. Certain tasks may require only two person-hours
with two workers while it may take much longer with a robotic system.
On the other hand, a one thousand person-hours job may be performed
by a robotic system within just a few hours. There may be some cases
where human workers can perform a task faster than a robot but may
cost more to the company in the long term. As can be seen, assessing
the agility of a robotic system is not trivial and a relative study with
human workers must be considered.

3. Robotics competitions

While designing the ARIAC competition, the organizers made sure
to adhere to the following guiding principles: (1) Challenges repre-
sented in the competition must mimic, as closely as possible, to the
challenges that industry is facing in applying robots on their factory
floors. (2) There was a low barrier to entry. In other words, the
organizers did not want to require that competitors had expensive
pieces of equipment in order to participate. (3) The focus must be on
robot agility. While the organizers completely understood that there
are other key challenges in robotics, such as perception or grasping,
they did not want the focus to be on these areas. If competitors had
novel approaches to address those challenges they could use them, but
would not be required to do so in order to compete. (4) The organizers
wanted the competition to be easily accessible to all, and not require
traveling to a conference or an event to compete. The goal was to allow
a team to participate from their own offices. (5) The organizers wanted
the competition to involve industry, and be beneficial to industry,
because the hope was that the unique approaches that came from the
competition would be adopted by industry and would help to solve
their robotic challenges.

Before the organizers designed the competition, they explored other
similar competitions to ensure that none of them already addressed the
guiding principles.

The Amazon Picking Challenge [10] was a yearly competition from
2015 to 2017, focusing on ‘‘picking". In the competition, teams have
to develop robotics hardware and software that can recognize objects,
grasp them, and move them from place to place. The goal was to
use this competition to assess if robots would be able to do some
of the menial pick and place operations that are currently performed
by humans. As noted, this competition is focusing on perception and
grasping, and not as much on the agility of the robot nor its ability to

https://en.oxforddictionaries.com
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replan. It is also a physical competition, which required participating
teams to build their own robots and travel to the competition site.

In the Virtual Defense Advanced Research Projects Agency (DARPA)
Robotics Challenge, teams competed in a simulated suburban obstacle
course. Twenty-six teams from eight countries qualified, which ran
from June 17 to 21, 2013. Competing teams applied software of their
own design to a simulated robot in an attempt to complete a series
of tasks that are prerequisites for the next stages of the grand chal-
lenge [11]. The overall DARPA Robotics Challenge, which includes
both the virtual and physical challenges, was launched in response to
a humanitarian need that became glaringly clear during the nuclear
disaster at Fukushima, Japan, in 2011. The DARPA Robotics Challenge
consisted of three increasingly demanding competitions over two years.
The goal was to accelerate progress in robotics and hasten the day
when robots have sufficient dexterity and robustness to enter areas too
dangerous for humans and mitigate the impacts of natural or man-made
disasters. While the virtual nature of this part of the competition made
it very accessible to the community, the focus was on humanitarian and
first response robots as opposed to industrial applications.

The Robot Perception Challenge [12] was launched by Willow
Garage and NIST to drive improvements in sensing and perception
technologies for next-generation robots. The competition debuted at
the IEEE International Conference on Robotics and Automation (ICRA)
2011 in Shanghai, China. The competition measures the performance of
current algorithms that process and act on data gathered with cameras
and other types of sensing devices. While perception was an important
challenge in robotics, it is not one of the guiding principles of ARIAC
developers.

The RoboCup Logistics League (RCLL) ‘‘is a league of the annual
international robotics competition RoboCup. It focuses on in-factory
logistics applications. Following the RoboCup spirit this league’s objec-
tive is to enable scientific work in order to achieve a flexible solution
of material and informational flow within industrial production using
coordinated teams of autonomous mobile robots’’. [13] While this
competition is very relevant, ARIAC goes a step further by introducing a
wide array of agility challenges (as described later in this paper) which
is outside of the scope of the RCLL competition.

