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Abstract

We present a Python object-oriented computer program for simulating various aspects of laser cooling physics. Our software is
designed to be both easy to use and adaptable, allowing the user to specify the level structure, magnetic field profile, or the laser
beams’ geometry, detuning, and intensity. The program contains three levels of approximation for the motion of the atom, applicable
in different regimes offering cross checks for calculations and computational efficiency depending on the physical situation. We test
the software by reproducing well-known phenomena, such as damped Rabi flopping, electromagnetically induced transparency,
stimulated Raman adiabatic passage, and optical molasses. We also use our software package to quantitatively simulate recoil-
limited magneto-optical traps, like those formed on the narrow 1S0 →

3P1 transition in 88Sr and 87Sr.
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1. Introduction

Laser cooling is ubiquitous in modern atomic physics. Cool-
ing, trapping, and manipulating atoms has led to advances
in clocks [1–3], inertial sensors [4–6], magnetometers [7, 8],
emerging quantum technologies [9, 10], and tests of funda-
mental symmetries [11–13]. On its surface, laser cooling ap-
pears straightforward, with well-known models that qualita-
tively describe its essential features, like magneto-optical trap-
ping [14, 15] and Doppler [16] and sub-Doppler cooling [17].
As progress is made toward deploying laser-cooled atoms in
photonically integrated packages [18], modelling is required in
order to optimize design parameters and understand engineer-
ing tolerances. At the same time, progress is being made on the-
oretically understanding new techniques of laser cooling [19].
For both of these applications, a suite of simple-to-use software
capable of simulating the full description of laser cooling, in-
cluding complicated level structures and complex trapping ge-
ometries, is still lacking.

For example, consider a 23Na atom in a standard, six-beam
magneto-optical trap (MOT) [20]. The trap consists of a spher-
ical quadrupole magnetic field and six independent laser beams
with two frequency components that drive transitions between
28 different Zeeman states. The dynamics of a 23Na atom in a
MOT are well-described by the optical Bloch equations (OBE),
a comprehensive framework that models classical fields cou-
pled to non-interacting atoms and includes internal state coher-
ences. The OBEs constitute a total of 282 = 784 coupled, first-
order, time and position dependent differential equations for the
atom’s internal states (plus an additional 6 differential equations
to account for its classical motion). Automatically generating
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and efficiently solving the OBEs for an arbitrary combination
of atomic species, laser fields and magnetic fields is a neces-
sity for theoretically quantifying the quality of different kinds
of traps.

We introduce an open-source,Python-based program that
computes the movement of atoms or molecules with complex
level structures in arbitrary optical (laser) and magnetic fields.
The pylcp package allows multiple levels of approximation
from the complete OBEs through to a simple heuristic model.
Like other quantum dynamics packages [21–25], pylcp can
solve the optical Bloch equations, but it focuses on simulating
the laser cooling of atoms and molecules. Importantly, for the
user’s given laser geometry, atomic level structure, and mag-
netic field configuration, our code automatically generates the
governing equations for the atom. We leverage existing Python
packages to both integrate the resulting equations and analyze
their output. Our program is object-oriented, allowing simple
extensions to include additional types of laser beams and mag-
netic fields, along with different atomic and molecular Hamilto-
nians. The source code and documentation for pylcp are freely
available online [26, 27], with stable releases distributed via the
Python package index (PyPI).

The remainder of this paper is organized as follows. In
Sec. 2, we present the governing equations included in the
pylcp package. We start with the OBEs, then present approxi-
mations that result in the rate equations and further approxima-
tions that result in a heuristic model. In each derivation, we fo-
cus on the elements that are important for its efficient program-
ming. In Sec. 3, we present several tests of the code against
textbook examples and find quantitative agreement with well-
known results. We also use our software package to calculate
properties of more exotic MOTs, including those formed on the
narrow 1S0 →

3P1 transition of 88Sr and 87Sr.
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2. The governing equations

2.1. The optical Bloch equations
Our derivation for the OBEs follows those in Refs. [28–30],

which can be consulted for further detail. We consider the
generic problem of coupling N quantum states together in ar-
bitrary optical and magnetic fields. We group the states into
manifolds: a collection of states that are degenerate or nearly
degenerate, e.g., the hyperfine states of the 2S 1/2 state of an al-
kali atom or the ro-vibrational states of a molecule. We denote
the ith state and its manifold index n by |i, n〉. The manifolds
are useful both for defining appropriate rotating frames and for
applying the rotating wave approximation.

The full Hamiltonian is given by

Ĥ = Ĥatom + Ĥfield − d̂ · Ê − µ̂ · B̂. (1)

The atomic operators d̂ and µ̂ are the electric and magnetic
dipole operators, respectively1. The field component of the
Hamiltonian is given by

Ĥfield =

∫ (
ε0Ê2

2
+

B̂2

2µ0

)
dV, (2)

where Ê is the electric field operator, B̂ is the magnetic field
operator, ε0 is the vacuum permittivity, and µ0 is the vacuum
permeability. The atomic Hamiltonian is

Ĥatom =
P2

2M
+ Ĥint, (3)

where Ĥint describes the atom’s internal structure, P is its mo-
mentum, and M is its mass. In general, Ĥint has the form

Ĥint =
∑

i j

~ωn |i, n〉 〈i, n| + (Hn)i j |i, n〉 〈 j, n| , (4)

where (Hn)i j =
〈
i, n

∣∣∣ Ĥn
int

∣∣∣ j, n
〉

and ωn is the offset frequency
of the nth manifold. Hn is a matrix that need not be diagonal.
Manifolds are connected only through the d̂ · Ê component of
the Hamiltonian; Ĥn

int and µ̂ · B̂ only act on the subspace of each
manifold.

Our goal is to find the evolution of the expectation values of
the density operators ρ̂i j = |i〉 〈 j|. (We suppress the manifold
index when it is not relevant.) In the Heisenberg picture, an
operator Ô evolves as

∂Ô
∂t

=
i
~

[Ĥ, Ô]. (5)

If the fields were treated classically, this equation would have
to be amended in order to take into account decays. Instead,
if we keep the fields quantized, derive the equations of motion,
and then apply appropriate radiation reaction approximations,
we can derive the full OBEs with decay included from (5). The

1Throughout this paper, bold face denotes vector quantities. Hats usually
denote quantum mechanical operators, with the exception of x̂, ŷ, and ẑ. In this
case, the hat denotes the relevant Cartesian unit vector.

magnetic field B is assumed to be a classical field; we will not
consider quantizing it. We must pay special focus to the elec-
tric field E, however, for it both shifts the internal Hamiltonian
when transformed into the necessary rotating frame(s) and cre-
ates the necessary decay channels.

