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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

This paper quantifies machining process inventories based on commonly used techniques in various stages of the detailed design process. We
investigate variabilities in process inventories between these techniques and their relation to manufacturing process parameters, which are required
for generating machine-level instructions. We also benchmark these process inventory modeling techniques against experimental measurements.
We then showcase potential issues of using available process models without properly accounting for product and process differences. Our
results caution practitioners against basing their environmental analyses on data collected prior to detailed process planning. We conclude that
accurate quantification of machining process inventories requires combining accurate simulation-based models with data-driven estimates for
model parameters.
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1. Introduction

Product design activities fix a significant portion of the life-
cycle environmental impact of products [3, 8]. Design processes
also heavily influence environmental impacts related to manu-
facturing, as detailed design fix part characteristics (i.e., ma-
terials, geometry) and manufacturing process definitions. Con-
sequently, quantifying manufacturing-phase impacts at the de-
tailed design stage can help designers and engineers to proac-
tively optimize part characteristics and process parameters from
an environmental sustainability perspective.

However, estimating manufacturing-phase impacts during
the design stage is challenging due to limited availability of
downstream lifecycle information [15]. Such information gaps
can lead to uncertainties for evaluating the environmental ben-
efits of design changes [9]. Our previous work began to address
these challenges. Specifically, we developed a standards-based
workflow [6] that aimed to quantify environmental performance
indicators at the detailed design stage. Our workflow links para-
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metric computer-aided design (CAD) models to unit process
lifecycle inventories (LCIs). This paper extends our previous
work by estimating variabilities in process LCIs resulting from
incomplete knowledge of design and manufacturing process pa-
rameters. Specifically, we leverage a unit manufacturing pro-
cess (UMP) model for machining processes. We then com-
pare the process LCIs for machining a reference test part via
a computer-aided manufacturing (CAM) software-based simu-
lation against experimentally measured values for energy con-
sumption. Our results shed light on the magnitude of uncertain-
ties for estimating process inventories at various stages of the
detailed design process.

2. Background

The basis of this work is the UMP modeling technique de-
fined in ASTM E3012-20 [1]. UMP instance models provide
the necessary digital definitions to fully characterize manufac-
turing processes. These definitions include assumptions present
in the defined model, i.e., text-based descriptions or mathemat-
ical formulations, the process model’s bounds of utility, and all
model parameters formally characterized and codified1. ASTM
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Fig. 1. Overview of the methodology for estimating process LCIs. Results from the UPLCI model constructed prior to estimating a detailed machining plan, was
compared with results from the UMP instance model constructed with CAD/CAM data, and experimental results.

E3012-20 was designed to handle environmental sustainability
perspectives. The standard aims to drive manufacturing-based
LCI data in more consistent and robust ways [7].

Estimating resource consumption in manufacturing pro-
cesses during detailed design and process planning are impor-
tant steps for reducing manufacturing-related impacts [8, 10].
The CO2PE! unit process lifecycle inventory (UPLCI) frame-
work [17] was among the first research efforts that focused on
defining a consistent methodology for parametric estimation of
LCIs for UMPs based on their process parameters. CO2PE is
an LCA-oriented methodology in which process LCI is col-
lected in two different levels of detail, a screening approach and
an in-depth approach. The UPLCI framework details a formal-
ized process for collecting, documenting, and providing LCIs
for various UMPs. Under the UPLCI framework, researchers
have developed UMP models for 31 unit processes, including
material reducing processes such as milling, drilling, boring,
turning, and grinding [16].

This paper specifically focuses on the UPLCI milling model,
originally defined in Kalla et al. [13]. The UPLCI milling model
uses a combination of physics-based first principle estimates
and empirical data measurements applicable to a variety of ma-
terials and machine tools. However, if a specific machine tool
is specified, the assumptions made in the UPLCI milling model
can lead to significant errors in estimating milling energy con-
sumption [14]. Krogshave et al. [14] discuss a method for con-
structing a machine-specific UPLCI model that accounts for un-
certainties in machine, tool, and workpiece specifications.

3. Methodology

Fig. 1 overviews our methodology. We provide details for
each step below in the forthcoming subsections.