In Europe, there was a recent initiative promoted (and funded) by
the European Commission to foster robotic competitions with the aim
of gathering advancements in robotics. In particular, The EUropean
RObotics Challenge (EUROC) was running under the ‘‘Factories of the
Future’’ program. [14] EUROC aims to spur the development of new
applicable innovations in European manufacturing. It consists of three
industry-relevant challenges within the scenarios of (1) Reconfigurable
Interactive Manufacturing Cell, (2) Shop Floor Logistics and Manipu-
lation and (3) Plant Servicing and Inspection. [14] These competitions
are looking more at the cell level than at the robot level.

Robot Competitions Kick Innovation In Cognitive Systems and
Robotics (RoCKIn) is an EU-funded project aiming to foster scientific
progress and innovation in cognitive systems and robotics through the
design and implementation of competitions. RoCKIn@Work [15], a
subset of this competition, is looking for innovative industrial robots
that can help businesses meet increasing demand from their customers.
A robot will assist with the assembly of a drive axle — one component
of the robot itself and therefore a step towards self-replicating robots.
Tasks include locating, transporting and assembling necessary parts,
checking their quality and prepping them for other machines and
workers. The robots will be working interactively as personal mobile
assistants in a highly flexible and continuously changing production
line.

In addition to surveying different competitions, the organizers
wanted to be sure that the challenges that were captured within the
ARIAC simulated environment were representative of the challenges
faced by industry. As such, NIST reached out to industry. Each chal-
lenge was ranked with respect to its difficulty in representing it in
3

Gazebo (based on OSRF’s feedback) from 1 to 5 with 1 being the
Table 1
Agility challenges in ARIAC.

Challenges Difficulty rating Importance rating

Parts Re-Orientation 1 1
Faulty Gripper 1 2
New Order 1 2
Faulty Part 2 2
Faulty Sensors 1 3
Human Presence 3 1

easiest to represent, as well as its importance to industry (based on
industry’s feedback) from 1 to 5 with 1 being the most important.
During the investigation phase, thirty-nine challenges were identified
among which, six were selected to be focused on in ARIAC. These six
challenges are listed in Table 1 along with their respective ratings. All
of these challenges have been represented in ARIAC at some point in
the past, and many of them have been represented in all of the previous
competitions. Detailed descriptions of the challenges shown in Table 1
can be found in Section 5.2.

4. Evolution of ARIAC

As stated earlier, ARIAC’s original purpose was to test the appli-
cability and usefulness of the robot agility metrics developed at NIST.
While a worthwhile goal in and of itself, it begged the question of how
to go about this. From this need, ARIAC was born.

From the beginning, ARIAC was intended to be a simulation-based
competition open to everyone. Many existing engineering competitions
require large teams with deep technical knowledge of proprietary
systems, or substantial funding, however, the ARIAC organizers wanted
this competition to have no barriers due to resources. Research teams,
hobbyists, and undergrads should all have the chance to participate.
For this reason, the organizers chose both the Robot Operating System
(ROS) [16] and Gazebo [17] as the platform for the competition.

4.1. ARIAC platform

The list of viable software suitable for ARIAC turned out to be
relatively short. It was important that the software is free to all users,
customizable, and familiar to the robotics community.

While there are simulation environments that can satisfy the first
two aforementioned criteria, Gazebo and ROS are the best options for
the robotics community. ROS also has the added benefit of making
competition code more transferable to actual robotic control systems
provided those systems also use ROS.

As the competition has progressed, ARIAC has stayed with ROS and
Gazebo because no software or communication protocol has surpassed
either since ARIAC 2017.

4.2. Environment

ARIAC’s technical development is largely thanks to Open Robotics
[18], which also created the environment for the 2017, 2018, and 2019
iterations of ARIAC. For these years, NIST supplied a 3D model of the
environment and Open Robotics would create and deploy a functional
simulation congruent with the model and scoring parameters. In ARIAC
2020, NIST assumed both administrative and technical responsibilities,
making it the first year ARIAC was completely managed, created, and
designed by NIST.

The makeup of the environment has had two major iterations
(Fig. 1). The first iteration in 2017 included a single robot on a single
rail used to build kits. While this central theme of building kits has
not changed for all four ARIAC iterations, the narrative driving the
environment has. ARIAC 2018 saw a progressive scenario where a robot
is mounted inside of a shipping container fulfilling orders. This still
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Fig. 1. Screen Renders of ARIAC 2017, 2018 and 2019 respectively.
included a single rail and single robot, however, the kit location stayed
in constant motion.