For the electric field, E could be comprised of multiple
modes. We group those modes by the n → m transitions they
drive between manifolds n and m. For each manifold pair, we
extract a carrier frequency ωn→m. Thus, the electric field of the
mode driving n→ m is

Ê = Ên→me−iωn→mt + Ê†n→meiωn→mt. (6)

Here, Ên→m represents a destruction operator of the mode n →
m. We note that Ên→m can itself be time-dependent and include
additional sub-modes with frequencies ωp � ωn→m, but these
are assumed to be captured by the time dependence of Ên→m.

We similarly expand the dipole operator

d̂ =
∑
i jnm

dnm
i j |i, n〉 〈 j,m| + d∗nm

ji | j,m〉 〈i, n| . (7)

Here, dnm
i j =

〈
i, n

∣∣∣ d̂nm
∣∣∣ j,m

〉
and d̂nm is the dipole matrix oper-

ator between the two manifolds n and m with m being larger
in energy than n. We further define the complex conjugate
d∗nm

ji =
〈

j,m
∣∣∣ d̂nm

∣∣∣ i, n〉, where we have reversed only the spe-
cific indices of the state2. In general, dnm is a vector of matrices.
We choose to express this vector in the spherical basis, with
vector elements dnm

q . The individual matrix elements (dnm
q )i j

are dependent on reduced matrix elements and Clebsch-Gordan
coefficients that determine the transitions between manifolds n
and m. We will not consider any specific form of dnm

i j , but in-
stead focus on deriving the OBEs for any generic dnm.

To determine the decays, we must apply a radiation reaction
approximation. Classically, the radiation reaction field is

ERR =
1

6πε0c3

d3d
dt3 . (8)

The dipole moment d will oscillate with all frequency compo-
nents contained in the drive. Thus, for each frequency mode, we
must take d to have an e−iωn→mt oscillation and the total electric
field operator becomes

Ên→m = Ê0,n→m +
iω3

n→m

6πε0c3 e−iδn→m,ptdnm
i j |i〉 〈 j| , (9)

where E0,n→m is the operator on the classical field. The two den-
sity operators each contribute their preferred rotation, yielding
the total oscillation of δn→m = ωn→m − (ωm − ωn). We then
note that for each manifold, any additional frequency compo-
nent ωp � ωn→m, so the wavevector is assumed to be the same
for the entire manifold, making

Ên→m = Ê0,n→m +
ik3

n→m

6πε0
e−iδn→m,ptdnm

i j |i〉 〈 j| , (10)

2We do not reverse nm ordering as that merely denotes what manifolds d
connect.
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where kn→m = ωn→m/c. It is now interesting to note the com-
mutation relationships. Clearly the ρi j operators must commute
with all Ên→m, as they are different physical observables. On
the other hand, given that ρi j does not commute with the sec-
ond term in (10), it must also not commute with the classical
field operator Ê0,n→m.

For each manifold, we will assume that all states in that man-
ifold rotate at a preferred frequency |i, n〉 → eiωR

n t |i, n〉. We
choose the ωR

n such that their differences ωR
m −ω

R
n ≈ ωm −ωn ≈

ωn→m for all combinations of n and m. This choice places
each manifold into an appropriate rotating frame. Under this
transformation of the state vectors, the internal Hamiltonian be-
comes

Ĥint = −~δH
n |i, n〉 〈i, n| + Hn

int,i j |i, n〉 〈 j, n| , (11)

where we define δH
n = ωR

n − ωn, incorporating the shift into the
rotating frame into the internal Hamiltonian. We also define
δL

n→m = ωn→m − (ωR
m − ω

R
n ). Making the rotating wave approxi-

mation (neglecting terms oscillating at optical frequencies), we
find, keeping only energy conserving terms,

d̂ · Ê =
(
dnm

i j · Ê
†
n→me−iδL

n→mt
)
|i, n〉 〈 j,m| +

| j,m〉 〈i, n|
(
(d∗nm

ji ) · Ên→meiδL
n→mt

)
. (12)

Note that because E commutes with ρi j, we can place the op-
erators in any order. We have chosen normal order: the first
operator to apply to the wavefunction is the destruction oper-
ator of either the atom or the field and the second operator is
creation operator. This operator ordering is required for the ra-
diation reaction approximation to produce the correct decay rate
Γ [31, 32].

It is instructive to consider two examples of this construc-
tion of the rotating frame(s). Consider first a standard two level
system, with indices i = g and j = e and energies ωg = 0
and ωe, being driven by a single electric field with frequency
ω. Assume the states rotate at preferred frequencies defined
by ωR

e and ωR
g = 0. Then the detuning on the Hamiltonian,

δH
e = ωR

e −ωe and δL
g→e = ω−ωR

e . The total detuning of the laser
from the excited state is then given by δ = δL

g→e+δ
H
e = ω−ωe. In

this way, we can split the detuning between lasers and Hamilto-
nian in whichever way yields best computational efficiency for
the problem at hand.

Next, consider a three manifold Λ-system with a single state
in each manifold. Let us label the manifolds as g, r and
e in order of overall energy, and drop the unnecessary sub-
state subscripts. We address this system with two lasers, one
tuned closely to g → e with frequency ωg→e and the other
tuned closely to r → e with frequency ωr→e. We now choose
ωR

g = ωg = 0, and the relevant detunings are then

δH
g = 0 (13)

δH
e = ωR

e − ωe (14)
δH

r = ωR
r − ωr (15)

δL
g→e = ωg→e − ω

R
e (16)

δL
r→e = ωr→e − (ωR

e − ω
R
r ). (17)

By choosing ωR
e = ωg→e and ωR

r = ωg→e − ωr→e, one recovers
the textbook example of the three level system with detunings
appearing entirely on the Hamiltonian. As with the two level
system above, one can split the detunings between lasers and
Hamiltonian in whichever way yields best computational effi-
ciency for the problem at hand.

Ref. [30] uses a choice of rotating frame that is equivalent to
having one rotating frame per set of degenerate levels at zero
field. This choice is conceptually easier to understand and po-
tentially computationally advantageous, as it eliminates many
high-frequency oscillations in the Hamiltonian. However, its
construction has disadvantages as well, most notably not being
able to include non-linear Zeeman couplings between different
zero-field degenerate states. Nevertheless, between pylcp and
the construction of Ref. [30], the largest difference appears to
be the inclusion of oscillatory terms in the decay between ex-
cited states and ground states. Those terms are neglected here,
as they are related to the frequency differences between differ-
ent rotating frames, which, in our construction, is assumed to
be large.