1. Defining a reference test part: We establish parameters
for the test run(s), including information about design and
process plans. Describing the setup allows others to repli-
cate or adapt the setup for analyzing other installations.

2. Defining specifications for the process and machine
tool(s): We define all specifications of machine tool(s) to

produce the part. We also record information on (i) the in-
dividual operations to produce the parts, (ii) tools used for
machining the part’s features, and (iii) the bounds for the
process parameters for each feature.

3. Estimating LCI via UPLCI model: We estimate the LCI
for producing parts using the UPLCI model defined in
Krogshave et al. [14]. The UPLCI model is constructed
before creating a detailed machining plan and uses ap-
proximate data on tool paths and process parameters. We
then estimate machine-specific adjustment factors for the
UPLCI model that quantify the accuracy of the LCI results
for milling, idle, and basic energy consumption.

4. Predicting LCI results through UMP reference model
A detailed simulation of the manufacturing process plans
via CAD/CAM software estimates LCI for producing the
part. As shown in Fig. 1, we first instantiate a UMP milling
model via CAM data and the E3012 reference model.
Next, LCI results are used to estimate machine-specific
adjustment factors for the various energy consumption
modes of the machine tool.

5. Experimentally measuring LCI: We build the reference
part using the process parameters bounds and the machine
tool identified in Step 2. We then experimentally measure
the LCI for building the reference part.

6. Comparing the results: We benchmark the results from
the UPLCI model and the UMP instance model against ex-
perimental results. We interpret these comparisons to gain
insight on the variabilities in the LCI resulting from the
lack of accurate product and process information.

3.1. Defining a reference test part

Figure 2 shows the reference test part used for developing
the UPLCI model. We leverage a reference test part used in
previous studies [2, 11], which adapted the test part2 from a
Japanese Standards Association (JSA) standard [12]. Part fea-
tures are machined in the following order: face milling (F1),

2 The geometry for the reference test part used in our paper can be down-
loaded from this link: https://tinyurl.com/jsapart.
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the necessary digital definitions to fully characterize manufac-
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the design stage is challenging due to limited availability of
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can lead to uncertainties for evaluating the environmental ben-
efits of design changes [9]. Our previous work began to address
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Fig. 1. Overview of the methodology for estimating process LCIs. Results from the UPLCI model constructed prior to estimating a detailed machining plan, was
compared with results from the UMP instance model constructed with CAD/CAM data, and experimental results.

E3012-20 was designed to handle environmental sustainability
perspectives. The standard aims to drive manufacturing-based
LCI data in more consistent and robust ways [7].

Estimating resource consumption in manufacturing pro-
cesses during detailed design and process planning are impor-
tant steps for reducing manufacturing-related impacts [8, 10].
The CO2PE! unit process lifecycle inventory (UPLCI) frame-
work [17] was among the first research efforts that focused on
defining a consistent methodology for parametric estimation of
LCIs for UMPs based on their process parameters. CO2PE is
an LCA-oriented methodology in which process LCI is col-
lected in two different levels of detail, a screening approach and
an in-depth approach. The UPLCI framework details a formal-
ized process for collecting, documenting, and providing LCIs
for various UMPs. Under the UPLCI framework, researchers
have developed UMP models for 31 unit processes, including
material reducing processes such as milling, drilling, boring,
turning, and grinding [16].

This paper specifically focuses on the UPLCI milling model,
originally defined in Kalla et al. [13]. The UPLCI milling model
uses a combination of physics-based first principle estimates
and empirical data measurements applicable to a variety of ma-
terials and machine tools. However, if a specific machine tool
is specified, the assumptions made in the UPLCI milling model
can lead to significant errors in estimating milling energy con-
sumption [14]. Krogshave et al. [14] discuss a method for con-
structing a machine-specific UPLCI model that accounts for un-
certainties in machine, tool, and workpiece specifications.

3. Methodology

Fig. 1 overviews our methodology. We provide details for
each step below in the forthcoming subsections.

1. Defining a reference test part: We establish parameters
for the test run(s), including information about design and
process plans. Describing the setup allows others to repli-
cate or adapt the setup for analyzing other installations.