The narrative for 2019 and 2020 would be the same but vary in
robot degrees of freedom. ARIAC 2019 consisted of two robotic arms
on a single rail while the 2020 iteration consisted of two robotic arms
mounted on a single torso on a two-dimensional rail. ARIAC 2020 was
also the first time robots had to avoid workers in the environment.

4.3. Control interface

The interface for ARIAC has remained the Open Robotics created
GEAR (Gazebo Environment for Agile Robotics) interface [19]. The
GEAR interface allowed for a controlled standardized means of com-
munication between competitors and the simulation environment.

To maximize flexibility, GEAR was implemented to be a ROS-
based interface. While the number of communication topics may have
changed to accommodate a changing set of challenges, the structure has
remained consistent across competitions. With GEAR, competitors im-
plement their system in a variety of supported programming languages.
Additionally, this approach was chosen to isolate the use of a simulated
environment as an implementation detail. Competitors’ systems never
communicated directly with the Gazebo simulator, but instead, with
GEAR which in turn communicated with the simulator via a Gazebo-
ROS integration layer. Correctly-designed kitting systems developed to
work in a simulated environment should be usable on a physical robot
with minimal software modifications due to the use of an abstract ROS
interface. Similarly, kitting systems developed to control a particular
manipulator can be used to control another manipulator with minimal
modifications if designed appropriately.

The competition interface was implemented in GEAR in a way that
competitors would only have access to the permitted information from
the ARIAC server during ‘‘competition mode". However, competitors
could enable ‘‘development mode" to access extra information useful
for debugging during the testing phase. ROS has in-built functionality
for distributed systems, which facilitated blocking of non-permitted
communication with the simulation during the finals.

5. The ARIAC infrastructure

This section describes the mechanisms used in trials of the compe-
tition to allow communications between competitors’ systems and the
competition interface. A trial is a single run of the simulation in which
at least one order is described. The environment setup (e.g., part and
part vessel locations) and some agility challenges are also defined in the
trial. An order is an instruction with the type, the color, and the pose of
each part to be placed in a kit. The order also specifies which automated
guided vehicle (AGV) to use to build and deliver kits. An order has
at least one shipment. A kit is the result of a process which groups
separate but related items (parts in ARIAC) as one unit. A shipment is
an instance of an order. If an order must be built and delivered multiple
times then the order consists of multiple shipments.

Fig. 2 will be used as a description reference for the events occurring
during a typical competition trial. To start a trial, a competitor’s system
signals that it is ready to receive orders by using a ros::ServiceClient
to call the service /ariac/start_competition. Next, the first order is
published on the ROS topic /ariac/orders. Competitors can retrieve the
order by subscribing to the topic. Once a competitor’s system receives
4

Fig. 2. Flow diagram showing the chain of events which are performed by a
competitor’s system during a trial. Note that there is a possibility that low-level and
high-level challenges may not occur at all during a trial.

an order, it can task the robot to build the order using the competitors’
methodology. During order fulfillment, agility challenges may start at
specific time or in specified regions in the workcell. Once the order
is completed, the AGV may then take the parts away and return with
an empty tray. The competition ends when a ros::ServiceClient calls the
service /ariac/end_competition. If a successful response is received, the
competition ends and a score breakdown for the trial is both printed out
on the standard output and logged on the competitor’s machine.

5.1. Scenarios and trials

The competition was made up of a number of separately configured
trials during both the qualifiers and the finals. During the qualifiers and
finals, each competitor is only allowed one control approach, therefore,
each control approach had to be capable of automatically re-planning
itself based on the changing environment present in the trials. Trials for
the finals were split into three main scenarios: Baseline Kit Building,
High-priority Kit Change, and Moving Obstacle.

5.1.1. Baseline Kit Building
Baseline Kit Building scenarios are used to evaluate competitors’

systems on rather simple kitting tasks where the focus is on whether or
not competitors’ systems are capable of performing pick and place using
sensor data. These scenarios also include elementary agility challenges.