The choice of rotating frame(s) is left to the user, who de-
termines the number of manifolds to use and provides the ma-
trices that define the Hamiltonian for each manifold and their
interactions with other manifolds. Which frame to use depends
on a variety of factors, including desired accuracy, numerical
efficiency, validity of any approximations in the Hamiltonian,
and effects to be modelled. For example, encoding a Λ-system
with two hyperfine ground states (here, |1〉 and |2〉) coupled via
two different lasers through a single excited state (here |3〉) as
a three-manifold system will exclude the possibility of cross-
excitation (i.e., the laser driving |2〉 → |3〉 off-resonantly ex-
citing |1〉 → |2〉). To capture such cross excitation, the system
must instead be encoded as a two-manifold system. The mag-
nitude of the external fields applied may also dictate the choice
of rotating frame. For example, the choice of Ref. [30] can be
advantageous for molecule simulations where the induced Zee-
man shifts are small relative to the zero-field hyperfine spacing.

Before applying the radiation reaction approximation, we
must first find the equations of motion. Inserting (12) into (5),
and using ρ̂i jρ̂kl = ρ̂ilδ jk, where δi j is the Kronecker delta func-
tion,

~
∂ρ̂i j

∂t
= −i

(
dnm

ki · Ê
†
n→me−iδL

n→mt
)
|k〉 〈 j| +

−i |k〉 〈 j|
(
d∗nm

ki · Ên→meiδL
n→mt

)
+i

(
dnm

jk · Ê
†
n→me−iδL

n→mt
)
|i〉 〈k|

+i |i〉 〈k|
(
d∗nm

jk · Ên→meiδL
n→mt

)
. (18)

Once again, we have maintained normal operator order. Taking
the expectation value of (18) and focusing on the real part of
evolution results in

~Re
(
∂ρi j

∂t

)
=

k3
n→m

6πε0

[
−dki · d∗lkρl j + d∗ki · d jlρkl

+d jk · d∗liρlk − d∗jk · dklρil

]
,

(19)

where ρi j = 〈ρ̂i j〉. This equation defines the decay in terms of
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the dnm matrices. pylcp represents the decay evolution as a
matrix equation, ρ̇ = (1/~)Γ · ρ, where ρ is a flattened vector
of the expectation values of all ρi j. The contribution of each
dipole operator connecting two manifolds is calculated sepa-
rately; namely, Γ =

∑
m,n<m Γ

m→n where Γm→n is calculated us-
ing (19) from dnm.

The remaining part of the d̂ · Ê operator is the imaginary
component, which describes the coherences between the quan-
tum states of different manifolds. The imaginary component
is proportional to Ê0,n→m. We use the result Ê0,n→m |E(r)〉 =

E0,n→m(r, t) |E0,n→m(r)〉, where E0,n→m(r, t) is the classical field.
When computing the expectation value of the classical field
with this identity, the only operators that remain in (18) are the
density operators. Therefore, we can compute the evolution due
to the classical electric field in the same manner as that of the
classical magnetic field.

To calculate imaginary part of the evolution due to all fields
and Ĥint, we insert Ô = ρ̂ and the full Ĥ into (5), using the clas-
sical field values for B and E. This insertion naturally includes
the imaginary part of (18). Computing the expectation value,
(5) becomes a matrix equation, where the individual elements
are given by

~ Im
(
∂ρi j

∂t

)
= −

∑
k

(
ρikHk j − H jkρki

)
, (20)

where Hi j = 〈Ĥi j〉 is the expectation value of the Hamiltonian.
Because the classical fields (i.e, the expectation value of the
classical field operators) commute with the atomic density op-
erators, we split the evolution between Hint, µn, and dnm, cal-
culating the commutator for each separately. As with Γ, pylcp
represents (20) as a matrix equation ρ̇ = −(i/~)Hint · ρ, where
the corresponding elements of the matrix Hint are calculated
from (20) using the substitution Ĥ = Ĥint. Likewise, matrices
Dnm

q , D∗,nm
q , and Mn,q are calculated for the evolution due to

dnm
q , d∗nm

q , and µn,q, respectively.
The full evolution is then given by

ρ̇ =
1
~

Γ − i

H int −
∑
q,n,m

(−1)q[Dnm
q E∗0,n→m,−q

−D∗nm
q E0,n→m,−q −Mn,qB−q]

)]
· ρ. (21)

Because commutators are computationally intensive, the ma-
trices Γ, Hint, Dnm

q , D∗,nm
q , andMn,q are only calculated once

when the OBEs are initially generated and therefore cannot be
time dependent. The OBEs are symmetric under population ex-
change, i.e., ρi j = ρ∗ji. Optionally, pylcp takes advantage of
this symmetry to transform the matrices Γ, H int, Dnm

q , D∗,nm
q ,

andMn,q into evolution for the real and imaginary parts of ρi j,
reducing the effective number of coupled, first order differential
by a factor of two and increasing computational speed.

The particle’s semiclassical motion can be calculated through

r̈ = −
1
M
{∇H} + a =

1
M

{
∇(dnm · E0,n→m + µn · B)

}
+ a, (22)

where r is the position of the atom or molecule, M is its
mass, and a is a constant acceleration (typically gravity). The

motion is also impacted by the momentum diffusion tensor,
Di j = d/dt(〈PiP j〉−〈Pi〉〈P j〉, where the i and j indices here rep-
resent spatial coordinates and P is the momentum of the atom.
Evaluation of the momentum diffusion tensor is a complicated
calculation that involves multiple commutators of the dnm op-
erators. The result can be broken into two components: one
component that depends on the history of the force applied (the
stimulated emission component) and one that depends on the
instantaneous populations of the excited states (the spontaneous
emission component). We neglect the former and generalize the
result of Ref. [28] for the latter, so

2Dii = k2
n→m

∑
n<m

Γm→n
i ρmm

ii , (23)

where Γm→n
i is the decay rate of state i out of manifold m into

lower manifold n (Γm→n
i is the appropriate diagonal element of

the Γm→n matrix). (We neglect the small directional dependence
evaluated in Ref. [29].) To simulate the effect of the momen-
tum diffusion tensor, pylcp uses a Monte-Carlo method. Dur-
ing integration of the atomic motion, the decay probability in a
time step ∆t is calculated to be ∆tΓm→n

i ρmm
ii . A pseudo-random

number generator then generates a random number p, which is
uniformly distributed on the interval (0, 1]. If p < ∆tΓm→n

i ρmm
ii ,

two randomly directed momentum kicks of 2~k are delivered to
the atom in order to reproduce the diffusion (23). The integra-
tor used has an adaptive time step, but it is constrained such that∑

inm Γm→n
i ρmm

ii ∆t < 0.1 by default, minimizing the probability
of multiple scattering events per time step.

