
lable at ScienceDirect

Forensic Science International: Digital Investigation 38 (2021) 301264
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
Dataset construction challenges for digital forensics

Graeme Horsman a, *, James R. Lyle b

a Teesside University, United Kingdom
b National Institute of Standards and Technology, United States
a r t i c l e i n f o

Article history:
Received 15 March 2021
Received in revised form
14 July 2021
Accepted 14 July 2021
Available online xxx

Keywords:
Digital forensics
Datasets
Testing
Tool-testing
* Corresponding author.
E-mail address: graeme.horsman@googlemail.com

https://doi.org/10.1016/j.fsidi.2021.301264
2666-2817/© 2021 Published by Elsevier Ltd.
a b s t r a c t

As the digital forensic field develops, taking steps towards ensuring a level of reliability in the processes
implemented by its practitioners, emphasis on the need for effective testing has increased. In order to
test, test datasets are required, but creating these is not a straightforward task. A poorly constructed and
documented test dataset undermines any testing which has taken place using it, eroding the reliability of
any subsequent test results. In essence, given the time, effort and knowledge required to generate
datasets, the field must guide those carrying out this task to ensure that it is done right at the first
instance without wasting resources. Yet, there are currently few standards and best practices defined for
dataset creation in digital forensics. This work defines three categories of dataset which typically exist in
digital forensic - tool/process evaluation datasets, actions datasets and scenario-based datasets, where
the minimum requirements for their creation are outlined and discussed to support those creating them
and to help ensure that where datasets are created, they offer maximum value to the field.

© 2021 Published by Elsevier Ltd.
1. Introduction

It would be wrong to tread over already very worn ground and
to restate the words of those over the past 15 years who have
championed the need for knowledge and data sharing within the
digital forensics (DF) field (for those interested, see an example set
of works which include Bruschi et al., 2004; Biros et al., 2007;
Kahved�zi�c and Kechadi, 2009; Huang et al., 2010; Horsman et al.,
2014). Instead, this work will proceed straight to the point. The
sharing of discovered knowledge is one area where this discipline
must continue to improve, with attitudes towards community
sharing of knowledge beginning to change (Horsman, 2019). Of
particular need is the generation of appropriate ‘datasets’ for
communal and/or organisational use in relation to training,
method/tool evaluation and knowledge discovery and confirmation
(Garfinkel et al., 2009; Grajeda et al., 2017), and this area will
remain the focus of this work. Recent formalised pushes to enhance
the validation and verification of the tools and methods used in DF
investigations (Arshad et al., 2018; Horsman, 2019b; Nance et al.,
2019; Tulley, 2020) have arguably exposed the limited number of
resources in the form of appropriately designed datasets which can
support those in this field to carry out this task (Park, 2018). If the
(G. Horsman).
DF discipline is to increase its tool evaluation activities, dataset
generation is arguably pivotal to achieving this (Luciano et al.,
2018).

A dataset is defined ‘as a collection of related, discrete items that
have different meanings depending on the scenario and was uti-
lized for some kind of experiment or analysis’ by Grajeda et al.
(2017 p.95) with over 350 known datasets formally recorded (see
https://datasets.fbreitinger.de/datasets/ for a dataset reference re-
pository). Consideration should also be given to available datasets
which were not created for the purpose of testing in DF, but may
have gone on to be used in such a way (perhaps the best example
may be the ENRON email dataset). In the context of DF, datasets
typically are utilised in the following three areas (National Institute
of Standards and Technology, 2019).

1. For training: Datasets can be generated for the purpose of
training, both investigative training and tool-driven training.
Often datasets simulate mock scenarios in order to provide a
practitioner with the ‘experience’ of undertaking casework in
order to assess their ability to identify, examine and interpret
any actionable ‘mock-evidential’ information. Training datasets
offer value in the form of practitioner skills-development and
assessment.

2. Tool/process evaluation: Datasets can be designed to simulate or
facilitate the running of investigative procedures, process or
methodology in order to demonstrate compliance to a standard,

Delta:1_given name
Delta:1_surname
https://datasets.fbreitinger.de/datasets/
mailto:graeme.horsman@googlemail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301264&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301264
https://doi.org/10.1016/j.fsidi.2021.301264


G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
consistency of behaviour, or, to assess completeness and accu-
racy. Datasets designed for this purpose support wider field
initiatives related to quality assurance and management.
Perhaps the most difficult of the four contexts is the generation
of data designed to facilitate the evaluation of a DF tool or tool
function. Such datasets may also be referred to as tool valida-
tion/verification datasets, but due to the context-intricacies
associated with each term (discussed further in Section 2.2),
we opt for the term ‘tool/process evaluation’ to avoid any po-
tential terminology confusion.

3. Data exploration and reverse engineering (research & devel-
opment): These datasets attempt to correlate user interactions
with a piece of software or application to digital traces left
behind by these acts. As a result, these datasets provide a
resource for understanding how certain software/application
behaves on a device and to support a practitioner's interpreta-
tion of any digital traces left by usage.

Datasets for DF are an invaluable resource, supporting practice
development and improvement within the field, providing they are
appropriate for the purpose for which they were designed. The
need to create and share datasets is by no means a new concept
where the benefits are clear, however, the requirement to do this in
a fit-for-purpose way, is. Whilst sounding critical, it is arguably
naive to suggest that all efforts to create and share datasets are
beneficial, where substandard datasets can be detrimental to those
who use them and impart any form of reliance on the results of
their subsequent use. This is particularly concerning if poorly
constructed datasets are utlised for tool validation purposes. As a
relatively small field, DF does not possess the resources to waste via
the construction of datasets which offer little value - we need to get
it right in as many cases as possible. The field must critically assess
what form datasets must maintain if they are to have the greatest
value for their given purpose, and then encourage this format and
design. In essence, a minimum standard for the construction of
datasets is suggested as a means of ensuring that those who
dedicate time and effort to creating them, do so in an effective way.

In regard to the creation and sharing of datasets, practitioners
must be able to both use the knowledge contained in them, and
validate it if they are to serve a purpose for developing practices in
DF and the three contexts noted above. In order to facilitate this, the
contents of a dataset must be accurately and comprehensively
constructed and described, where this task is far from straight-
forward. Accurate construction involves determining the purpose
of the dataset, followed by identifying the type and structure of the
data it must contain in order to fulfill its purpose. This alone offers
little value if it isn't supplemented by an accompanying description
of the dataset.

Datasets which are not well described can only serve as infor-
mative in terms of value, offering little evaluative use. Taking a
critical view, it is difficult to ascertain the value of a dataset for an
evaluative context where there is no way to assess reliably what it
contains. Using the example of a shared dataset which contains a
set number of ‘evidential files’ to be identified and processed, if the
dataset lacks sufficient documentation describing said evidential
files, then those using it are unable to attribute any level of reli-
ability or meaning to any process they have used to investigate it of
inferences made about the files. Such datasets allow practitioners
to ‘take a look’ at the data, but the value of this process is low in
terms of training, development and validation. In essence, poorly
described datasets are unusable in many contexts where an anal-
ogy is drawn to a black-box testing system where the tester has no
knowledge of the inputs; in essentially, a broken system. This
problem is compounded by the fact that often, test datasets are
produced once and are not editable, emphasising the need to
2

ensure that contemporaneous documentation is maintained
throughout the dataset's production.

This work examines the challenges of dataset generation in DF
and offers an analysis of the requirements needed to ensure those
creating datasets do so in a fit-for-purpose way, bringing maximum
value to the DF field. Three dataset ‘types’ are identified and defined
- tool/process evaluation datasets, actions datasets and scenario-
based datasets, where the minimum requirements for their crea-
tion are outlined and discussed.
2. The purpose of datasets

Regardless as to which of the three purposes of datasets notes in
Section 1, their implementation is oftenwith the intention to ‘test’ a
process, either the practitioner within a training scenario, a tool or
methodology in regards to any claimed functionality or a hypoth-
esis in relation to a believed function of a piece of software or
application. Whilst the purpose of ‘testing’may seem at first glance
a very straightforward concept to define, in reality the ‘purpose’ is
often amultifaceted concept-driven largely by the domain inwhich
any testing resides. At a high-level, testing often sets out to estab-
lish whether something (the ‘tested entity’) performs in the way in
which it was intended to. In a simplified scenario, the test may
evaluate the performance of the tested entity objectively against a
specification of required performance (Meyer, 2008) - in essence,
did the thing tested dowhat it wasmeant to do? On completion, for
any test to be effective in its implementation, it must be able to
determine the difference between correct and incorrect behaviour.
If ambiguity exists as to the ‘correctness’ of performance, then is-
sues exist with regards to the test construction and/or imple-
mentation. Mili and Tchier (2015) state that the success of a test
depends on the quality of test data. If weaknesses exist in the
quality of any test dataset used in DF, then the reliability of any
results derived from its use is eroded.