5.1.2. High-priority Kit Change
High-priority Kit Change scenarios consist of introducing a new

order while the robot is already working on an order. The robot must
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Fig. 3. In Moving Obstacle scenarios, the robot has to access parts located on stationary shelves (surrounded with yellow rectangles) while avoiding any collision with moving
obstacles (depicted with blue circles). An example is provided for two configurations ((a) and (b)) for re-configurable shelves (surrounded with red rectangles). Each possible
configuration of re-configurable shelves ensures there is at least one gap in the set of shelves located in the same column. For instance, in configuration (a), the gap for the set
of shelves in the middle column is located right before the stationary shelf (in yellow). In configuration (b), the gap for the set of shelves in the middle row is located at the top
of the shelves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
complete the new order as fast as possible before resuming the first
order. These scenarios also include low-level agility challenges and
focus on competitors’ systems ability to perform re-tasking when a new
order is introduced.

5.1.3. Moving Obstacle
In the Moving Obstacle scenarios, competitors’ systems face sit-

uations where sections of the workcell are populated with humans
going back and forth in a linear pattern. These scenarios are used
to test competitors’ systems ability to detect human workers, to plan
paths, and to generate collision-free motion commands to access parts
located on shelves. Another level of complexity was added to these
scenarios with the introduction of re-configurable shelves (see Fig. 3).
The location of some shelves in the workcell are re-configured between
trials to prevent competitors from scripting the robot path.

5.2. Agility challenges

As seen in Table 1, the latest version of ARIAC consists of six
agility challenges. Each individual trial is made up of a combination
of specifications of configurable characteristics, i.e., input variables
to the trial configuration files that are used to initiate agility challenges.
A trial configuration file is written in a YAML (YAML Ain’t Markup
Language) [20] format.

5.2.1. Part re-orientation
A part is presented to the robot in an orientation that is different

than its desired final orientation. The robot needs to rotate the part
around the part’s 𝑥-axis before it is placed in the tray. The pulley
part (see Fig. 4) is the only part in the environment designed to
be used in this agility challenge. The pulley part has a flat collision
surface on its top and bottom ends, making it ideal for grasping with
a vacuum gripper. However, the side of the part is hollow, creating a
5

Fig. 4. All part types and colors involved in ARIAC 2020. The pulley parts are the
only part types used in the part re-orientation agility challenge. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

more difficult grasp because of the small contact patch that the edges
provide. Competitors are not permitted to directly grasp this part from
the side when a part re-orientation is required.

5.2.2. Faulty gripper
In this challenge, as the robot is performing motions to place a part

in a tray, the part drops out of the gripper and lands in the tray at a
wrong location. The robot needs to determine whether to re-grasp the
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dropped part and replace it in the tray or to get a new one from one of
the part vessels. The trial configuration file describes the region in the
workcell and the part type the robot must be holding to activate this
challenge.

5.2.3. New order
Order announcements during trials are controlled in the trial con-

iguration file with an announcement condition and an announcement
alue. The first order is announced at the start of the competition with
ime and 0 for condition and value, respectively. An announcement
ondition can take two other separated values, namely wanted products
nd unwanted products. The value for each of these two conditions is
n integer number 𝑛, which is used to control when a new order is
nnounced. This agility challenge is mainly used in the High-priority
it Change scenarios to tests the ability of competitors’ systems to put

he previous order on hold, to quickly complete the new order, and to
esume the previous order.

How wanted and unwanted products are useful depends on how
uch overlap there is between the previous order and the new one.
hen the condition is set to wanted products, the previous order

s interrupted when 𝑛 products have been placed in the tray of the
revious order that are also in the new order. When the condition is
et to unwanted products, the previous order is interrupted when 𝑛
roducts not in the next order have been placed in the tray of the
revious order. These conditions can make interesting scenarios, such
s guaranteeing competitors have to remove parts or have to re-arrange
arts in the tray of the previous order.

.2.4. Faulty part
The trial configuration file designates defective parts in part vessels

through part IDs. Competitors are not aware of defective parts during
trials. Once the robot places a part in a kit tray, a quality control sensor
determines that the part is defective. The robot must dispose of the
faulty part, as it does not count towards the trial score, and must get a
new one from one the part vessels.