2.1.1. Representation of the Hamiltonian
With the basis states |i, n〉 arranged in a vector by increasing

state and manifold number, the Hamiltonian becomes a Nm×Nm

matrix of submatrices, where Nm is the number of manifolds.
In pylcp, we represent this Hamiltonian as a series of blocks
Using labels i = g, e for the two extreme manifolds, the Hamil-
tonian blocks look like

Hatom =


(Hg − µg · B) · · · (dge

· E∗ge)
...

. . .
...

(d∗ge
· Ege) · · · (He + µe · B)

 , (24)

where each element in the matrix Hg, He, etc. is itself a matrix.
With this structure, the term µn · B is the field dependent term
that mixes states within a given manifold m and dmn

·Emn is the
field dependent term that couples states of manifolds m and n.

To specify the Hamiltonian, the user provides the requi-
site Hn, µn, and dnm and combines them together in the
hamiltonian class. The class stores the block structure of the
Hamiltonian, and also contains methods useful for its manipula-
tion. Because the dnm components can create photons, the user
can specify the associated k and Γ with each dnm. The vectors
µ and d are represented in spherical polar coordinates, allowing
for easy translation into σ± circular polarization and π polariza-
tions. For these vectors, we denote the component q = ±1, 0 as
dq.
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2.1.2. Fields
The electric field for an individual laser, labeled by l, is as-

sumed to have the form

El =
1
2
ε̂ l(r, t)El(r, t)eikl(r,t)·r−i

∫
dt∆l(t)+iφl(r,t), (25)

where the complex conjugate term is neglected by the rotating
wave approximation. The user specifies all components of the
laser field: the polarization vector ε̂ l(r, t), the amplitude El(r, t)
(defined through the saturation intensity sl(r, t)), the kl(r, t) vec-
tor, the average detuning between the rotating frame and opti-
cal frequency ∆l(t), and any potential phase modulation of the
laser beam φl(t) in the laserBeam class. Each of these quan-
tities may be constant or a function of the position r or time
t. Laser beams are collected together into laserBeams objects
by which manifold transition they address. If there are multi-
ple manifold transitions, a Python dictionary should be made
that is indexed by the manifold labels, e.g. g → e. Finally, the
magnetic field B(r, t) can be specified simply as a user-defined
function of position r and/or time t.

2.1.3. Units
For pylcp, ~ = 1 so that angular frequencies and energies

are equivalent. Thus, the user specifies Ĥ/~, rather than Ĥ.
For other quantities, we specifically separate out the units, with
dimensionless numbers denoted with a bar. For example, a
position x is related to its dimensionless counterpart through
x = x̄x0, where x0 is the unit of x. When forming a com-
plete Hamiltonian using the hamiltonian class, the user has
the ability to set the units by specifying base units of length x0,
time t0, magnetic field B0 and mass m.

To understand the units associated with d · E, let us briefly
consider a two level system. The excited state decay rate is
given by Γ = k3(dd∗ + d∗d)/6πε0~. We define a normal-
ized d = d̄d0, where d0 =

√
3πε0~Γ/k3. With this definition,

d̄∗d̄ + d̄d̄∗ = Γ/2. For the electric field, we use the on-resonant,
two-level saturation parameter s = I/Isat = 2|d0E|2/~2|γ|2 =

8d0|E|2/~2Γ2, where γ = Γ/2 to define the natural units for
E. Inverting, we find that E = ~Γ

√
s/(
√

8d0), so dE/~ =

(d̄Γ/4)
√

2s. We note that this definition of the saturation pa-
rameter is consistent with the more common I/Isat = 2(Ω2/Γ2),
where, because the Hamiltonian is defined without a factor of
1/2 in the d · E term, Ω/2 = dE.

For the force, we have one additional unit to specify, the
mass. If the user specifies the length, time, and magnetic field,
then

x0

t2
0

¨̄r =
~

x0t0M

{
−∇̄H̄

}
+

x0

t2
0

ā. (26)

The default unit selection for a two-manifold system is t0 = 1/Γ
and x0 = 1/k, which yields for the prefactor ~/x0t0M = ~kΓ/M.
Taking into account the units on the left hand side of (26), we
define

¨̄r =
~t0

x2
0M

{
−∇̄H̄

}
+ ā, (27)

which defines the ‘dimensionless’ mass M̄ = x2
0M/~t0.

2.2. The Rate Equations
In the rate equation model, we neglect the coherences in the

OBEs and instead focus exclusively on the populations in the
state i in manifold n, Nn

i = ρnn
ii . Here, we follow the construc-

tion of the rate equations from Ref. [33]. The evolution of Nn
i

is given by

Ṅn
i = ±

∑
m, j,l

Rn→m
i j,l (Nn

i −Nm
j )+

∑
m>n

Γm→n
i j Nm

j −
∑
m<n

Γn→mNn
i , (28)

where the first term accounts for optical pumping, the second
for decays into the state, and the third decays from the state.
The +(−) sign occurs when m < n (n > m). The manifold
decay rate is

Γm→n =
k3

n→m

3πε0~
|dnm|2 (29)

and the decay rate out of the excited state Γ, and the branching
ratio,

Γn→m
i j = Γ

∣∣∣∣dnm
i j

∣∣∣∣2∑
i

∣∣∣∣dnm
i j

∣∣∣∣2 . (30)

We calculate the optical pumping rates Rn→m
i j,l , due to the laser l

between states i and j in manifolds n and m, respectively. It is
given by

Rn→m
i j,l =

[Ωn→m
i j,l ]2/Γn→m

1 + 4[(∆l − (ωm
j − ω

n
i ) − kl · v)/Γm→n)]2 , (31)

where the excitation rate is3

Ωn→m
i j,l =

Γm→n

2
(dnm

i j · ε
′
l)

√
2s(r, t), (32)

ωm
j and ωn

i are the eigenenergies of states | j, n〉 and |i, n〉, and ε′l
is polarization of laser l, rotated into the local coordinate sys-
tem defined by the quantization axis. In this approximation,
the quantization axis is assumed to be defined by the magnetic
field. To determine ωm

j and ωn
i , each diagonal block of the

Hamiltonian (24) is diagonalized at each new magnetic field B
then the dnm matrices are rotated accordingly into the new basis.
pylcp automatically diagonalizes and rotates these matrices as
the atom moves through the magnetic and laser fields.