Whilst it may seem a controversial question to ask, it is one
which needs addressing - why may a practitioner and/or their
organisation opt to test their investigatory processes and tools
using a dataset? There is no single answer to this, in fact multiple
motivations may exist.

1. Because they are told to test: Whilst it is argued that the value of
testing tools, processes and hypotheses is clear, it may not be
considered necessary by all those in the DF field. To explain
further, attitudes may exist which believe that the burden of
testing does not lie with the practitioner, but the vendor of the
tools they use, or the creator of the methodologies they imple-
ment. This is perhaps a controversial stance to take as frequently
vendors state within their end-user license agreement (EULA)
that the burden of testing lies with the user and errors may exist
(Horsman, 2018).

2. Because they believe they should: Those who recognize the
value of testing and the benefits it can bring with regards to
quality assurance and reliability may opt to test because they
believe they should test as part of their role.

3. To achieve accreditation: There are those who opt to test
because it is a requirement of an accreditation process, and
without documented test protocols accreditation cannot be
obtained. Whilst this is not a negative thing, it is important that
testing is properly developed and implemented within the spirit
inwhich it is designed. Token efforts to test can be detrimental if
they instill false confidence in the process tested.

4. To detect error & prevent error: Testing can be implemented in
order to detect and prevent errors from occurring in the inves-
tigatory process. As a product of this process, testers are able to



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
assess their trust in a process and confidence in its sustained
usage.

5. To confirm functionality: Thorough testing allows the func-
tionality of a process/tool to be verified, and to confirm under-
standing as to what is occurring when the process/tool is
implemented.

6. Risk mitigation: Testing is a form of risk mitigation, and there-
fore effective testing lowers the chance of critical errors going
undetected in the investigatory process.

7. Familiarity: In addition, running a set of test cases with known
results helps the tool user know what to expect from a tool and
not be surprised when the tool exhibits unexpected behavior.

The importance of robust datasets in DF for performance eval-
uation due to any one of the seven contexts noted above cannot be
overstated.

2.1. Existing literature

Where datasets in DF are discussed in DF literature, their
coverage is often as a supplementary presence to a core research
theme being addressed. In essence, any dataset which accompanies
a piece of research is often seen as supplementary in nature. The
problem this may create is that whilst the research itself may be
valid, it may be difficult to evaluate if the dataset is poor in terms of
construction, where details of the dataset ‘build process’ should be
considered equal in importance to the primary findings of the
research contribution. There is coverage of datasets for DF in aca-
demic literature, where to acknowledge but a few, datasets exist for
image/multimedia forensics (Dang-Nguyen et al., 2015; Al-Sanjary
et al., 2016; Shullani et al., 2017), Microsoft Windows registry files
(Park, 2018), botnets (Koroniotis et al., 2019), facial recognition (Al-
Kawaz et al., 2018) and age estimation (Anda et al., 2018). In
addition, Garfinkel's (2012) Digital Corpora offers a range of
scenario-based datasets. Yet there remains limited commentary on
dataset creation best practices, with Park (2018) offering one of the
only debates. Arguably one of the most prominent initiatives
currently in operation where dataset generation for testing occurs
lies with that of the National Institute of Standards and Technol-
ogy's Computer Forensics Tool Testing Program (CFTT), where it is
necessary to consider their practices here.

2.2. The National Institute of Standards and Technology approach -
‘a commentary’

The CFReDS (Computer Forensic Reference Data Sets) project at
National Institute of Standards and Technology's (NIST) is a re-
pository of digital storage device images. Investigators can use
CFReDS in several ways including validating the software tools used
in their investigations, equipment check out, training investigators,
and practice using forensic tools. Some images are produced by
NIST, often from the CFTT (tool testing) project, and some are
contributed by other organizations. The Computer Forensics Tool
Testing Program (CFTT) project at the National Institute of Stan-
dards and Technology's (NIST) (2020) The CFTT project posted its
first document for public comment, a specification for Disk Imaging
including requirements and test assertions in March 2001. CFTT
submitted the first forensic tool test report, Red Hat GNU fileutils
4.0.36 dd, based on the final version of the specification to the
National Institute of Justice for publication in August of 2002.

The CFTT project approached forensic tool testing with the
Conformance Testing Model, often used to certify that a product
conforms to some standard. The conformance testing model ver-
ifies that a product performs according to its specified standards.
For example, the Common Criteria for Information Technology
3

Security Evaluation follows the conformance testing model to
certify that security software meets formal security standards.
Because there were no published standards for forensic tools, CFTT
took on the task of writing specifications for the tool functions they
were tasked with testing. The tool specification included defini-
tions of the function to be tested, a list of requirements the tool
should meet, a list of test assertions to specify conformance to re-
quirements and a set of test cases to be run. CFTT also created
software to create test data, test data sets, software to evaluate test
case results and procedures to follow when executing test cases. A
formal test plan, test report and code reviewwere published for the
test support software used with the disk imaging tool tests. No
anomalies were found. Due to the limited resources available to
CFTT, later support tools were created and tested without produc-
tion of a formal test report.

Before CFTT creates test data sets, CFTT first needs a tool func-
tion specification and a test plan with test cases:

1. With the help of law enforcement representatives that advise
the CFTT project, a forensic tool function is identified for testing
along with a list of candidate software or hardware tools.

2. CFTT examines the selected tools and produces two lists of tool
features offered: core features that are offered by all tools and
optional features that are offered by some tools. For example, all
imaging tools can acquire an entire hard drive, but only some
tools allow imaging of a single partition (an optional feature). Of
course, as with any generalization there will be occasional ex-
ceptions that have to be handled.

3. For each feature a list of requirements is created to specify what
the feature is supposed to do.

4. A list of parameters that could impact tool behavior is created to
help specify test cases. These may be tool settings that didn't fit
as a tool feature or run time environment factors such as type of
file system to be examined.

5. Test cases are created by examination of test assertions and test
parameters to create test run scenarios that trigger a subset of
test assertions and test parameters. The test parameters and test
assertions guide specification of tool settings. The test assertions
specify the expected inputs and outputs of the test case. Addi-
tional test cases are created until all test assertions and test
parameters have been addressed.

6. If a test assertion cannot fail in a detectable way, then something
is wrong with the specification and needs to be corrected.

After we have a set of test-cases we are ready to create test data.
In fact, as we are writing test assertions, we should be developing a
plan for how each assertion can fail. Testing is all about getting a
tool to fail. The more unique opportunities a tool is given to fail, the
more confidence in the correctness of tool results we have when
used for a real investigation.

CFTT uses two data set creation approaches: static and ‘on-the-
fly’. The static data sets are created in such a way that it is conve-
nient to make a disk image of the data and then the disk image can
be imported into a forensic tool for examination. Creation of a test
data set is often a combination of scripts and custom tools. The on-
the-fly data sets are usually for some type of function that interacts
directly with a device. Each test case has a set of procedures for
preparing a device or test image for the test. In addition, there may
be a set of custom tools to help evaluate the result for both test data
creation approaches.

The on-the-fly testing usually follows this protocol:

1. Populate a device with test data designed to reveal anomalies.
Using custom tools to set-up the device.

2. Run the tool under test, possibly with a custom test harness.



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
3. Examine the results, using custom tools to help evaluate the
results. If the test case does not modify the device (e.g., hard
drive), the device can be reused for testing another tool. Pre-
cautions are taken to back up the device in case it is modified
during running the test case and needs to be restored.

Tool functions at CFTT that use the on-the-fly approach include
disk imaging, write blocking, forensic media preparation (drive
wiping) and mobile device testing. Procedures for setting up test
devices are posted on the CFTT web site along with a description of
notable features of the data setup. For example, for disk imaging
each sector of the device is given unique content that includes the
LBA address of the sector. This allows easy diagnoses of a common
issue of misplaced sectors if a tool places an imaged sector in the
wrong location in the image or places a given sector in the image
more than once.

Sometimes writing the procedures to follow were made chal-
lenging because an unusual condition would require additional
steps to finish the procedure. For example, when testing disk
wiping, for a tool that allows using the built-in security erase
command you need to ensure that (1) the disk drive supports the
security erase command and (2) the test computer BIOS does not
disable the security feature set.