5.2.5. Faulty sensors
For a finite period of time, all sensors in the factory stop working

as to mimic a sensor blackout. Competitors’ systems have to use an
internal world model to continue kitting. Through the trial configuration
file, ARIAC developers have control on the duration of this agility
challenge.

5.2.6. Human presence
This agility challenge is probably the most exigent challenge in the

competition and is the main challenge used in the Moving Obstacle
scenarios. In this challenge, up to two moving human workers can
be present in the workcell at the same time. During their motions,
human workers will temporarily obstruct the access to parts required
in some orders. Competitors are aware of the four possible locations
where workers can spawn as well as their type of motion. However,
competitors need to reason about the workers location during trials.
To access parts located in the workers’ vicinity, competitors need (1)
paramount sensor placements to detect the presence of human workers
and to compute their velocity and (2) path planning for collision
avoidance.

5.3. Simulation architecture

The simulation architecture consists of three main components: The
GEAR interface, the ARIAC server, and plugins. Details on the GEAR
interface can be found in Section 4. The ARIAC server is used to
run an instance simulation of a trial, including the management of
agility challenges. Plugins are programmable behaviors which can be
embedded into a Gazebo simulation. Plugins are used in ARIAC to (1)
6

initiate some agility challenges, (2) update sensor rates and publish
Fig. 5. An instance of an ARIAC trial run with the GEAR interface. The flowchart takes
as inputs a user configuration file which for sensor configurations in the workcell as
well as a trial configuration file for challenges and parts in the workcell. These two files
are passed to the ARIAC server to start the simulation and to trigger the challenges.
At the end of the trial a score for the trial and data logs are generated for post hoc
review and evaluation.

sensor state messages, and (3) control mobile elements in the workcell,
e.g., conveyor belt, human workers, and AGVs. Fig. 5 outlines the
different modules for an instance of an ARIAC trial simulation run
with the GEAR interface. The description of Fig. 5 is given for one
competitor’s system. During the qualifiers and the finals, this instance
is run 𝑛 ×𝑚 times where 𝑛 is the number of trials and 𝑚 is the number
of competitors.

First, the ARIAC server processes the user configuration file and
the trial configuration file. The Gazebo simulation environment spawns
models with poses described in the two configuration files. Sensor
models are set in the workcell based on their pose information from
the user configuration file. Models for parts, human workers, and re-
configurable shelves are set in the workcell using information from the
trial configuration file.

Next, two modules are started in parallel. Trial orchestration allows
communications between GEAR and the competitor’s system, such
as order announcements or order submissions. An agility challenge
manager relies on the trial configuration file to initiate some agility
challenges.

Competitors can submit an order at any time, usually when a kit is
complete or partially built, using the ‘‘end competition" command. This
is followed by a score break down for the current trial. An example of

a score breakdown is provided in Listing 1.
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Table 2
List of sensors/cameras along their outputs and costs in ARIAC 2020.

Sensor/Camera Output Cost

Break beam Signal when a beam is broken by an object. 100
Laser profiler Array of distances to a sensed object. 100
Proximity sensor Distance of objects from sensor. 100
Depth camera Point clouds. 200
Logical camera Pose and type of models. 500
RGB-D camera Point clouds and images. 500

5.3.1. Sensor configurations
Through the user configuration file, competitors have control over

the quantity, the type, and the pose of sensors in the workcell. An
excerpt of a competitor’s user configuration file is illustrated in Listing
2. There is a total of six types of sensor that are made available to
competitors. Table 2 presents the different sensor/camera types with
their cost and functionality.

Although competitors are free to use as many sensors as they wish,
they must consider the cost of each sensor as to not end up with
a sensor configuration which may be too expensive. The cost of the
overall competitor system is used during scoring and is compared with
other competitors’ system cost. As one of the main objectives of ARIAC,
competitors need to keep the cost of their system down while still
demonstrating great agility of their system.
7

Fig. 6. Visual breakdown of the competition robot. The UR10 models were developed
as part of the ROS-Industrial project, while the torso was developed in-house at NIST.