To determine ε′l , the polarization of the laser fields ε l must be
rotated onto a possibly changing quantization axis. By default,
pylcp stores the polarization of a given laser beam as a vec-
tor in the spherical basis with ẑ assumed to be the quantization
axis. To rotate to a new quantization axis defined by the local
magnetic field ẑ′, we need to apply a Wigner rotation matrix
D j

m′m for an j = 1 angular momentum system (e.g., a photon).
The specific form is given by

D =


1+cos β

2 e−iα+iγ sin β
√

2
e−iα 1−cos β

2 e−iα−iγ

−
sin β
√

2
eiγ cos β −

sin β
√

2
e−iγ

1−cos β
2 eiα+iγ sin β

√
2

1+cos β
2 eiα−iγ

 , (33)

3Note that there is a factor of two difference between d · E in Sec. 2.1.3 and
the definition of the Rabi rate Ω used here.
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where α, β, and γ in this context are the Euler angles in the ZYZ
convention. Thus, ε′l = D · ε l. For the rate equations, which
square the rotated polarization, the angle α does not contribute,
so pylcp neglects it (α only specifies the relative phase between
the two circular components in the rotated coordinate system).

Finally, the motion of the atom is given by

r̈ =
∑

l

~kl

2M

∑
m,n,i, j

Rn→m
i j,l (Nm

j − Nn
i ) + a. (34)

Simulated spontaneous emission follows in the same way as in
the OBEs.

2.3. Heuristic equation
A final governing equation is also included in pylcp, titled

the ‘heuristic’ equation. This equation calculates the force on
an atom assuming a F = 0 → F′ = 1 level structure. This
level structure has equal dipole transition strengths for all three
transitions, making the (dnm

i j · ε l) = εl and

r̈ =
~kΓ

2M

∑
l,q

sl

(
ε′l,q

)2

1 +
∑

j s j + 4(∆2 − k · v − q|B|)2/Γ2 , (35)

where ε′l,q = (D · ε l)q is the qth component of the rotated polar-
ization ε′l . Here, we have approximated the total saturation as∑

j s j(r), which is the approximation used in Ref. [16].

3. Examples

In this section, we cover several examples of laser cooling
and show that we can use pylcp to reproduce standard results.
The examples described herein are a small subset of the exam-
ples contained within the pylcp package. All examples are in-
cluded in the user manual and are saved as jupyter notebooks
that include comments and saved output figures.

3.1. Stationary atoms: internal dynamics
We start by considering well-known examples of internal

atom dynamics [14, 15]. These examples are contained in the
basics subdirectory of the pylcp package. Our first example
is damped Rabi flopping. When a two-level atom (states |0〉
and |1〉) is illuminated with off-resonant laser light with detun-
ing ∆ = −4Γ and saturation s0 = 20, it drives oscillations in the
population of the atomic states. The decay of the excited state
leads to the oscillation decaying and the populations achieving
an equilibrium value. In Fig. 1, the populations ρ00 and ρ11, as
determined by both the OBEs and the rate equations, are shown.
Unlike the OBEs, the rate equations show no oscillation. This is
expected as the rate equations neglect the coherences between
the atomic states. Nevertheless, the solutions of both the OBEs
and rate equations asymptotically approach the same equilib-
rium populations.

Next, consider a more complicated F = 2 → F′ = 3 atom
initialized in |F = 2,mF = −2〉 and illuminated by π-polarized
light with respect to the quantization axis, ẑ. In this configura-
tion, the laser optically pumps the atoms into a stretched state

0.0 0.5 1.0 1.5 2.0

t/2πΓ

0.0

0.2

0.4

0.6

0.8

1.0

ρ i
i

Figure 1: Populations of a two level atom ρ00 (blue) and ρ11 (orange) vs.
time t showing damped Rabi flopping with both the OBEs (solid) and the rate
equations (dashed). Here, the detuning is ∆/Γ = −4 and intensity is s0 = 20.
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Figure 2: Optical pumping on an F = 2 → F′ = 3 transition of an atom. The
populations of the mF = −2, 1, 0, 1, 2 states are shown in blue, orange, green,
red, and purple, respectively. The solution from the rate equations (OBEs) are
shown as dashed (solid) curves. See text for other parameters.

with 〈Fz〉 = 0, corresponding to equal populations between
±mF with maximal population in mF = 0. The optical pumping
process is depicted in Fig. 2, using a detuning ∆/Γ = −2.73
and s0 = 1.352464, which match the parameters used for an
equivalent simulation in Ungar, et. al. [29]4. Fig. 2 shows the
solutions of both the OBEs and the rate equations, which are
nearly identical.

Other two-level examples contained in basics subdirectory
of the pylcp package, but omitted from the discussion here in-
clude power broadening, undamped Rabi flopping in a magnetic
field, and optical pumping of an F = 1 → F′ = 2 transition
in the presence of a magnetic field. These examples and the
ones discussed above all use fields that are constant in time. To
demonstrate its applicability to time varying fields, pylcp also
includes an example of adiabatic rapid passage that reproduces
Fig. 2 of Ref. [34].

4Note that s0 therein is defined with the detuning included.
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Figure 3: Susceptibility (ρre) of a three-level atom as a function of δ = ∆ge−∆re
for ∆ge/Γ = −5 (left), −1 (middle), and −0.1 (right).

Beyond the two-level systems considered above, a three-level
atom can produce a multitude of more complicated physical
phenomena. One well-known example is electromagnetically
induced transparency. Consider a three-level atom in the Λ

configuration, with ground state |g〉, intermediate metastable
state |r〉, and excited state |e〉. Two lasers, with Rabi frequen-
cies Ωge and Ωre, drive the |g〉 → |e〉 and |r〉 → |e〉 transi-
tions, respectively. We assume Ωge =

〈
g
∣∣∣ dge · E0,g→e

∣∣∣ e〉 �
Ωre =

〈
r
∣∣∣ dre · E0,r→e

∣∣∣ e〉. In this limit, when both lasers are
resonant with their respective transitions, the strong |g〉 → |e〉
laser opens a transparency window in the otherwise absorptive
|r〉 → |e〉 transition [35]. This transparency window can be
seen by observed in the susceptibility through the coherence
ρre. Figure 3 shows the numerically calculated ρre as a function
of δ/Γ = ∆ge/Γ − ∆re/Γ for three values of ∆ge/Γ, where ∆ie is
the detuning of the laser driving the |i〉 → |e〉 transition from
resonance. The Rabi frequencies for the two transitions are
given by 2(Ωge/Γ)2 = 10 and 2(Ωre/Γ)2 = 0.1. For |∆ge| � 1,
the |r〉 → |e〉 absorption profile is not perturbed by the pres-
ence of the coupling laser driving |g〉 → |e〉, except for a small
glitch in the susceptibility near Raman resonance at δ/Γ = 0.
As |∆ge| → 0, the susceptibility drops to zero when δ/Γ = 0 and
the atom no longer absorbs photons from the |r〉 → |e〉 laser.