The static test data sets are usually provided as a set of small disk
images for testing each tool function. The tool functions that use a
static data set are file carving for graphic and video files, Meta-data
based deleted file recovery and string searching.

For some test data sets additional tools need to be available to
evaluate the test results. For example, it is often suggested to hash
(MD5 or SHA-1) the result of deleted file carving or meta-data
based deleted file recovery to see if the file is correctly recovered.
However, this only gives a yes or no answer and does notmeasure if
the recovered file is a total failure or a near miss. Rather than use an
all or nothing measure it is more useful to measure the quality of
the recovered files. For file carving we used two measures. First a
visual evaluation to see if the returned file can be viewed. Second
an examination of the data returned to see how much of the
original file is returned, howmuch data is omitted and howmuch is
not from the original file. Both measures were often revealing of
important aspects of the tool that just one measure did not show.
For example, one tool for one graphic file format, the returned
result was not displayable, but an examination of the returned data
file revealed that the tool returned all the image except for the last
block of data.

For some data sets, no evaluation tools are needed. For example,
each string search test case has a list of the string instances that
should be returned. Evaluating each test case is just a matter of
comparing the list of expected hits to the actual hits returned. For
the string search test cases several test assertions are tested at the
same time. For example, the string “DireWolf” appears 15 times in
the test data set. Each instance of the target string is followed by a
unique ID number so that an examination of a hit context confirms
the actual instance returned. Some of the combined test assertions
that can be tested:

C Find a string in an active file for each of 7 file systems (FAT,
ExFat, NTFS, ext4, HFS þ ignore case, HFS þ case sensitive, &
APFS).

C Find a string in a deleted file for each of 7 file systems.
C Find a string in unallocated space.

In order to give opportunities for testing to fail we also include
the strings “WOLF” (all caps), “Wolf” (mixed case), “wolf” (all lower
4

case) and “WereWolf”. These strings support several searching test
assertions with enough close strings for likely errors:

C Search for “wolf” with match case might fail by hitting
“WOLF” or “Wolf” or “DireWolf.”

C Search for “Wolf” as a whole word might fail by returning
“WereWolf.”

For testing UNICODE (UTF-8, UTF-16-BE & UTF-16-LE) 43 string
instances are needed. CFTT also considered types of character sets
and decided to include Latin based character sets with diacritic
marks: Spanish, French, German, and Italian; A non-Latin character
set: Russian; a right-to-left presentation: Arabic; distinct Asian
character sets: Chinese, Korean, and Japanese Kana. There were
many other possibilities, but this covers most character set forms
likely to be found.

The general discussion in the forensic community about tool
testing needs to be careful about using the terms “validation” and
“verification” from software engineering. Forensic techniques
should be validated, i.e., shown to be fit for purpose. CFTT avoids
both terms and call what they do “tool testing” because there is a
subtle distinction between the two activities and what each activity
implies. Validation is a demonstration of fitness for purpose, but
testing is not necessarily an effective way to demonstrate this. For
validation you want to show that the algorithm you pick does what
you need to be done. If you are not careful you will just test that the
implementation is correct, but you also need to show that you have
picked the right algorithm. If I construct test sets of files and try
implementations of each algorithm, I might detect flawed imple-
mentations of an algorithm, but it is challenging to construct test
data to reveal “fitness for purpose.” Determination of an algo-
rithm's fitness depends on the properties wewant the algorithm to
possess not if some implementation is flawed or not.

For example, consider selecting an algorithm for detecting if a
digital object has changed (to verify image file integrity) there are
several candidates, e.g., CRC16, CRC32, MD4, MD5, SHA-1, SHA-2.
The CRC algorithms have been used for decades to check if a block
of data has been transmittedwithout an error and was used in early
imaging tools to verify image integrity. The CRC is fit for detecting
changes caused by random noise, however a malicious actor can
easily modify a file in such a way that the CRC does not change (it is
trivial to generate a hash collision). Some additional requirements
are needed for a hash algorithm to be fit for purpose:

C Can be computed quickly.
C Collision resistance, i.e., requires an unreasonable amount of

computation to find a hash collision.
C Original message cannot be recovered.
C Any change to the original brings about changes in the hash

output value.

CRC does not meet all these criteria, MD5 and SHA-1 were
considered to meet these criteria until hash collision production
algorithms were created. SHA-2 has been validated to meet these
requirements and doesn't need to be revalidated.

What CFTT does is not validation testing (fitness of purpose, i.e.,
building the right tool) but rather verification testing (is the tool
built right, doing what the tool maker intended). CFTT tests for
correct implementation because it is not always clear what the tool
should do. CFTT creates a Requirements Specification but considers
it as descriptive of what the available tools have implemented
rather than a prescriptive specification of what they should do.
Specifying what should be done needs to come from a broad



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
community consensus.
Some considerations for constructing the CFReDS data sets are

the following:

C It is often suggested that “real-world” data sets should be
used. This has several advantages:

C The data set is like what the forensic tool would encounter in
investigative use.

C The data set includes a large amount of noise, i.e., data that is
not relevant to the investigation, that the tool must show
that it can deal with.

C The actions of a computer user in the real-world are in a
random order and produce a variety of layouts so that the
data set may include a situation that would cause the tool to
fail.

C A “real-world” data set also has disadvantages:
C Data set ground truth is difficult to determine. The large

amount of noise in the data is one factor in the difficulty.
C Significant effort is required to obtain enough data sets so

that there is coverage of all features included in the test plan.
C Creating the data set takes significant effort.
C Executing the test plan is time consuming when invoking the

tool under test on several large image files.
C The data sets are intended for sharing over the internet and

large image files take significant time to download.
C Small data sets seem to be able to address the disadvantages.
C It is easy to create data sets with known ground truth.
C Data set can be focused on the features included in the test

plan.
C Not as much effort is required to create the data sets since

effort can be focused on creating the features needed for the
test plan.

C Small data sets take much less time for a tool to scan and
analyze.

C Small data sets are quicker to down load.

The above considerations are just a few of many. Using some
real-world data sets might reveal additional anomalies, but the
small ones that are in use have been effective at revealing signifi-
cant anomalies in many tools.

3. Types of test data

This work posits that in general, there are three types of dataset
in circulation for use in the field of DF - tool/process evaluation
datasets, actions datasets and scenario-based datasets (see Fig. 1).
Each dataset type maintains their own challenges in terms of
construction and documentation in order to be fit for the purpose
for which it is designed, where it is important to note that these
challenges must also be considered against the sheer volume of
resources and time required to create datasets. Whilst appropri-
ately constructed and content-rich datasets are of value to DF,
emphasis must be primarily placed upon the first criteria, where
inappropriately designed datasets offer little value to the field,
Fig. 1. Tool/process evaluation, actions d

5

regardless of their content. As a result, this work not only describes
the role of each of the three aforementioned dataset-types, but also
defines a minimum ‘construction standard’, to ensure that those
creating datasets do so in a way which offers maximum benefit to
those utilising this content.

3.1. Tool/process evaluation datasets

Tool/process evaluation datasets are created for the purpose of
exhausting the functionality of a specific tool, or part of it (arguably
more feasible to achieve), in order to assess whether it is operating
correctly (Lyle, 2002). It is important to note that often tool/process
evaluation datasets are not designed to assess a tool's general
performance, but its performance within the limited set of situa-
tions explicitly tested for, where the more independent situations
tested, the more confidence in the tool may be implied. Therefore
tool/process evaluation datasets must be designed to reveal errors,
should they exist where data may be manually constructed in ways
designed to engage the perceived limits of function in order to
expose incorrect behaviors. In the case of tool-suites, often this type
of dataset will be focused upon a specific element of a tool's
capability, such as a specific algorithm for parsing or data recovery
(see for example approaches taken by the NIST's (2020) CFTT), due
to both the degree of difficulty and time needed to create them.
Producing tool/process evaluation datasets typically consists of the
following three step process:

1. Determining the functionality of a tool to be tested and estab-
lishing the scope of its operation. It is important to consult
vendor documentation in order to assess ‘what’ a function is
designed to do and the remit of its operation. Doing so prevents
the construction of test-cases which sit outside the scope of the
tool's functionality, ultimately offering no value in terms of tool-
evaluation and may even seek to be of detriment by mistakenly
attributing poor-functionality to a tool. Described by Software
Testing fundamentals (2020) ‘a test case is a set of conditions
or variables under which a tester will determine whether a
system under test satisfies requirements or works correctly’.
This process may be obstructed if vendor documentation is
vague with regards to the exact remit of a tool function, leaving
those designing the test data to carry out this scoping exercise
manually.