5.3.2. Robot configurations
The competition features a custom robot consisting of two UR10

industrial robotic arms mounted on a rotating torso. This assembly
is connected to an overhead gantry that enables the robot to move
throughout the XY plane of the workcell. In total, this system has 15
degrees-of-freedom for competitors to consider. Both arms are equipped
with vacuum grippers that are independently controllable via ROS
topics. Additionally, a tray is attached below the torso of the robot for
extra part storage (see Fig. 6).

The kinematic properties of this robot are defined using the Uni-
versal Robot Description Format (URDF), following the typical ROS
workflow. In addition to this description, competitors were also pro-
vided with a ROS package for interfacing the robot with the MoveIt
motion planning framework, with support for combined and individ-
ual planning of both arms as well as the gantry. Finally, actuating
the robot in simulation was accomplished using standard ROS-Gazebo
compatibility plugins and ROS JointTrajectory controllers.

6. Measuring agility through evolving automated and human met-
rics

With the challenges determined through the help of industry and
OSRF, the organizers needed a way to be able to measure the effective-
ness of how a robot system was implemented to handle these agility
challenges. Because of the variety of trade-offs and options that a robot
system developer chooses during design, the organizers needed a set
of metrics to compare the systems both against other systems as well
as comparing the system across different trials where different agility
challenges are in play.

6.1. Current metrics

There are currently three general metrics that can be used individ-
ually to compare systems in terms of their agility performance: Cost
Factor, Completion Score, and Efficiency Factor. These three individual
metrics are also combined along with some constant factors into the
Ranking Score, which is the equation used for ranking the teams during
the finals.

6.1.1. Cost factor
The first general metric is to compare how expensive the systems

are based on the choices made. The main idea for this metric is that a
lower cost system is better than a higher cost system, all other factors
being equal. This cost would be a combination of the costs of the robot,
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the sensors, and the infrastructure. In the specific cases of ARIAC, the
competitors are limited to only one robot and thus the main cost comes
from the choice of sensors. Each sensor is assigned a nominal cost
value based on its usefulness in the scenarios and other factors by the
competition organizers. The costs of the competitor’s chosen sensors are
summed up and represented as shown in Eq. (1). A baseline cost (𝐵𝐶)
s determined by the organizers by using a representative, mid-range
umber of sensors in the environment. This baseline cost as well as the
otal cost (𝑇𝐶) is used as shown in Eq. (2) to calculate a team’s cost
actor (𝐶𝐹 ).

𝐶 = 𝛴𝑛
𝑖=1𝐶𝑜𝑠𝑡𝑖 (1)

𝐶𝐹 =
(𝐵𝐶
𝑇𝐶

)

(2)

6.1.2. Completion score
The next general metric for comparison is the kit completion score

(𝐶𝑆). The idea for this metric is that a submitted order should score
higher. For an individual kit order submission, 𝑆𝑗 , with 𝑖 parts in the
order, the following points are available:

• 1 point (up to 𝑖 points) for each part of the correct type being
placed in the kit tray.

• 1 point (up to 𝑖 points) for each part being placed in the correct
position (±3 cm) and orientation (±0.1 𝑟𝑎𝑑).

• 𝑖 points awarded if the above two cases are maxed out.
• 1 point (up to 𝑖 points) for each part of the correct color being

placed in the kit tray.

The completion score is calculated by adding up the four categories
above, and with each category having a maximum of 𝑖 points, there
is a maximum possible completion score of 𝑖 × 4, as shown in Eq. (3).
In the case where a trial contains multiple different orders, each order
would have a separate completion score and will be used in different
places in the overall scoring equation.

𝐶𝑆𝑆𝑗
≤ 𝑖 × 4 (3)

6.1.3. Efficiency factor
The last of the three main comparison metrics is the efficiency factor

(𝐸𝐹 ). The main idea on this metric is that in general, a faster system is
better than a slower system, which leads to greater throughput overall.
When an order is sent to the competitor’s system, a timer is started that
begins counting up until that order is completed and delivered. For a
given trial, 𝑗, all of the competing teams have their time, 𝑇𝑗 , averaged
together, represented as 𝐴𝑇𝑗 . As an edge case, if a team’s system times
out (taking longer than 500 simulation seconds) their efficiency factor
is set to 0 and the trial’s time is not included in the average. Otherwise,
the efficiency factor is calculated as shown in Eq. (4).