Another interesting three-level effect is stimulated Raman
adiabatic passage (STIRAP) [36]. STIRAP is an adiabatic pro-
cess that transfers population between two states in a three-
level system. Consider the Λ system defined above in the
electromagnetically induced transparency discussion. Coun-
terintuitively, efficient population transfer from |g〉 to |r〉 re-
quires the optical fields to first couple only |r〉 to |e〉 and then
slowly change optical intensities until only |g〉 is coupled to
|e〉. Fig. 4 shows a pylcp calculation of STIRAP, using pulses
with Gaussian temporal profiles: Ωge(t) = Ωge,0e−2(t−t0+∆t/2)2/t2

w

and Ωre(t) = Ωre,0e−2(t−t0−∆t/2)2/t2
w with Ωge,0 = Ωre,0 = Γ and

t0 = 500/Γ. For the correct pulse order ∆t = 125/Γ (bot-
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Figure 4: STIRAP time dynamics of a Λ system with state populations ρgg
(solid blue), ρrr (dashed orange) and ρee (dashed-dot green) with Gaussian-
shaped pulses (see text). Top (bottom) shows the incorrect (correct) pulse order.

−10 −5 0 5 10

v/(Γ/k)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

f/
(ħ
kΓ
)

Figure 5: Force f as a function of velocity v in a one-dimensional two-level
molasses. The three curves show the differences between the OBE (blue, solid),
rate equations (orange, dashed), and heuristic equation (green, dot-dashed).

tom panel), we see efficient population transfer from |g〉 to |r〉
with minimal population ρee in |e〉. For the incorrect pulse order
∆t = −125/Γ (top panel), we see the opposite.

3.2. One-dimensional optical molasses

The examples in Sec. 3.1 exclusively examined the internal
structure and dynamics of an atom. However, the pylcp pack-
age is focused on simulating the coupling of internal atomic dy-
namics to external atomic motion. One well-understood prob-
lem in this realm is one-dimensional optical molasses, where a
two-level atom moves through an optical field generated by two
counter-propagating laser beams [16].

We begin by calculating the equilibrium force on the atom in
the optical molasses as a function of velocity [16, 37]. Fig. 5
shows the force calculated by pylcp using our three governing
equations (see Sec. 2) with ∆/Γ = −2 and s = 1.5. Equilibrium
forces in an optical molasses are most accurately described us-
ing either the OBEs or the rate equations, which accurately
account for saturation from the beams for all velocities. The
heuristic equation overestimates the saturation except near the
origin, causing an underestimation of the force when |v| � Γ/k.
The damping force near the origin is nearly identical between
the three governing equations when ∆/Γ is small.
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Figure 6: Final temperature T vs. detuning ∆ and s0 = 0.3, 1, 3 (blue, or-
ange, green, respectively) for two-level atoms in a 1D molasses. Points show
rate equation simulations, with error bars denoting 1-σ uncertainty of 96 simu-
lations. Lines denote analytic Doppler temperature of (36).

Figure 6 shows the temperatures of small clouds (N = 96
atoms) simulated with the heuristic equation. We see agree-
ment within the statistical uncertainties with the expectation of
Doppler cooling theory, namely

T
TD

=
1 + 2s0 + 4(∆/Γ)2

4|∆/Γ|
, (36)

where TD = ~Γ/2kB and kB is the Boltzman constant [16]. In
the present simulations, the temperature T is computed by bin-
ning the final velocities into bins with width δx and fitting the
resulting histogram to a Gaussian with standard deviation σ,
zero mean, and amplitude N(δx)/

√
2πσ2. The atoms start at

rest and must evolve for a sufficient time to scatter enough pho-
tons to achieve a stable velocity distribution. Specifically, the
integration time τ to achieve a temperature T must be at least
the product of the inverse of the scattering rate Rsc and the num-
ber of scattering events Nsc needed to achieve a specific veloc-
ity distribution through a 1D random walk. For a velocity dis-
tribution width given by σ2 = kBT/M, Nsc = σ2/v2

R, where
vR = ~k/M is the recoil velocity. Thus, the minimum integra-
tion time in Doppler-cooling simulations scales with M. For the
present simulations, we choose an integration time based on M,
∆, and s such that T/TD can grow to roughly 10.

We can extend this study of one-dimensional molasses with
more complicated level structures. In particular, we focus on
the F = 2 → F′ = 3 transition in 23Na, which was studied first
by Ungar, et. al. [29]. Figure 7 shows the calculated equilib-
rium force vs. velocity and contains all of the essential features
that were discussed in Ref. [29]. First, linear polarization φ , 0
and the so-called ‘corkscrew’ polarization σ+σ− produce sub-
Doppler force features near zero velocity that create additional
damping. Second, compared to the ‘two state’ σ+σ+ polariza-
tion, σ+σ− produces excess force due to the sub-Doppler dis-
continuity at v = 0 that continues out to near v/k ≈ ∆, where

−4 −2 0 2 4

v/(Γ/k)

−0.2

−0.1

0.0

0.1

0.2

f/
(ħ
kΓ
) −0.1 0.0 0.1

−0.02

0.00

0.02

Figure 7: Force f vs. velocity v in a one-dimensional F = 2 → F′ = 3 mo-
lasses with ∆/Γ = −2.5 and s0 = 1.0. The solid curve correspond to circularly
polarized beams: σ+σ+ (orange) and σ+σ− (blue). Dashed lines show linearly-
polarized input beams with angles φ = 0 (green), φ = π/4 (red), φ = π/2
(purple). Inset shows features close to the origin.

one of the two lasers is dominantly resonant with the atom.
In the example, but omitted here, we also replicate the depen-
dence of the force on saturation s0 and detuning ∆ observed in
Ref. [29].