2. Design test-cases which are structured in a way which engages
the necessary aspects of the functionality subject to testing. In
some cases, multiple test-cases will be required to exhaust any
given tool functionality, leading to a single dataset containing
multiple test cases which may be capable of more comprehen-
sive testing either a single or multiple tool functions.

3. Document the contents of the dataset and its test-cases thor-
oughly, ensuring that those who utilise the dataset understand
how to use it, and ultimately how to interpret any outcomes of
its use (see Fig. 2). This facilitates the purpose of verifying
software functionality, where this can only be achieved by those
testing a specific tool functionality if they know of the exact
atasets and scenario-based datasets.



Fig. 2. Tool/process evaluation dataset usage for result comparison.

G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
specification required from a tool ‘response’ in order to identify
whether it is correct or incorrect.

Ideally, tool/process evaluation datasets should not contain any
unknown variables or data, and must be fully described to ensure
that responses given by a tool under test conditions can be mapped
to a known set of variables used to trigger such a response. Any
uncertainty within the dataset undermines the validation process,
where use of the dataset cannot lead to reliable test results. How-
ever, it is also acknowledged that achieving this is difficult, where in
some cases it may not be either feasible or possible, therefore
guidance regarding the limiting of ‘unknown variables’ must be to
do so as far as practically possible.

It is argued that there are 9 elements which must form part of
any tool/process evaluation dataset, drawing reference to the NIST's
(2020) CFTT, arguably the currently biggest independent DF tool
testing program in operation. Whilst these criteria may seem
burdensome, they reflect the role of a tool/process evaluation
dataset and the issues which can result from the use of poor test-
data in this context.

1. A known, documented structure of the dataset. If the dataset
consists of data designed to invoke multiple test-cases, each
test-case and its associated data must be described, where the
number of test-cases contained in the dataset should be stated.
This will often require data mapped at both a physical-level
where the offsets of key data structures must be documented,
along with the structures themselves, and at a logical-level if
file-based content forms part of the dataset. Tool/process eval-
uation dataset producers should consider the inclusion of a
‘table of contents’ structure within the dataset itself which
contains a formal specification of each test-case content and
how to invoke each test-case.

2. A description of the methodology used to create the test dataset
if data has been manually created. Where custom built auto-
mated processes have been engaged, access to these methods
should be provided so that the method itself can be evaluated
and implemented in future dataset creation/development. This
also allows any challenges to evaluative results to be thoroughly
investigated to ensure that errors at the dataset-generation level
can be ruled out. Contemporaneous records of the dataset
construction should be maintained and distributed with the
dataset allowing the dataset creation methodology to be
examined and evaluated by peers.

3. A record of the expected ‘outputs’ for each test-case contained
within the dataset - a comprehensive description of what
should be returned by a tested function if it is performing 100%
correctly. This allows the target software function to be evalu-
ated in terms of meeting the requirements of the test or not and
a ‘level’ of correct functionality to be established as a test may
result in partial compliance. Documentation of the expected
outputs of a test-case may also influence iterations of future
testing of a given functionality.
6

4. A statement of scope for each individual test-case, ensuring that
those using the dataset understand its remit. This prevents any
misinterpretation of test results or misuse of the dataset. The
need for specific requirements to be defined before testing takes
place is suggested by the Forensic Science Regulator in England
and Wales (2016).

‘Validation is a demonstration of fitness for purpose. The first
step is to define what the requirements are in terms of inputs, ef-
fects, constraints and desired outputs. Validations that skip this
step may miss the key quality issues. Unfocused testing can lead to
amassing of data that may or may not increase understanding or
give confidence in the method’ (Forensic Science Regulator, 2016).

Whilst defining the scope of test-cases does not prevent the
dataset from being used in other test-capacities, it does ensure that
any results given from testing outside of a test-cases remit from
being incorrectly relied upon.

5. A description of which tool functionality is intended to be
engaged by each of the test-cases in the dataset. Generally, there
are three categories:
a. Algorithm testing associated with a specific process.
b. Testing of the tool's ability to correctly display information.
c. Testing of the tool's configuration and navigation.

This include both a generic description of the function (for
example, ‘file carving algorithm’) and if test data is targeted to-
wards a specific software-type, the tool's function should also be
named (for example, the name of the function which may be
vendor-specific and importantly the configuration and settings to
be used). If a test case is designed to test the function of a tool which
requires a specific configuration to be defined prior to testing, then
these settings must be explained. This prevents a correctly per-
forming tool from failing a test-case due to a misconfiguration.

6. A duplication requirement. In order to assess consistency
regarding test performance, a tool/process evaluation data-
set should contain data which can assess a tool's perfor-
mance in multiple instances for the same functionality. This
helps to distinguish tool performance which is compliant
through luck, and tools which provide consistently
compliant results which can be relied upon. Dataset creators
must document how duplicate tests have been implemented
within a dataset, and how duplication is evidenced. It is
important to stress that duplication does not mean creating
multiple identical tests, but that the function tested is tested
in a way which engages the function in the same funda-
mental way.

7. File lists (logical content):-Where test-cases within a dataset
contain file-structures which form part of any functionality
test, accompanying documentation should record at a
minimum:

a. The number of relevant files included in any test-case

data.
b. The physical and logical location of each file.
c. Each file's size.
d. Each file's type (with accompanying signature if the file is

non-standard).
e. A description of each file's content. A logical file extraction

is recommended, providing a copy of each file as a
reference.

f. Each file's hash value using an appropriate hashing
algorithm.

g. All available metadata regarding the file including fil-
ename, and available filesystem metadata. File metadata



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
should be captured as part of a logical extraction noted
above in point ‘e’.
8. Data descriptions (physical content):- Where test-cases
contain non-file-based structures (for example, string infor-
mation used for keyword search algorithm testing) the
dataset should maintain accompanying documentation
which records at a minimum:

a. The physical location of data.
b. The type of data encoding (American Standard Code for

Information Interchange (ASCII), Unicode etc.).
c. The size of the data (string length etc.).
9. A dataset integrity mechanism (hash) which confirms the
integrity of a dataset or highlights tampering.

10. Details of an appropriate evaluation metric to be used when
interpreting any results obtained whilst using the dataset for
tool testing.
3.1.1. Test-case annotation
Where a dataset contains multiple test-cases, documentation

describing the dataset content should maintain annotations for
each test-case, a common practice for software testing (Bentley
et al., 2005). Whilst multiple generic test-case templates exist on-
line which can be adopted for the purposes of DF test-case, this
work suggests any test-case annotation should at a minimum
contain details regarding the following six areas:

1. A test-case identifier which allows the test-case to be directly
referenced (discussed below in Section 3.1.2).

2. The location and dimension of test-case data in the dataset. In
regards to complex tool/process evaluation datasets, compart-
mentalising test-cases particularly where the dataset takes the
form of a binary image is a difficult task. Therefore, it is
important to identify what region or content of a dataset forms a
specific test-case to prevent ‘test-case bleed’ (where data from
separate test cases may become indistinguishable from one
anothermaking it difficult to determine digital ‘cause and effect’
under test conditions).

3. A description of the:
a. Name of the tool and function tested.
b. Type of functionality tested - algorithm, navigation or display

of information.
c. The purpose of the test-case (e.g., to determine function ‘X's’

ability to recover files of type ‘Y’ from unallocated space).
4. How any function tested must be configured prior to running

the test-case. Where a test case is specific to or aimed at a single
tool vendor, explicit instructions regarding tool-configuration
should be defined, including the use of the language used by
the vendor in relation to their tool's setup, menu labels and
functionality names.

5. Directions for invoking the test-case, in essence, those test-
actions which must be carried out in order to engage the test
case. This point is a natural follow-on from point four above,
where once configured, those carrying out testing must then
correctly engage the function to be tested.

6. A complete set of expected results, allowing post-test results to
be benchmarked and evaluated.
Fig. 3. Dataset Identifiers. It is proposed that a dataset identifier should contain the
following metadata:
3.1.2. Dataset chain of custody
Given the importance of tool evaluation in DF, there is a need for

the creation and maintenance of a chain of custody with regards to
the datasets used as part of evaluative testing. Doing so supports
the reliability of any subsequently claimed test results as these can
be attributed to a dataset used as part of testing. It also promotes
7

the circulation of identifiable and traceable datasets in the DF field.
To achieve this, it is argued that there is a need for a formalised
method for tagging datasets which allow both the dataset itself,
and all test cases it contains, to be identified. Currently datasets are
typically identified by their host destination or creator, where if
datasets become detached or if local copies are made, attribution
may be difficult. To combat this, the need for an embedded dataset
identifier is offered.