2. Defining specifications for the process and machine
tool(s): We define all specifications of machine tool(s) to

produce the part. We also record information on (i) the in-
dividual operations to produce the parts, (ii) tools used for
machining the part’s features, and (iii) the bounds for the
process parameters for each feature.

3. Estimating LCI via UPLCI model: We estimate the LCI
for producing parts using the UPLCI model defined in
Krogshave et al. [14]. The UPLCI model is constructed
before creating a detailed machining plan and uses ap-
proximate data on tool paths and process parameters. We
then estimate machine-specific adjustment factors for the
UPLCI model that quantify the accuracy of the LCI results
for milling, idle, and basic energy consumption.

4. Predicting LCI results through UMP reference model
A detailed simulation of the manufacturing process plans
via CAD/CAM software estimates LCI for producing the
part. As shown in Fig. 1, we first instantiate a UMP milling
model via CAM data and the E3012 reference model.
Next, LCI results are used to estimate machine-specific
adjustment factors for the various energy consumption
modes of the machine tool.

5. Experimentally measuring LCI: We build the reference
part using the process parameters bounds and the machine
tool identified in Step 2. We then experimentally measure
the LCI for building the reference part.

6. Comparing the results: We benchmark the results from
the UPLCI model and the UMP instance model against ex-
perimental results. We interpret these comparisons to gain
insight on the variabilities in the LCI resulting from the
lack of accurate product and process information.

3.1. Defining a reference test part

Figure 2 shows the reference test part used for developing
the UPLCI model. We leverage a reference test part used in
previous studies [2, 11], which adapted the test part2 from a
Japanese Standards Association (JSA) standard [12]. Part fea-
tures are machined in the following order: face milling (F1),

2 The geometry for the reference test part used in our paper can be down-
loaded from this link: https://tinyurl.com/jsapart.
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Fig. 2. Reference test part used. Adapted from Behrendt et al. [2].

three large grooves and three small grooves (F2), three pock-
ets oriented along the X-axis, Y-axis, and 45◦ (F3), trochoidal
groove (F4), and six holes (F5).

We excluded the drilled features (F5) from our study to re-
strict the focus to milling operations. Results from machining
the trochoidal groove (F4) are not presented as it was challeng-
ing to assess the time for active cutting in our experimental runs.
We machined the reference test part using Aluminum 6082 as-
suming a specific cutting energy (SCE) of 0.7 J

mm3 [13].

3.2. Defining specifications for the process and machine tool

We machined the reference test part on a Chevalier QP2040-
L 3-axis vertical milling machine tool3. The machine included
a control panel, an automatic tool changer, and a cutting fluid
pump. The machine tool specifications defined to compute re-
sults using the UPLCI model [13] included the following.

• We estimated the basic power consumption as 3.75 kW.
We based this estimate on the assumption that the ba-
sic power consumption was 25% of the maximum power
consumption of the machine tool (15 kW).
• We estimated the idle power consumption as 9.67 kW.

We determined this value by summing the following:
◦ Power demand from X-,Y- & Z- axis motors = 1

3 ·
(2.98 + 2.98 + 4.03) = 3.33 kW
◦ 50% of rated power consumption from the spindle

motor = 1
3 · 11.19 = 3.73 kW

◦ Rated power demand from fluid pump = 0.75 kW

Table 1 details the tools used for machining each feature on
the reference test part. As shown, face milling operations were
performed by a 50 mm face mill with 5 inserts. End-milling
operations were performed by three different end mills (6, 8
and 10 mm) with 4 inserts.

After consulting with our workshop’s technician, we chose
process specifications on the Chevalier QP2040-L. Table 2 de-
tails the bounds for the process parameters based on the ma-
chine tool capabilities and the part requirements. We employ

3 Machine specifications are foudn at https://tinyurl.com/chevalierQP2040-L.

Table 1. Specifications for the tools used for machining the reference test parts.

Tool Diameter [mm] Teeth
Face mill FM 50 5
End mill EM1 10 4

EM2 8 4
EM3 6 4
EM4 4 4

a safety distance of 1 mm and a rapid feed rate of 15000 mm
min .