In addition to the static force profiles, we also replicate the
temperature observed via Monte-Carlo in Ref. [29]. In particu-
lar, we have simulated 96 atoms in the σ+σ− configuration for
a time t = 104/Γ. We sample the atoms’ velocity at a time in-
terval δt = 500/Γ after allowing them to come into equilibrium
with the light field for 2000/Γ. Fitting the resulting sampled
velocities to a Gaussian reveals a temperature of 6.1(1.5) µK.
This temperature compares nicely to the 8.2 µK obtained in
Ref. [29]. We note that our temperature should be lower than
that of Ref. [29] as we do not include contributions to the mo-
mentum diffusion tensor from stimulated emission, for which
they include an approximate contribution.

Contained in the examples directory, but omitted here, is a
calculation of one-dimensional molasses for a variety of differ-
ent polarizations and level structures, including those that uti-
lize type-II transitions that have dark states. Molasses operating
on these transitions was studied in Ref. [38] and the essential
results are reproduced in the examples.

Another type of sub-Doppler molasses that is useful is that of
three-level Λ-enhanced cooling [39]. This molasses technique
is unique compared to the others described above in that it uses
a three-manifold system rather than a two-manifold. We have
simulated this process using pylcp, and the script and results
are contained with the other molasses examples. The numerical
results match the theoretical results of Ref. [39].

3.3. Force, capture, and temperature in MOTs

Forces in a magneto-optical trap (MOT) depend on position
as well as velocity. Let us consider the one-dimensional MOT,
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Figure 8: Force f vs. both position x and velocity v in a one-dimensional
magneto-optical trap with laser parameters ∆/Γ = 1.5 and s0 = 1. The white
curves show trajectories through phase space for atoms entering the MOT with
different initial velocities v0.
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Figure 9: Capture velocity vc vs. laser detuning ∆ for s0 = 0.3 (blue), 1.0 (or-
ange), and 3.0 (green). Solid curves are calculated using the heuristic equation
(35); dashed curves are the theoretical result from Ref. [40].

where two lasers, one travelling along +x̂ with circular polar-
ization σ− (relative to the quantization axis +x̂) and the other
travelling along −x̂ with polarization σ+. These lasers interact
with an F = 0 → F′ = 1 atom in a magnetic field of the form
B = B′ x̂. Figure 8 shows the resulting forces, calculated using
the heuristic equation (35) for a one-dimensional MOT. Here,
we use laser parameters ∆/Γ = −1.5 and s0 = 1 and measure
lengths in terms of the Zeeman detuning, ~Γ/(µBB′). A particle
initially at the origin of this non-conservative trap will be forced
back toward the origin if it gains any velocity or is displaced.

The capture process into such a MOT can easily be simulated
with pylcp. The white curves in Fig. 8 show trajectories in
the classical phase space, calculated without random scattering.
Here, atoms enter the MOT at a position x = −20(~Γ/µBB′)
with varying initial velocity v0. Clearly, trajectories with v0 <
7Γ/k are damped to the origin and captured, whereas trajecto-
ries with v0 ≥ 7Γ/k escape. Employing a binary search algo-
rithm, one can obtain the MOT capture velocity numerically.

Figure 9 shows the result of such a calculation using the heuris-
tic equation (35) along with the prediction of a simple model
found in Ref. [40]. The two calculations agree rather well for
small s0 ≤ 1, but diverge by more than 10 % for larger s0 > 1.
This procedure has been extended to three-dimensional MOTs
with non-standard geometry and should be the subject a forth-
coming paper.

The pylcp documentation also includes an example OBE
calculation of the temperature of a three-dimensional, F = 0→
F′ = 1 magneto-optical trap. Using ∆/Γ = −2.5 and s0 = 1.25,
we simulated the trajectories of 96 atoms for a time t = 105/Γ.
By sampling the velocity distribution every 104/Γ for the latter
half of the solution, we find a T/TD = 3.9(1). The example
uses the default units described in Sec. 2.1.3 and takes the mass
of the atom simulated to be M̄ = 100, closest to 7Li which has
M̄ ≈ 46.

Extending beyond the F = 0 → F′ = 1 atom to larger F
and F′ in the one-dimensional case produces some intriguing
results. Consider Fig. 10(a) which shows the force on a F =

1 → F′ = 2 atom, with ground state Landé g-factor gF =

0 and excited state g-factor g′F = 1/F′, in a one-dimensional
MOT. While not directly applicable to a specific atom, this level
structure is a good model of an alkaline earth atom with nuclear
spin, where gF ≈ 0. Curiously, the restoring force from the +x̂-
going beam nearly completely disappears for v > 0 and vice
versa for the beam travelling in −x̂.

The loss of restoring force is due to non-cycling transitions
becoming resonant through Doppler shifts. Figure 10(b) and
Fig. 10(c) show the equilibrium populations and pumping rates
as a function of position for two different velocities [denoted
as the white horizontal lines in Fig. 10(a)]. The pumping rates
shown are the total pumping rates out of the mF = −1, 0,+1
states for both lasers, Ri,l =

∑
j Ri j,l. For v = 0, shown in

Fig. 10(b), the populations and pumping rates are symmetric
about x = 0, and the resulting spin expectation value 〈Fz〉 is
anti-symmetric. The anti-symmetry of 〈Fz〉 results from the
symmetric nature of the optical pumping. The pumping rates
out of mF = ±1 peak at positions given by x = ±~∆/µBB′. The
transitions out of mF = ±1 are driven by oppositely directed
lasers, resulting in a restoring force. There is a non-negligible
pumping rate out of mF = 0 driven by both lasers at larger
|x|, but the pumping is driven by the correct lasers to produce
a restoring force. For v = 5Γ/k, however, the optical pump-
ing symmetry is lost, as shown in Fig. 10(c). The pumping
rates out of mF = ±1 peak at x = ±~∆/µBB′ − kv, shifting the
peaks away from the origin. By itself, the shift is not sufficient
to eliminate the restoring force; however, the transitions out of
mF = 0 are also shifted. The resonant location of the transition
out of mF = 0 by the −x̂-going laser overlaps with that of the
transition out of mF = −1 from the +x̂-going laser. Rather than
cycling between mF = −1 → m′F = −2, the atoms are pumped
into mF = 1, where they stop scattering photons and conse-
quently experience no force. Repeating the force calculation
for progressively larger values of F, the effect of non-cycling
transitions becomes more drastic, with the force cutting off in-
creasingly sharply around v = 0.