A dataset Identifier: At any one given period in time, multiple
different datasets may exist which each contain data that can be
used to test the same function of a DF tool - determining which
dataset has been used for any given testing carried out is important
for the purposes of reliability and transparency. Given that test
dataset creation is unregulated, where contributions are made by
individual practitioners, academics and government organisations
it is arguably important that the DF field moves towards the use of
mechanisms to identify, track and trace test datasets and their use
in any formal evaluative studies. Ensuring that test datasets
maintain an ‘identifier’, and that such an identifier remains with
the dataset for the duration of its existence allows those carrying
out evaluative testing to report their results in a way which is
transparent to those in DF. To support this, a dataset identifier
should be centrally referenced to ensure that datasets can be
monitored and accessed by all in the field (see Fig. 3). This also
allows any subsequent issues with any evaluative testing which has
used a specific dataset to be evaluated in greater detail allowing
dataset content to be evaluated and if necessary warnings be
attached to a dataset if known issues exist. As the field seeks to
increase the rigour of evaluative methods used upon its tools, it is
argued that this should start with ensuring greater control over the
datasets in circulation.

The ability to identify a dataset used during testing also supports
the ‘transparency of testing’ process as it allows individuals and
tool vendors to first, describe the data they have used to evaluate
their tool (or tool-functionality), and second, it allows third parties
to evaluate the test process by being able to identify the test dataset
and repeat the test.

1. A unique ID (<creator initials>_<date of creation>_<dataset
name>) which can be used to reference the dataset.

2. The name of the dataset creator(s).
3. Contact details of the dataset creator(s).
4. Primary hosted location of the dataset.
5. Dataset information - points 1 to 9 noted in Section 3.1.



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
a. A test-case identifier:- As a dataset may contain multiple test-
cases, each test case should be identifiable and formally refer-
enceable. It is proposed that as part of the dataset information each
test-case maintains a reference tag - < creator initials>_<date of
creation>_<dataset name>_<*Numeric TestCaseID>).

A central dataset register: The maintenance of a ‘central dataset
register’ where dataset creators can record the dataset identifier of
their dataset is argued beneficial for dataset governance. Whilst the
dataset register primarily contains dataset metadata, supporting
those in DF to access appropriate datasets, it should also serve as a
historical record of validation usage, noting those who have
implemented successful evaluative tests with particular datasets.
Importantly, the register should also record concerns raised
regarding datasets and fully document any issues which are known
to exist with any given dataset.
Fig. 4. Actions dataset creation process.
3.1.3. Being realistic
Testing DF tools, as with any software testing in general, pro-

vides for a difficult process. The issue lies with the very nature of
the task and the fact that any number of potential test case sce-
narios may exist, each with the potential to present an error. In
reality, it is doubtful as to whether a sufficient number of test cases
can be designed, implemented and analysed in order to fully test
any given software (Meyer, 2008), even more unlikely in the case of
large DF tool-suites. As a result, Kumar and Syed, (2010, p.52) note
that when those evaluating software should ‘perform tests effi-
ciently and effectively, within budgetary and scheduling limita-
tions’. Perhaps the key takeaway point lies with the need to be
realistic when testing in the DF field, where it is arguably better to
ascertain and test core functionality with sufficient robustness as
opposed to attempting to tackle a tool's entire functionality and
doing this to a sub-standard. This is acknowledged by Mil and
Tchier (2015, p.141) who state the following.

Given an input space S (which is assumed to be so large that it is
impractical to test the program on all elements of S ), choose a small
subset T of S such that we can achieve the goal of the test by
executing the candidate program on T rather than on S . Clearly, the
requirement that T must satisfy depends on the goal of the test. Mil
and Tchier (2015, p.141)

To that end, there are some points which have to be accepted by
the field when venturing into tool testing.

1. It is unlikely that any DF tool can be tested and evaluated in its
entirety, so it is important that practitioners do not blindly set
about this task. Complete evaluation should be seen as a goal,
but considering an already limited set of resources for evalua-
tion, strategic testing should be implemented.

2. Arguably, datasets should be created for testing focusing on
high-risk and high-usage functions. Doing so has the greatest
potential for wider quality assurance to be achieved in the short-
term. This position reflects the difficulties associated with
dataset creation and the time and effort needed to complete this
task correctly. Those creating datasets are faced with having to
decide which functions of a tool to focus a test, leaving others
untested (where in the case of off-the-shelf tools, relying on the
vendor to have tested the tool). This situation is far from ideal,
but a current representation of the DF field's position.

3. The use of datasets and correctly implemented testing increase
confidence in DF tools, but they cannot guarantee functionality
‘correctness’ in a lot of cases. It is unlikely that any dataset can
completely exhaust a tool's functionality to the point of allowing
an end-user to establish that a tool is functioning 100% correctly.

4. Tools which have not had their functionality robustly tested
through the use of an independently and correctly created
8

dataset do, and, are likely to remain in circulation for the fore-
seeable future.

Regardless of these issues, the DF field must look towards tool/
process evaluation dataset creation, when done correctly, as a
mention of ascertaining and maintaining the reliability of digital
evidence produced by its tools. Examples of tool/process evaluation
dataset attempts include those by Carrier (2010).
3.2. Actions datasets

‘Actions datasets’ consist of scripted digital behaviours which
are then acted-out on a device, seeding test data (if data regarding a
specific function is actually maintained by the device/software
being tested). Data from this device is then subsequently extracted
(either partially or fully) and made available as a dataset (coined
here as an ‘actions dataset’). When actions datasets are examined,
any outputs/discovered data must be evaluated against the actions
which were carried out during the dataset construction process,
making reference to the ‘script of digital actions’which should have
been contemporaneously maintained and made available by the
dataset creator (see Fig. 4). There are two fundamental components
of actions datasets, a ‘script of digital actions’which describes what
the dataset creator has done in terms of digital-interactions on a
device, and the data itself created by those digital actions - which is
extracted to form the dataset.

Actions datasets usually serve three purposes:

1. To assess data availability in a given scenario: In terms of data
availability, actions datasets contain any digital traces left
behind following a series of actions on a device. This may
involve interactions with a specific piece of software or appli-
cation, or general device usage leading to operating system
traces. Therefore a test creator may seek to script actions for a
specific piece of software or application which may replicate
potential suspect actions which may be assessed as likely to
occur if a suspect has engaged with such software/application
(consider a grooming case, where a suspect may have utilised
communication App ‘X’. Understanding the functionality of ‘X’
when used on a device is core to being able to then interpret
digital traces of ‘X's’ usage in a real forensic case). Actions
datasets allow practitioners to ascertain what digital traces



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
occur following specific actions and usage in a given scenario
involving a piece of software, application or device, where this
data occurs and what form this data may take, helping to
reverse-engineer the digital behaviour of any specific software/
application/device at a data-level.

2. Evidence interpretation: Actions datasets content combined
with the script of digital actions support practitioners to inter-
pret digital evidence traits, helping to tie digital traits to digital
actions. Correlations between scripted actions and resident data
can be used to determine how a specific piece of software or
system behaves following certain actions and to support prac-
titioners to interpret trace-data.

3. Tool capability, not validation: Actions datasets allow for an
assessment of a tool or function's capability to access, parse and
display data. Whilst actions datasets can support tool/function
validation, the detail required in the description of data needed
to achieve this, means it is unlikely. This can be seen due to the
differences in requirements for tool/process evaluation dataset
documentation discussed in Section 3.1.1 and the minimum
requirements for actions datasets discussed below in Section
3.2.1 where the burden is less. Yet, actions datasets will serve a
partial purpose in regards to determining a tool/functions ability
to access and process data, but will not validate it's correctness
in doing so.

It is important to stress that the value of actions datasets lies
with the script of digital actions describing the actions of the
dataset creator. Datasets which do not have a script of digital ac-
tions (or maintain a script which is poorly constructed, in terms of
limited information describing the actions) are of little value to any
user of the dataset as they cannot evaluate or interpret any outputs
generated by any tool/functionwith any large degree of confidence.
Examples of actions datasets can be seen at the Digital Corpora
(Garfinkel, 2020).

Arguably, the value of actions datasets lies less with their use in
tool-testing and more with their ability to help practitioners to
understand how specific software behaves when it is interacted
with through data reverse engineering.