We clamped the part with a stationary parallel holding vice. We
estimated the time for loading and unloading the part as 19.6
seconds [13]. We assumed that all workpieces were manually
handled. The loading process included opening/closing the ma-
chine door and clamping the workpiece. Unloading included
opening the door, cleaning, and unclamping the workpiece.

Experience UPLCI practitioners might use more accurate
power estimates. However, we use specifications from Kalla et
al. [13] to study the impact of generic estimates.

3.3. Estimating LCI via UPLCI model

Our previous work [14] forms the basis for estimating the
LCI for the reference test part. We developed a machine-
specific UPLCI model that improved the prediction accuracy
of the original UPLCI model. In the current work, we adopt a
similar procedure for estimating the energy consumption. We
model machine-specific energy consumption as given in Eq. 1.

Em−uplci
total = Kbasic · Euplci

basic + Kidle · Euplci
idle +∑

o∈O
Kmilling,o · Euplci

milling,o
(1)

Eq. 2 estimates the mean value for the adjustment factors in Eq.
1. These factors quantify the accuracy of the model in estimat-
ing energy consumption for the milling, idle, and basic modes.

K∗ =

N∑
i=1

Ereal
∗,i

Euplci
∗,i

N
(2)

Em−uplci
total represents the total energy consumption estimated

using the machine-specific UPLCI model. Euplci
∗ represents the

energy consumption in mode “∗” estimated using the UPLCI
model- Euplci

milling,o represents the energy consumption in milling
mode for operation o estimated using the UPLCI model. N is
the number of experimental runs. Ereal

∗,i is the measured energy
consumption in mode ∗ for experimental run i. K∗ refers to the
mean value of machine-specific adjustment factor for energy
consumption in mode ∗. Kmilling,o represents the mean value of
machine-specific adjustment factor for energy consumption in

3
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estimated the time for loading and unloading the part as 19.6
seconds [13]. We assumed that all workpieces were manually
handled. The loading process included opening/closing the ma-
chine door and clamping the workpiece. Unloading included
opening the door, cleaning, and unclamping the workpiece.

Experience UPLCI practitioners might use more accurate
power estimates. However, we use specifications from Kalla et
al. [13] to study the impact of generic estimates.

3.3. Estimating LCI via UPLCI model

Our previous work [14] forms the basis for estimating the
LCI for the reference test part. We developed a machine-
specific UPLCI model that improved the prediction accuracy
of the original UPLCI model. In the current work, we adopt a
similar procedure for estimating the energy consumption. We
model machine-specific energy consumption as given in Eq. 1.
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Table 2. Process parameters used for milling various features in the reference test part on the Chevalier QP2040-L milling machine. The tool listed in parenthesis
for a each operation is specified in Tbl. 1. The values shown for the feed rate and spindle speed represent the bounds (Low–High) for these parameters.

Face milling Groove Pocket Trochoidal milling
Depth of cut [mm] 1,2,3 (FM) 6 (EM3), 10 (EM1) 6 (EM3) 6 (EM2)
Feed Rate [mm/min] 1000–1210 (FM) 300–605 (EM3), 600–1089 (EM1) 300–363 (EM3) 500–605 (EM2)
Spindle speed [RPM] 2200–2420 (FM) 3500–5500 (EM3), 3500–5000 (EM1) 5000–5500 (EM3) 4000–4400 (EM2)

Fig. 3. Routing plan for the reference test part.

milling mode for operation o. We estimate the adjustment fac-
tors for the UPLCI model based on approximate process plans,
i.e., without including information on specific tool paths.

Figure 3 shows the milling routing for the reference test part
used in estimating energy consumption for the UPLCI model.
We estimated the length of cut prior to setting up the numeri-
cal control (NC) code based on feature geometry and available
tools (Tbl. 1). We calculated the length of cut per feature as the
sum of the linear length of cut, the extended length of cut [13],
and the circular length of cut. The overall length of cut (exclud-
ing trochoidal milling) is 2114 mm. We calculated total aircut
distance between features as 808 mm. We found that overtravel
distance from the assumed safety distance and accounts for 603
mm for all operations. We estimate the distance per tool change
as 1088 mm, or 4353 mm for all four tool changes.