𝐸𝐹𝑗 =
(𝐴𝑇𝑗

𝑇𝑗

)

(4)

In the trials where there is a changeover happening, there is a
separate timer being run for both the original kit order as well as the
new higher priority order, so the choices that the competitors make
for which kit to finish first will be measurable in the timings for both
orders.

6.1.4. Constant factors and the ranking score
The above three metrics are the main factors of the ranking score

formula used to rank the teams before the Judges’ scores are added.
The cost factor is applied to the average of the completion scores for
all kits in the orders in the trial. Then, for each order within the trial,
the efficiency factor is applied to the completion score for that order.
For trials where a high-priority order is present, a high-priority factor
(ℎ = 3) is used as a bonus given for the team to prioritize finishing
8

that order more quickly. The ranking score (𝑅𝑆) is calculated as shown
in Eq. (5).

𝑅𝑆 = (𝐶𝐹 × 𝐴𝑉 𝐺(𝐶𝑆)) + (𝐸𝐹1) × (𝐶𝑆𝑆1
) + ℎ × (𝐸𝐹2) × (𝐶𝑆𝑆2

) (5)

The ranking score for each trial for a given team is summed to get a
total ranking score for the team. The total ranking score is then used to
rank each team and to award points based on the rank. The team with
the highest ranking score receives 80 points, the team with the second
highest ranking score receives 70 points, and so on. These overall points
are the majority of the final points used to determine the competition
winners. The last bit of these final scores comes from the human judges,
which were added starting in the 2018 version of ARIAC.

6.2. Changing cost factor over the years

The first year of the competition, in 2017, the cost factor was
calculated in a different method using the average of the competitors
costs and applying an exponential factor to it to attempt to spread the
cost factors apart. However, at the end of the year, it was noted that
one of the competitors had found a way to ‘‘game’’ the scoring system
by using only a single sensor and some unanticipated intuition of the
placement of parts within the part bins. Once the 2017 competition
was over, the cost factor equation was changed to the current method.
The organizers also added a panel of three human judges to provide an
additional subjective evaluation of the competitors’ performance and
approaches. A more detailed description of the judges can be found in
the following Section.

6.3. Judging panel

With the addition of the judging panel, ARIAC has added a method
for the competition final scores to include some human subjective
judgment to the mix. A panel of three judges are chosen from industry
for each year and are asked to provide their own individual judgment
on the innovativeness and feasibility of the competitors’ approach. The
judging panel is given access to both videos of the competitors’ trials,
typically narrowed down by the organizers to highlights in order to
be cognizant of the judges time as well as a one page document from
the competitors describing what they were intending to be innovative
about their approach, or describing how they approached the general
problems.

For innovativeness, the judges start with a default score of 0 out of
a maximum of 10 and add points to the score for how the competitors
showed themselves to have an innovative approach to the scenarios.
For feasibility, the judges start with a score of 10 out of a maximum of
10 points and subtract away points based on their subjective evaluation
of how feasible competitors approaches would be to implement in a
real-world manufacturing plant. The three judges’ scores are added
together and averaged to provide the final 20% of the final score.

6.4. New metrics

Thanks to the IEEE Standards Association Study Group (soon to
be a Working Group) on Measuring Robot Agility, there is a list of
10 aspects of agility that are being discussed and will likely become
involved in ARIAC at some point in the future. These 10 aspects
include hardware reconfigurability, software reconfigurability, commu-
nications, task representation, sensing, perception, reasoning, planning,
tasking, and execution.
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7. Lessons learned and the future of the competition

7.1. Lessons learned

After four years of running ARIAC, the NIST team has learned a
lot and has tried to integrate what was learned in each subsequent
iteration. The most recent lessons learned are as follows:

• Since NIST took over the back-end development effort from OSRF,
additional development time was needed to ensure that the sys-
tem ran reliably. NIST is planning to start the development pro-
cess about 2–3 months earlier than was done previously to ensure
that a stable system is available to the participants well before the
competition is run.