3.2.1. Script of digital actions
The script of digital actions is a key component of actions

datasets as it describes any potential test cases which are present
within the dataset. Any specific actions dataset may contain digital
interactions with a number of software/applications, for example
consider a test mobile device where multiple applications have
been installed and interacted with to create one actions dataset,
essentially containing test-cases for each application used.

The script is an important validator for the dataset as, without it,
the dataset has limited value and meaning to those who use it as
they are unable to attribute what actions caused the presence of
digital traces in the dataset and ultimately interpret these. When
developing a script of digital actions, consideration must be given
to the purpose that the dataset intends to serve and in particular,
the target application/software which is being interacted with. If
the goal of the actions dataset is to inspect the functionality of a
single piece of software or single application, then the dataset must
be both comprehensively documented and exhaust all relevant
functions of the software. To do this, the actions which are used to
generate the dataset must be wide-ranging enough to engage all of
the relevant functions of the software/application.

Exhaustive data: In relation to the term exhaustive, this means
that the data contained in the dataset should aim to engage all
relevant functions of the software it is targeting. Ensuring the
dataset is exhaustive first involves establishing what a target soft-
ware/application is capable of. This means determining what the
9

purpose of an application is (which in most cases, this will be
obvious), but also all of the sub-functions it is capable of in terms of
achieving its goal. For example, a communication application may
allow communication in many media, including text, audio and
video, but also contain valuable metadata regarding any account(s)
that is synched with the application. Achieving an exhaustive
dataset requires mapping what an application/piece of software is
capable of and establishing all of its functions. It is suggested that a
functionality map denoting the full capability of any software/
application should be made (see Fig. 5 for an example of a func-
tionality map of the Instagram application).

Following the establishment of a functionality map, there is a
need to determine those actions required to engage all of the
functions of the application/software and ensure that sufficient test
actions have been carried out to engage all functions. Functionality
mapping helps to establish which parts of an application/software's
functionality have been engaged with and therefore form part of an
actions dataset. Importantly, it also helps to determine what
functions have not been engaged by digital actions, preventing any
misbelief that digital traces are not left following specific usage, if
the dataset creator has never actually engaged that particular
function.

Comprehensive documentation: Actions datasets require
comprehensive documentation describing the setup and interac-
tion with any software/application to allow a user of the dataset to
be able to interpret any results. This is the script of digital actions
documentation and at a minimum, the following is required:

1. A dataset identifier (see discussion in Section 3.1.2).
2. Name and version number of the application/software being

interacted with for the purpose of the dataset's creation. Where
multiple applications/software have been included in the data-
set a list of this information is required. In addition, the soft-
ware/application creator's information should be captured
along with where the software/application can be (and has
been) acquired from.

3. Description of the physical device and setup where the dataset
comes from, including device name, make and model.

4. Description of the extraction method and software used to
create the dataset including version numbers and any bespoke
protocols implemented (consider jailbreaking/rooting in mobile
devices etc.). This is important in cases where a dataset origi-
nates from a mobile device where multiple extraction types and
tools exist which can impact the amount of data available in a
subsequent dataset.

5. Account information and credentials used with the application/
software if this content is required to use it. Attention should be
paid to each service provider's terms and conditions for
acceptable use. Account information and credentials should be
unique for each service, and identifiable and attributable to only
one service to avoid confusion when interpreting digital traces.

6. Any test data used in the application/software (files or string
data) must be recorded. This content must be both unique
(attributable to the user, and nothing else) so that it can be
distinguished during any testing, and contemporaneously
recorded. In the case of files used, copies should be maintained
separately and hash values of files should be taken and recorded
prior to the file entering the test setup to ensure that it can be
identified in any subsequent dataset usage and that any changes
to the file by the application/software can be determined.

7. All test actions carried out must be contemporaneously recor-
ded. This includes the order of key press and names of menus/
functions engaged with as shown to the user by the application/
software. Whilst textual methods may be favoured, consider-
ation should also be given to the use of external screen



Fig. 5. An example functionality map of the Instagram application.

G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
recordings (camera on tripod etc.) which require less interaction
and effort by the dataset creator.

*To note - Each function should be engagedmultiple times in an
effort to duplicate digital traces following engagement with an
application/software functionality to allow for testing to assess the
consistency of behaviour. Each engagement of a function should be
achievedwith distinguishable data in order to separate iterations of
the test.*

8. Time and date information associated with every action carried
out should be recorded. In some instances, time and date in-
formation may be a priority method of correlating test actions
with digital traces left by the application/software. If screen
recording approaches are taken, consider the use of a separate
and visible clock (accurately configured with a noted time zone)
next to a device so captured records continuously show the time
and date of actions. Where text-based contemporaneous re-
cords are kept, consider the use of software which can time-
stamp created notes (with time zone information).

The value of actions datasets hinges on the accompanying script
10
of digital actions and arguably this is where the main effort exists.
The creation time and effort for actions datasets is arguably less
than tool/process evaluation datasets as the datawithin the dataset
is not validated in terms of presence and structure - this is a task
which forms part of the purpose of the datasets creation. Instead,
creators must concentrate on ensuring any test actions used to
create the dataset are exhaustive andmethodical whilst recorded in
sufficient detail.
3.2.2. Be aware
Creating actions datasets is not a straightforward process where

the creator is not always guaranteed to end upwith a dataset which
they expected to create. There are issues which exist when creating
actions datasets and the following serve as points of caution for
dataset creators to be aware of:

1. Are digital traits left in the dataset?: Given that actions dataset
involve the use of scripted interactions in order to engage a
software/application's functions which may potentially leave
behind a digital trace on a device, it is not always possible to
determine if an action has actually left a trace which is then
captured in the extracted dataset. Consider the creation of an



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
actions dataset which focuses on producing data regarding a
new mobile application (‘X’) and its functionality.

Even where all functions of X are interacted with, there is no
guarantee that all actions result in a trace being left (for example,
some functions may interact with data stored server-side, which
never reaches the physical device's storage media). Emphasis here
is placed upon themaintenance of a detailed script of digital actions
and repeated tests, the likes of which may demonstrate the
consistent absence of a specific digital trace-type. However, added
complexity is introduced if the method for extracting the dataset
does not capture all available data. Devices which only permit
limited data extractions (for example, mobile devices extracted
logically), create uncertainty as to whether a test action has left a
trace on a device, particularly if it is not captured within the
extracted dataset, as it may reside on a non-extracted region of a
device. This scenario is difficult to address, therefore datasets
created through limited extraction methods should be treated with
caution. In some cases this may simply be unavoidable as an
extraction method may be limited, but still be state-of-the-art for a
given test device. The result of which is always likely to mean a
level of ambiguity will exist for those using the dataset to reverse
engineer the data left by the application's use.

2. Compartmentalising test cases: Due to the nature of the way in
which this dataset-type is created it is difficult to compart-
mentalise test-cases within the dataset. As a result, it may be
challenging to determine which user actions should be attrib-
uted to a specific digital trace, emphasising the need for
contemporaneous records of user actions to be kept, complete
with timestamp information denoting when actions occurred,
as time-comparisons may be a key method of attribution. The
use of unique and attributable test data where possible (for
example, instant messages sent use identifiable unique strings)
as part of any given test actions is also important.

3.3. Scenario-based datasets

Scenario-based datasets are often generated to simulate a
particular offence, offence-setup, or potential investigative narra-
tive. These datasets aim to immerse the practitioner in a realistic
case-work experience and may be designed as training material
both for the practitioner's personal development or as part of
specific training for a vendor tool or training course. Scenario-based
datasets are unlikely to focus on exhausting a specific application/
software's functionality or evaluating a tool, but to imitate real-
world use of a device within the context of a given offence.
Therefore, datasets of this type are likely to have a variety of
application, software or system usage which each alone is not in
exhaustive depth (in terms of the software's functionality), but at a
surface level of interaction detail. However, where a scenario-based
dataset attempts to incorporate, for example, intentions of tool
evaluation, then those requirements noted in Section 3.1 must be
adhered to. This would essentially lead to the creation of a hybrid
scenario-based tool/process evaluation datasets, arguably requiring
significant effort to create. As a result, we distinguish the two
dataset-types and assume that most scenario-based dataset crea-
tors will focus on the realism and scenario narrative.

One of the greatest challenges here lies with the scale of dataset
creation, as often creating a scenario requires interacting with a
range of system functionalities in order to replicate real usage. As a
result, effort is likely spent in developing a realistic plot which is
representative of the types of digital data a practitioner is likely to
encounter. This may be described in some cases as a ‘long and thin’
11
approach, where dataset actions are created across a range of ap-
plications/software but no actions focus on fully exhausting the
entire functionality of any given application/software being inter-
acted with.