3.4. Predicting LCI results through UMP instance model

Our previous work [6] provides a workflow for generating
LCI data from NC code through a UMP instance model. In this
work, we use the same workflow to estimate LCI outputs. The
workflow includes an NC code parser that computes the volume
removal rate, active cutting time, rapid travel time, and other
machining metrics per each instructional line. In doing so, we
estimate machining times assuming ideal conditions, e.g., with-
out considering operator overrides and motor-based uncertain-
ties. We expect that the time evaluations (both from rapid and
cutting movements) will underestimate real-world machining.

For predicting energy consumption, we used the same es-
timates as described in Sec. 3.2, including basic power (3.75
kW), loading/unloading time (19.6 sec), tooling information
(Tbl. 1), and rapid feed rate (15000 mm

min ). We isolate individ-
ual machining features by segmenting the NC code. We then
evaluate separate times and energy consumption per segment.

To compare against the experimental results [14], we pro-
duced variations of the NC code for each scenario in Tbl. 2. For
LCI results from the UMP instance model, the mean values for
the adjustment factors were also estimated using Eq. 2, wherein
Euplci
∗,i is replaced by the corresponding energy consumption val-

ues estimated from a UMP simulation.

3.5. Experimentally measuring energy consumption

We measured the energy consumed for machining the test
part to provide a baseline for the two estimation approaches.
We used an SCT013-000 hall effect current sensor to measure
apparent power consumption at the main supply line. As the
machine tool uses 3-phase AC power, apparent power consump-
tion was computed as the product of the root mean square value
of the measured current (400 samples per cycle) and a fixed
supply voltage of 230 V. The current measurement was made
on a single phase and the system was assumed to be well bal-
anced. The sensor has a measurement range of 0-100 A and an
output range of 0-50 mA with a non-linearity of +/- 3 %. The
sensor’s measurement uncertainty was ± 8.5 % in the measure-
ment range of 0-100 A4. An ADXL 345 3-axis accelerometer
was attached to the bottom of the workpiece to identify the time
periods during which the cutting tool contacted the workpiece.
We used an Arduino Duo to process the sensor data and out-
putted them to a laptop computer. Krogshave et al. [14] provide
more detail for this experimental procedure.

We machined 8 reference test parts (RP1-8) with vary-
ing process parameters detailed in Tbl. 2. We used 4 combi-
nations of spindle speed and feed rates (low-low, high-high,
low-high, and high-low). Thus, two pairs of parts (RP1&RP5,
RP2&RP6...) were machined with identical process parameters.

3.6. Comparing machine-specific adjustment factors

We computed the machine-specific adjustment factors for
the UPLCI model and the UMP instance model using the ex-
perimental measurements for the reference test part (see by Eq.
2). The resulting values provide insight into the uncertainties
in using the above models to estimate LCI at various stages

4 For Yhdc Current Transformer info, refer to https://tinyurl.com/yhdc100.
4
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Fig. 4. Mean energy consumption for milling, idle, and basic modes for the
experimental measurements, UPLCI model and the UMP simulation.
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Fig. 5. Comparison of milling, idle, and basic times for the experimental mea-
surements, UMP simulation, and the UPLCI model. Table 2 give the low (L)
and high (H) values for spindle speeds and feed rates.

of the detailed design step. For example, a K∗ value of 1 indi-
cates that the estimations are identical to nominal values from
experimental measurements. A K∗ value less than 1 indicates
that the model overestimated energy consumption for that spe-
cific mode. We also compared times in milling, idle, and basic
modes estimated using the machine-specific UPLCI model and
the UMP instance model against experimental results.