The force profiles in Fig. 10(a) still permit stable MOT op-
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eration in equilibrium. However, in MOTs that operate near
the recoil limit, individual atoms may not be optically pumped
appropriately as they traverse the MOT, leading to rapid atom
loss. The problem of non-cycling transitions being Doppler
shifted into resonance and destroying cycling is a well known
in narrow-line MOTs for alkaline earth atoms [41]. For this rea-
son, narrow-line MOTs of 87Sr, with F = 9/2, require a mixing
laser to randomize population amongst the ground states of the
atom in order to maintain optical cycling [41].

Finally, we have reproduced the calculation of Ref. [42] of
a recoil-limited MOT. Using the rate equations with random
scattering and the parameters of 88Sr, we simulate the narrow-
line MOT formed on the 1S0 →

3P1 transition for t = 50 ms
(≈ 2400/Γ). The resulting simulated images of the MOT with
N = 1024 atoms are shown in Fig. 11. One of the most inter-
esting features of narrow-line MOTs is that they sag under the
effect of gravity. The vertical position and shape are determined
by the position at which the Zeeman shift compensates for the
laser detuning, denoted by the red, dashed ellipses in Fig. 11.
One effect included in our simulations that was not discussed in
Ref. [42] is atom loss. With such a large recoil velocity, a few
properly directed photon recoils is enough to cause atoms to
pass through the region of maximal force and be lost. We find
that, for almost all detunings explored, we lose roughly 3 % of
the atoms during the simulation, corresponding to a loss rate of
0.8(2) s−1, consistent with experimental results [41, 43–45].

Other MOT examples in the documentation include calcula-
tions of MOT damping forces and trapping frequencies (along
with comparison to analytic formulas), the forces for MOTs
operating on both D1 and D2 lines of alkali atoms [46], the
forces for the variety of different type-I and type-II MOTs con-
sidered in Ref. [33], and the forces in the two-color CaF MOT
of Ref. [47].

3.4. Bi-chromatic forces

While all the prior examples relied solely on spontaneous
emission, pylcp can also calculate forces due to stimulated
emission. A common setup for stimulated optical forces is the
bi-chromatic force, which involves creating counterpropogating
π pulse trains that transfer the atom to the excited state from one
direction and stimulate emission into the ground state from the
opposite direction. This stimulated optical force was examined
theoretically and demonstrated experimentally in Ref. [48]. In
Ref. [48], the pulses were made by shining two frequencies of
light from both directions, each frequency detuned by ±∆ from
the excited state. The phases between all four frequencies must
be well established to ensure the proper direction of stimulated
emission. Fig. 12 shows the calculation of the force for a two-
level atom in this laser arrangement using pylcp. For each
intensity, the force exceeds the spontaneous force limit of ~kΓ,
and has a host of curious features including Doppleron reso-
nances. The bi-chromatic force simulations in pylcp could eas-
ily be extended to more complicated systems such as real atoms
or molecules, allowing examination of bi-chromatic force oper-
ation on non-cycling transitions.

4. Conclusion

We have presented a software package that integrates a set
of lasers, a magnetic field, and an atomic or molecular Hamil-
tonian to accurately simulate laser cooling physics by auto-
matically generating the optical Bloch equations or rate equa-
tions. In this paper, we have demonstrated a host of useful
computations previously documented in the literature, includ-
ing Doppler and sub-Doppler cooling, capture of atoms and fi-
nal equilibrium temperature of a MOT, limitations of trapping
when additional level structure is added, and even recoil-limited
MOTs such as 1S0 →

3P1 MOTs for Sr. We also demonstrated
phenomena that rely on time dependence of the applied fields,
including adiabatic rapid passage and stimulated Raman adia-
batic passage. Finally, our examples also include forces that
arise from coherent phenomena, like the bi-chromatic force.

We have begun to deploy pylcp to understand the prop-
erties of grating MOTs [49–52] with complicated level struc-
ture. These MOTs have quite peculiar properties, including
a general spin polarization, asymmetric damping forces lead-
ing to asymmetric temperatures, and equilibrium trap positions
that differ from the magnetic field zero. Indeed, they also ap-
pear to be sensitive to the internal level structure of the atom.
For example, whereas a 88Sr grating MOT was realized re-
cently on an F = 0 → F′ = 1 transition, a 87Sr atom with
F = 9/2 → F′ = 11/2 transition was not realized in the same
apparatus [52]. Studies are currently underway to determine
whether a similar phenomenon as that in Fig. 10 are responsi-
ble for this failure in a grating MOT geometry.

While versatile, pylcp has some limitations that may be al-
leviated in a future version. First, our code does not include
the possibility of static electric fields that can shift states within
a manifold. Second, our governing equations are only valid
in the single-atom limit, where we neglect secondary photon
scattering and attenuation of a laser due to absorption. These
effects are known to limit the achievable density and temper-
ature in a MOT [53–55]. Thus, pylcp is only valid in the
low-density limit, which makes it less valuable in simulating
magneto-optical traps and molasses that are typically used on
quantum degenerate gas experiments. Nevertheless, we antic-
ipate that pylcp is sufficiently functional to begin analyzing
novel forms of laser cooling and designing efficient, miniatur-
ized systems for laser cooling.
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Figure 10: Anomalous forces in a F = 1 → F′ = 2 MOT with gF = 0 and
g′F = 1/F′. (a) Force f vs. position x and velocity v for ∆/Γ = −4 and s0 = 5.
(b) Equilibrium populations Neq (solid) and pumping rates Ri,l from ground
state mF = −1, 0, 1 (blue, orange, green, respectively) by the +x̂ directed laser
(dashed) and the −x̂ directed laser (dash-dotted) along the horizontal solid line
in (a). (c) Same as (b), but along the horizontal dashed line in (a). (d) Level
diagram for v = 0 and x/(µBB′/~Γ) = −2 with laser configuration with polar-
ization below. Diagonal arrows indicate pumping rates, with width and trans-
parency indicating relative strength. (e) Same as (d), but with v/(Γ/k) = 4.5
and x/(µBB′/~Γ) = −6 and Doppler shifts shown.
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Figure 11: Simulated MOT images of the narrow line 88Sr MOT formed on the 1S0 →
3P1 transition for various detunings ∆ and s0 = 25. Gravity is in the −ẑ

direction. The red, dashed ellipses denote the spatial location where the beam detuning matches the Zeeman shift. This figure should be compared to Ref. [42].
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Figure 12: Force f vs. velocity v for a two-level atom in an intense bi-
chromatic standing wave for ∆/Γ = 39. The intensities are Ω = 39Γ (left),
Ω = 43Γ (middle), and Ω = 47Γ (right), as in Fig. 1 of Ref. [48].
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