Whilst arguably scenario-based datasets are the easiest to
‘technically produce’ there are still requirements which must be
met in regards to dataset production if they are to serve their
purpose. As aminimum, the following information is suggested as a
requirement.

1. A dataset identifier (see discussion in Section 3.1.2).
2. A scenario-brief which outlines the scope of the scenario-based

dataset and any offence which it attempts to replicate. In the
case of criminal offence replication, the brief should as a mini-
mum outline the legal elements of the replicated offence in
relation to the jurisdiction in which it was created/aimed at,
allowing a dataset user to develop an investigation strategy. This
is important as datasets may be used internationally, and
therefore what may be classed as an evidential trait within the
remit of a scenario may differ between geographical regions.
Supplying contextual information/background intelligence
regarding the scenariomay also be considered as often scenario-
based datasets are designed to test a user's forensic inference of
digital traces, a task not possible without scenario-context.

3. A description of the technical setup utilised to create the sce-
nario (software/hardware utilised etc.) and any key configura-
tions deployed which may be important for the practitioner to
knowwhilst conducting their examination and interpretation of
the scenario.

4. An acknowledgement of which stages of the DF investigative
process the scenario is designed to engage (i.e. acquisition,
screening, interpretation etc.)

5. A list of all actions carried out on the device/system where the
dataset originates from. These actions should have time and
dates of their occurrence recorded.

6. All files ‘expected’ to be in the dataset as a result of any test
actions. It is assumed in many cases, a complete list of ‘evidence’
may not be deemed possible as datasets of this type may be too
wide in scope to contemporaneously record everything.

Where time and resources permit, a scenario-based dataset should
look to expand documentation to include:

1. A list of all files of ‘evidential value’ included in the dataset in
relation to the scenario-brief, including:
a. File location (or physical offset for unallocated data).
b. File names.
c. File content description or retain a copy of the file.
d. File hash value.

2. An interpretation of what each file/piece of data means in
relation to the given scenario-brief, supporting scenario recon-
struction whilst allowing a dataset user to evaluate their per-
formance and evidence interpretation attempts.

*To note:- It should be noted that we are not intending to un-
derestimate the effort required to generate high-quality scenario-
based datasets, but it is unlikely that creators will invest in the level
of documentation required for tool/process evaluation datasets
when operating at a scenario level. Instead, we expect focus to be
maintained on attempting to achieve scenario-realism as opposed
to the fine-grained mapping of dataset contents and metadata. Yet,
obviously where a creator chooses to do so, the time, resources and
effort needed to achieve this will be vast.



G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
4. Some challenges

Whilst section 3 has set out three different types of dataset for
use in DF, it is also necessary to outline some of the wider chal-
lenges which exist around dataset creation, use and engagement.
As a starting point, dataset realism will be considered, where
datasets must not just ensure that they contain the correct struc-
ture and type or information, but also considerations of ‘trans-
ferability into the real world’ must be given. Here we refer to the
need to ensure that datasets are not just created properly but in
some cases it is also necessary that they are reflective of those
scenarios which are likely to be encountered in real investigative
scenarios, so far as is feasible to do so. This means that when
seeding data, this process should be robust enough to ensure a
suitable diversity and depth of data is achieved. Concerns over
dataset scalability for testing purposes may be raised and therefore
depending on the function and use of any dataset, this should be
considered an important factor when creating it (Garfinkel, 2010).
Datasets which are not representative of the real world in terms of
data volume and type may not be suitable for purposes such as tool
evaluation as they may fail to expose the tool to enough relevant
data-scenarios in order to evaluate its performance. Further, where
scenario-based datasets are being generated, the dataset creator
should consider how ‘realism’ is to be achieved with regards to the
data contained in the dataset, where data seeded for example over
the course of a few days is unlikely to reflect the true complexity
and volume of data which is apparent in real world cases.
Conversely, creating a data-rich dataset with months of activity is a
burdensome task which requires prior planning and the dedication
of resources to carry out this task - in some cases this will be
unachievable. The generation of scalable, realistic datasets is a
difficult task, however one which should be aimed for so far as
practically possible.

In addition, the creation and sharing of datasets also poses a
challenge due to issues surrounding the sharing of data that may be
subject to legal restriction or, data governance and protection. In
some cases this concern may be known in regards to dataset data,
preventing a breach from occurring, but in others accidental data-
sharing in breach of regulations may occur if the creator is not
aware of their obligations in regards to the dataset content. This is a
real risk which must be considered by the dataset creator and they
must evaluate the contents of their dataset and any restrictions
which may exist regarding the distribution of data within it. In
some cases it may be possible to place appropriate caveats on
dataset content, or restrict access to it (particularly if the data is
restricted/confidential), however in many cases, dataset creators
should consider the implications of placing any data within their
dataset prior to doing so. This issue, when combined with any at-
tempts to instil realism in a dataset may be difficult to overcome
where appropriate legal advice with regards to data usage is
advisable.

Encouraging engagement with dataset creation and sharing also
required within the DF field. While dataset creation can be a
resource intensive task, those in DF should be encouraged to think
of datasets as an important resource, and where feasible to do so
dataset creation should be undertaken in conjunction with any
research or testing conducted. Arguably the field of DF cannot have
too many datasets - providing they are constructed effectively and
therefore the more of these resources which are available, the more
benefit which can arguably be gained by those seeking to test and
evaluate processes and procedures. Those conducting research
should consider the production of a dataset as part of their
exploratory work a natural part of their research and development
process. The creation and dissemination of good datasets in DF
benefits all of those operating within it, arguably increasing the
12
ability of the field to develop quality control and assurance mea-
sures through testing and evaluation.

5. Final thoughts

This work has identified and defined the three categories of
dataset which typically exist in digital forensics - tool/process
evaluation datasets, actions datasets and scenario-based datasets.
With DF narratives increasingly encouraging testing and validation
(Marshall and Paige, 2018; Casey, 2019; Horsman, 2019b; Page et al.,
2019; Hughes and Karabiyik, 2020), whether it be methods, tools or
the practitioner ability, doing this requires fit-for-purpose datasets.
To support the development of such datasets, we define a set of
minimum requirements for each dataset type in the hope of sup-
porting dataset creators.

It is important to note whilst three dataset-types have been
defined, we do not wholly discourage dataset sets which do not fit
exactly into these categories, only express the need for caution. To
explain, consider where an unexpected opportunity occurs for a
practitioner to capture data depicting an event or scenario which
they encounter, but have not had the opportunity to document it
fully or control the condition by which the data was created. This
data may be considered an informal type of dataset and ‘opportu-
nistic data’, where its accompanying description may be minimal. It
is not suggested that such a dataset should never be shared, there is
some value in terms of initially ‘taking a look’ at the data and the
believed context from where the dataset was taken. This may be
informative in nature and therefore influence further formal
dataset creation. What is important is that such datasets are
acknowledged as lacking in formal construction and documenta-
tion and therefore those that encounter themmust be aware of the
limitation of their use.

References

Al-Kawaz, H., Clarke, N., Furnell, S., Li, F., Alruban, A., 2018. June. Advanced facial
recognition for digital forensics. Proceedings of the 17th European Conference
on Information Warfare and Security. ECCWS, pp. 11e19.

Al-Sanjary, O.I., Ahmed, A.A., Sulong, G., 2016. Development of a video tampering
dataset for forensic investigation. Forensic Sci. Int. 266, 565e572.

Anda, F., Lillis, D., Le-Khac, N.A., Scanlon, M., 2018. May. Evaluating automated facial
age estimation techniques for digital forensics. 2018 IEEE Security and Privacy
Workshops (SPW). IEEE, pp. 129e139.

Arshad, H., Jantan, A.B., Abiodun, O.I., 2018. Digital forensics: review of issues in
scientific validation of digital evidence. J. Inf. Process. Syst. 14 (2).

Bentley, J.E., Bank, W., Charlotte, N.C., 2005. April. Software testing funda-
mentalsdconcepts, roles, and terminology. Proceedings of SAS Conference,
pp. 1e12.

Biros, D.P., Weiser, M., Witfield, J., 2007. March. Managing digital forensic knowl-
edge an applied approach. Australian Digital Forensics Conference, p. 11.

Bruschi, D., Monga, M., Martignoni, L., 2004. August. How to reuse knowledge about
forensic investigations. Digital Forensics Research Workshop. Linthicum,
Maryland.