4. Results

Figure 4 shows the mean energy consumption for milling,
idle, and basic energy from the experimental measurements,
UPLCI model, and UMP simulation. Both the UPLCI model
and the UMP simulation significantly overestimated idle and
basic energy consumption. In both cases, the idle energy con-
sumption was overestimated by 1500 % when compared to
experimental measurements. Similarly, basic energy consump-
tion was overestimated by more than 300 %. The UMP Simu-
lation overestimated milling energy by 72 % and the UPLCI

Table 3. Mean values of adjustment factors for machining the reference test part
on the Chevalier QP2040-L. The adjustment factors are computed using Eq. 2

Milling operation (o) K
UPLCI

milling,o K
UMP

milling,o

Face milling 1.01 0.52

Groove milling 0.633 1.289

Pocketing 0.912 0.324

Mode (∗) K
UPLCI
∗ K

UMP
∗

Idle 0.0623 0.622

Basic 0.2347 0.2307

Total 0.1211 0.1240

model underestimated the same by 18.54 %. Although both
approaches estimated milling energy consumption more accu-
rately, active cutting only accounted for 10.75 % of the total
energy consumption for machining the reference test part.

To investigate the sources of these errors, we compared
milling, idle, and basic times, as shown in Fig. 5. As shown, the
total time for machining the reference test part (basic time) was
underestimated by the UMP simulation and the UPLCI model
for all combinations of process parameter variations. The aver-
age error in basic time (across all four cases) was 0.234 min-
utes and 0.81 minutes for the UMP simulation and the UPLCI
model, respectively. The basic time was estimated as the sum
of the idle time and a constant time of 19.6 seconds for load-
ing/unloading the part and cleaning the machine. Therefore, the
average error in estimating the idle time was the same as that for
the basic time. On average, the UMP simulation overestimated
the milling time by 0.497 minutes while the UPLCI model un-
derestimated the same by 0.532 minutes.

Table 3 details the mean value of the adjustment factors for
the UMP simulation and the UPLCI model. Results show the
UMP simulation overestimated energy consumption for face
milling and pocketing, while it underestimated energy con-
sumption for groove milling. In general, the UPLCI model was
more accurate in estimating milling energy consumption than
the UMP simulation. The two approaches have nearly similar
values of adjustment factors for idle and basic modes. This indi-
cates the greater accuracy of the UMP simulation in estimating
idle and basic time as compared to the UPLCI model. However,
it did not result in significantly better accuracy for energy esti-
mation. The same trend is seen for total energy consumption.

5. Discussions

Results showed the UPLCI model significantly underesti-
mated the time in basic and idle mode. This resulted from the
facts that (i) the achieved feed rates in the experiment were
lower than the set feed rates in the UPLCI model, and (ii) the
model considerably simplified the tool path due to lack of infor-
mation on routing features such as tool ramping and entry/exit
operations for complex geometric features. The method for es-
timating idle and basic power consumption in the UPLCI model

5
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of the detailed design step. For example, a K∗ value of 1 indi-
cates that the estimations are identical to nominal values from
experimental measurements. A K∗ value less than 1 indicates
that the model overestimated energy consumption for that spe-
cific mode. We also compared times in milling, idle, and basic
modes estimated using the machine-specific UPLCI model and
the UMP instance model against experimental results.

4. Results

Figure 4 shows the mean energy consumption for milling,
idle, and basic energy from the experimental measurements,
UPLCI model, and UMP simulation. Both the UPLCI model
and the UMP simulation significantly overestimated idle and
basic energy consumption. In both cases, the idle energy con-
sumption was overestimated by 1500 % when compared to
experimental measurements. Similarly, basic energy consump-
tion was overestimated by more than 300 %. The UMP Simu-
lation overestimated milling energy by 72 % and the UPLCI

Table 3. Mean values of adjustment factors for machining the reference test part
on the Chevalier QP2040-L. The adjustment factors are computed using Eq. 2

Milling operation (o) K
UPLCI

milling,o K
UMP

milling,o

Face milling 1.01 0.52

Groove milling 0.633 1.289

Pocketing 0.912 0.324

Mode (∗) K
UPLCI
∗ K

UMP
∗

Idle 0.0623 0.622

Basic 0.2347 0.2307

Total 0.1211 0.1240

model underestimated the same by 18.54 %. Although both
approaches estimated milling energy consumption more accu-
rately, active cutting only accounted for 10.75 % of the total
energy consumption for machining the reference test part.