• When teams identify faulty parts, they often just toss them to the
side to remove them from the kit tray. While this works from a
scoring perspective, it is not realistic in a factory environment.
Future environments will have a faulty parts bin in which to place
these parts with bonus points for doing so.

• Robots had to avoid people in ARIAC 2020, but there was no
penalty for getting very close to people. In future iterations there
will be a safety buffer distance from humans with a penalty for
getting too close, even if the robot does not strike the people.

• On the back end, NIST will provide a better mechanism to inform
participants of when a change is made to the interfaces and the
environment.

• The organizers will explore additional domains in addition to
order fulfillment and kitting, such as assembly and agile disaster
response (process can change over to a related task to support
global and national needs for public health and safety).

• The organizers will explore the possibility of an open world envi-
ronment, where builders can create their own robot and perhaps
other aspects of their environment to creatively solve the ARIAC
challenges.

These lessons, combined with the lessons that were learned through
revious years of the competition, both by OSRF and NIST have been
sed as the competition has progressed through the years. The results
f what the organizers have observed in terms of methods and quirks of
trategy used by the teams have led to the changes in the competition
o far. For instance, the strategies of competitors through the years
ave adjusted the scoring of both the cost factor in addition to the
ompletion scores of having the colors of parts being considered in the
coring.

Through a combination of observing the competitors each year as
ell as the input from the IEEE RAS Standards Working Group on
easuring Robot Agility, the metrics, scoring, and the overall themes of

he competition will continue to morph and adjust as the competition
ontinues. In this way, the competition will evolve and continue to
romote greater agility within the industry.

.2. The future of ARIAC

ARIAC remains an evolving entity with a close ear to both industry,
obotics, and simulation software advancements, however, the future
rajectory of ARIAC can be summed up with 4 major tenants: (1)
ccessibility, (2) virtual to real deployability, (3) open medium for
ealistic and creative solutions, and (4) relevance to today’s robotics
hallenges.

.2.1. Accessibility
Accessibility in this case means maximizing the number of people

apable of participation. This includes making sure the competition
emains free and does not require too much specialized knowledge.
or this reason, ARIAC organizers continue evaluating free simulation
oftware solutions in addition to Gazebo. While Gazebo is a great free
ption, future competitions should be operating system independent.
nity 3D and other game engines and simulation environments are
9

mong those that the organizers continue to monitor.
7.2.2. Virtual to real deploy-ability
Future competitions will have a clear path to actual physical robot

deployment. NIST is currently in the process of creating a real robotic
system that has a parallel in the ARIAC Environment. Future teams will
be able to see how their control code functions in a real robotic process.

In the future, ARIAC will use a robot communication protocol that
is real–virtual and robot agnostic. NIST has been working in the area of
robot communication for quite some time. In fact, the Canonical Robot
Control Language (CRCL), developed by NIST, is a robot agnostic com-
mand language [21]. Future competitions will leverage NIST’s expertise
in this area making competitor code more relevant to current industry
challenges. In the future, NIST also will be working to transition some
of the winning code submissions working on physical robots as well as
facilitating the use of some of these strategies into real world plants.

7.2.3. Open medium for realistic and creative solutions
Future ARIACs will seek to allow more freedom for robot system

designers by implementing a more open environment. This would allow
system designers to select not only the control strategy but also the
robot morphology, and general system layout. While requiring more
from designers, this open-world will allow for greater freedom and
creativity.

7.2.4. Relevance to today’s robotics challenges
The ARIAC organizers continue to look to both industry and

academia for relevant challenges that address the industrial challenges
of today. Future ARIACs will include assembly at various levels of
abstraction. Initially, this will include placing assembly pieces in 3-
dimensional orientations that do not lie on a single plane. Later
iterations of ARIAC will also include how these parts are assembled,
like screwing, placing, or pressing parts.

ARIAC organizers are also looking at new robot tasks such as
finishing and welding. In both cases, teams will need to intelligently
solve the dynamic challenges associated with these operations.
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