Carrier, Brian, 2010. Digital Forensics Tool Testing Images. Available at:. Accessed.
http://dftt.sourceforge.net/. (Accessed 6 August 2020).

Casey, E., 2019. The chequered past and risky future of digital forensics. Aust. J.
Forensic Sci. 51 (6), 649e664.

Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G., 2015. March. Raise: a raw
images dataset for digital image forensics. Proceedings of the 6th ACM Multi-
media Systems Conference, pp. 219e224.

Forensic Science Regulator, 2016. Guidance method validation in digital forensics
FSR-G-218. Available at: https://assets.publishing.service.gov.uk/government/
uploads/system/uploads/attachment_data/file/528123/FSR_Method_
Validation_in_Digital_Forensics_FSR-G-218_Issue_1.pdf. (Accessed 26 July
2020).

Garfinkel, S.L., 2010. Digital forensics research: the next 10 years. Digit. Invest. 7,
S64eS73.

Garfinkel, S., 2012. Lessons learned writing digital forensics tools and managing a
30TB digital evidence corpus. Digit. Invest. 9, S80eS89.

Garfinkel, Simson., 2020. ‘Cell Phones’ Available at:Accessed. https://digitalcorpora.
org/corpora/cell-phones. (Accessed 25 July 2020).

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora. Digit. Invest. 6, S2eS11.

Grajeda, C., Breitinger, F., Baggili, I., 2017. Availability of datasets for digital

http://refhub.elsevier.com/S2666-2817(21)00181-5/sref1
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref1
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref1
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref1
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref2
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref2
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref2
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref3
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref3
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref3
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref3
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref4
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref4
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref5
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref5
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref5
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref5
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref5
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref6
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref6
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref7
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref7
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref7
http://dftt.sourceforge.net/
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref9
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref9
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref9
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref10
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref10
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref10
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref10
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/528123/FSR_Method_Validation_in_Digital_Forensics_FSR-G-218_Issue_1.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/528123/FSR_Method_Validation_in_Digital_Forensics_FSR-G-218_Issue_1.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/528123/FSR_Method_Validation_in_Digital_Forensics_FSR-G-218_Issue_1.pdf
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref13
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref13
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref13
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref14
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref14
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref14
https://digitalcorpora.org/corpora/cell-phones
https://digitalcorpora.org/corpora/cell-phones
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref16
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref16
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref16
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref17


G. Horsman and J.R. Lyle Forensic Science International: Digital Investigation 38 (2021) 301264
forensicseAnd what is missing. Digit. Invest. 22, S94eS105.
Horsman, G., 2018. “I couldn't find it your honour, it mustn't be there!”eTool errors,

tool limitations and user error in digital forensics. Sci. Justice 58 (6), 433e440.
Horsman, G., 2019. Raiders of the lost artefacts: championing the need for digital

forensics research. Forensic Sci. Int.: Reports 1, 100003.
Horsman, G., 2019b. Tool testing and reliability issues in the field of digital forensics.

Digit. Invest. 28, 163e175.
Horsman, G., Laing, C., Vickers, P., 2014. A case-based reasoning method for locating

evidence during digital forensic device triage. Decis. Support Syst. 61, 69e78.
Huang, J., Yasinsac, A., Hayes, P.J., 2010. May. Knowledge sharing and reuse in digital

forensics. 2010 Fifth IEEE International Workshop on Systematic Approaches to
Digital Forensic Engineering. IEEE, pp. 73e78.

Hughes, N., Karabiyik, U., 2020. Towards Reliable Digital Forensics Investigations
through Measurement Science. Wiley Interdisciplinary Reviews: Forensic Sci-
ence, p. e1367.

Kahved�zi�c, D., Kechadi, T., 2009. DIALOG: a framework for modeling, analysis and
reuse of digital forensic knowledge. Digit. Invest. 6, S23eS33.

Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B., 2019. Towards the develop-
ment of realistic botnet dataset in the internet of things for network forensic
analytics: bot-iot dataset. Future Generat. Comput. Syst. 100, 779e796.

Kumar, P., Syed, K., 2010. Software testingegoals, principles, and limitations. https://
www.ijesat.org/. Volumes/2011_Vol_01_Iss_01/IJESAT_2011_01_01_, 12.

Luciano, L., Baggili, I., Topor, M., Casey, P., Breitinger, F., 2018. August. Digital fo-
rensics in the next five years. Proceedings of the 13th International Conference
on Availability. Reliability and Security, pp. 1e14.

Lyle, J.R., 2002. NIST CFTT: testing disk imaging tools. Proceedings of Second Digital
Forensic Research Workshop, 2002.
13
Marshall, A.M., Paige, R., 2018. Requirements in digital forensics method definition:
observations from a UK study. Digit. Invest. 27, 23e29.

Meyer, B., 2008. Seven principles of software testing. Computer 41 (8), 99e101.
Mili, A., Tchier, F., 2015. Software Testing: Concepts and Operations. John Wiley &

Sons.
Nance, K., Nestler, V., Bishop, M., 2019. Use my digital forensics tool... It’s shiny!

J. Int. Technol.Inf. Manag. 28 (3), 91e100.
National Institute of Standards and Technology, 2019. The CFReDS Project. Available

at. Accessed. https://www.cfreds.nist.gov/. (Accessed 25 July 2020).
National Institute of Standards and Technology, 2020. Computer forensics tool

testing program (CFTT). Available at, Accessed. https://www.nist.gov/itl/ssd/
software-quality-group/computer-forensics-tool-testing-program-cftt.
(Accessed 25 July 2020).

Page, H., Horsman, G., Sarna, A., Foster, J., 2019. A review of quality procedures in
the UK forensic sciences: what can the field of digital forensics learn? Sci.
Justice 59 (1), 83e92.

Park, J., 2018. TREDE and VMPOP: cultivating multi-purpose datasets for digital
forensicseA Windows registry corpus as an example. Digit. Invest. 26, 3e18.

Shullani, D., Fontani, M., Iuliani, M., Al Shaya, O., Piva, A., 2017. VISION: a video and
image dataset for source identification. EURASIP J. Inf. Secur. (1), 15, 2017.

Software Testing fundamentals, 2020. ‘Test Case’ Available at:, Accessed: http://
softwaretestingfundamentals.com/test-case/. (Accessed 25 July 2020).

Tulley, Gillian, 2020. Codes of practice and conduct for forensic science providers
and practitioners in the criminal Justice system. Available at:Accessed: https://
assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/880708/Codes_of_Practice_and_Conduct_-_Issue_5.pdf.
(Accessed 26 July 2020).

http://refhub.elsevier.com/S2666-2817(21)00181-5/sref17
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref17
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref17
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref18
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref18
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref18
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref18
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref19
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref19
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref20
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref20
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref20
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref21
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref21
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref21
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref22
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref22
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref22
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref22
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref23
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref23
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref23
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref25
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref25
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref25
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref25
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref25
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref26
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref26
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref26
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref26
https://www.ijesat.org/
https://www.ijesat.org/
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref28
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref28
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref28
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref28
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref24
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref24
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref29
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref29
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref29
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref30
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref30
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref31
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref31
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref32
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref32
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref32
https://www.cfreds.nist.gov/
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref35
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref35
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref35
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref35
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref36
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref36
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref36
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref36
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref37
http://refhub.elsevier.com/S2666-2817(21)00181-5/sref37
http://softwaretestingfundamentals.com/test-case/
http://softwaretestingfundamentals.com/test-case/
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880708/Codes_of_Practice_and_Conduct_-_Issue_5.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880708/Codes_of_Practice_and_Conduct_-_Issue_5.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880708/Codes_of_Practice_and_Conduct_-_Issue_5.pdf

	Dataset construction challenges for digital forensics
	1. Introduction
	2. The purpose of datasets
	2.1. Existing literature
	2.2. The National Institute of Standards and Technology approach - ‘a commentary’

	3. Types of test data
	3.1. Tool/process evaluation datasets
	3.1.1. Test-case annotation
	3.1.2. Dataset chain of custody
	3.1.3. Being realistic

	3.2. Actions datasets
	3.2.1. Script of digital actions
	3.2.2. Be aware

	3.3. Scenario-based datasets

	4. Some challenges
	5. Final thoughts
	References