To investigate the sources of these errors, we compared
milling, idle, and basic times, as shown in Fig. 5. As shown, the
total time for machining the reference test part (basic time) was
underestimated by the UMP simulation and the UPLCI model
for all combinations of process parameter variations. The aver-
age error in basic time (across all four cases) was 0.234 min-
utes and 0.81 minutes for the UMP simulation and the UPLCI
model, respectively. The basic time was estimated as the sum
of the idle time and a constant time of 19.6 seconds for load-
ing/unloading the part and cleaning the machine. Therefore, the
average error in estimating the idle time was the same as that for
the basic time. On average, the UMP simulation overestimated
the milling time by 0.497 minutes while the UPLCI model un-
derestimated the same by 0.532 minutes.

Table 3 details the mean value of the adjustment factors for
the UMP simulation and the UPLCI model. Results show the
UMP simulation overestimated energy consumption for face
milling and pocketing, while it underestimated energy con-
sumption for groove milling. In general, the UPLCI model was
more accurate in estimating milling energy consumption than
the UMP simulation. The two approaches have nearly similar
values of adjustment factors for idle and basic modes. This indi-
cates the greater accuracy of the UMP simulation in estimating
idle and basic time as compared to the UPLCI model. However,
it did not result in significantly better accuracy for energy esti-
mation. The same trend is seen for total energy consumption.

5. Discussions

Results showed the UPLCI model significantly underesti-
mated the time in basic and idle mode. This resulted from the
facts that (i) the achieved feed rates in the experiment were
lower than the set feed rates in the UPLCI model, and (ii) the
model considerably simplified the tool path due to lack of infor-
mation on routing features such as tool ramping and entry/exit
operations for complex geometric features. The method for es-
timating idle and basic power consumption in the UPLCI model
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(see Section 3.2) resulted in these values being overestimated.
The idle and basic power estimated according to the UPLCI
model was 9.67 kW and 3.75 kW, respectively; experimental
results showed these values to be 0.57 kW and 0.832 kW. The
UMP instance model was more accurate than the UPLCI model
in estimating idle and basic time. However, the increased ac-
curacy in estimating these times was overshadowed by the fact
that the values for idle and basic power consumption input into
the model were identical to the UPLCI methodology. The ad-
justment factors computed for the UMP instance model in Tbl.
3 reflect this fact, as evidenced by being lower than the corre-
sponding factors for the UPLCI model.

Table 3 indicates that the UPLCI model was more accurate
than the UMP instance model for estimating milling energy
consumption. On investigation, we found that the cutting length
computed by the UMP simulation using the NC code included
portions of the toolpath, e.g., ramps and tool re-positioning, that
do not necessarily remove material. The UPLCI model classi-
fies such operations under the idle mode. In our experiments,
we used an 3-axis accelerometer (attached to the workpiece)
in combination with the current sensor to separate cutting and
non-cutting states. However, the NC parser used for the UMP
simulation does not model contact between the workpiece and
the tool. Our discussion points to the following.

• Discrepancies between experimental measurements, the
UPLCI model, and the UMP reference model with
UPLCI estimations, show that evaluating LCI data for
manufacturing processes remain a significant hurdle.
• Improving the accuracy of estimating LCI data requires

practitioners to combine simulation-based modeling with
data-driven estimation from experiments.

– For example, the UMP reference model predicts the
total accumulated time of the process much more
precisely compared with the UPLCI estimates.

– Machine-specific data for idle and basic power con-
sumption that are collected from experiments can
significantly improve the estimation for idle and ba-
sic energy for the UMP reference model.

• For the above techniques to be implemented at scale, the
following challenges need to be addressed.

– ASTM E3012-20 has not yet been implemented
at scale. Passing the right data to the appropriate
model requires its own architecture.

– Designers require tooling and process specifica-
tions early. This assumes the availability of histori-
cal data from the machine tools.

We will focus future research on improving LCI estimation
for life cycle assessments (LCAs). In previous work [5, 6],
we demonstrated how our CAD/CAM workflow can integrate
with an open-source LCA tookits. Relating LCA results to ma-
chining and design features based on real machine instructions
opens the door for improving the accuracy of sustainability
evaluations for machining processes.
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