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Abstract

The interest in forensic techniques capable of detecting many different media manipula-
tion types has been growing, and system development with machine learning technology
has been evolving in recent years. There has been, however, a lack of diversity in the
data collections and in the evaluation methodologies for advancing multimedia forensics
technologies. For the forensics research community, a well-defined evaluation is necessary
to rapidly measure the accuracy and robustness of systems over diverse datasets collected
under various environments. In this paper, we propose an evaluation framework and asso-
ciated performance metrics and apply them to the 2018 Multimedia Forensics Challenge
(MFC18). This MFC18 evaluation consists of five tasks and two challenges. A large num-
ber of datasets were created to support each task and for conducting the experiments using
a structured evaluation framework. A total of 25 teams participated in the MFC18 evalua-
tion; we analyse their performance on the tasks and challenges, and provide performance
rankings for each team’s best-performing system.
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1. Introduction

Recent advancements have produced a large variety of media editing tools that are easily
accessible. The result is that digital media content (e.g., image, video, and audio) can be
easily altered, falsified, and redistributed, sometimes for legitimate purposes [2, 3]. The
volume of multimedia is large, however, the fidelity of the media is no longer by default
trustworthy, including media obtained from sources such as online news, magazines, social
media, and even prestigious journals [4]. There is growing interest in universal forensic
techniques capable of detecting many different editing operations [5, 6]. Developments of
these systems along with machine learning techniques have been evolving in recent years.
The evaluation of such systems is vital to advance the forensic technologies. However,
previous studies have been limited to a single manipulation evaluation to measure the ac-
curacy and robustness of the systems in the forensic applications. In spite of the wide
variety of possible manipulation operations on the tampered media, the evaluations were
often focused on a single processing manipulation [5, 7, 8].

(a) image (original) (b) image (manipulation)

(c) video (original) (d) video (manipulation)

Figure 1.1. MFC18 dataset examples for image and video; (a) genuine image; (b) image
manipulation is done by removing, splicing, cloning, among others; (c) genuine video; (d) video
manipulation is done by replicating with CGI technique.

Most widespread manipulation methods fall into a small number of categories, includ-
ing adding (e.g. splicing), replicating (e.g. cloning), or removing (e.g. seam carving)
content. Such manipulations [1] can be performed in easily accessible editors (e.g., Adobe
Photoshop, GIMP, or ImageMagick), resulting in output images that are very realistic. De-
tection of such high quality manipulations can be challenging even for forensic analysts.
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The advent of autoencoders (AE) and generative adversarial networks (GAN) enabled the
creation of fake media with unprecedented levels of realism (e.g., deep fakes) [9, 10], which
drew attention in the media forensics community.

In response to these developments, in 2017, the Defense Advanced Research Projects
Agency (DARPA) initiated a series of media forensics (MediFor) evaluations, conducted
by the National Institute of Standards and Technology (NIST). The primary goal of the
evaluations is to advance media forensics technologies that can automatically determine
media authenticity as well as the history of the images that have been manipulated and its
relationship.

This paper is a summary of 2018 Media Forensics Challenge (MFC18) results and how
evaluation and analysis methodologies are applied to MFC18. Figure 1.1 illustrates original
images/videos as well as the manipulated images/videos appeared in the MFC18 dataset.

MFC18 develops a task-driven evaluation approach and consists of five tasks and two
challenges. The tasks are Manipulation Detection and Localization (MDL), Splice Detec-
tion and Localization (SDL), Event Verification (EV), Provenance Filtering (PF), and Prove-
nance Graph Building (PGB). The challenges are Camera Verification (CV), and Genera-
tive Adversarial Networks Detection (GAN).

This paper is a summary of MFC18 results and how evaluation and analysis methodolo-
gies are applied to MFC18. There are several key impacts and contributions from MFC18;
specifically, it:

• develops an evaluation structure using both a full scoring framework and a selective
scoring framework for accessing a wide domain of manipulation operations,

• defines the evaluation tasks and methods as well as their performance metrics for
targeting media forensics applications,

• produces a large number of MFC18 datasets for supporting both a general evaluation
and a task-driven evaluation,

• conducts comparative analysis using a structured evaluation protocol for accessing
an accuracy and robustness of a system,

• initiates the first GAN challenge in media forensics evaluation community, and

• provides constructive design and analysis recommendations for improvements of fu-
ture media forensic evaluations.

The paper is organized as follows: the next section defines the MFC18 evaluation tasks
and challenges and describes the proposed performance measures. The evaluation methods
and the datasets used are described in Secs. 3 and 4, respectively. Finally, in Secs. 5 and 6,
we provide results for each task and conclude the paper with the summary results and the
findings.
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2. Evaluation Tasks and Measures

This section provides a brief overview of MFC18 evaluation tasks/challenges and evalua-
tion metrics. The MFC18 evaluations were primarily performed on five tasks (MDL, SDL, EV, PF,
and PGB) and two challenges (CV, GAN). In this paper, a ”base” indicates original media
with high provenance while a ”probe” indicates manipulated media. A ”donor” indicates
another media source whose region(s) were spliced into the probe. The MFC18 evaluation
plan [1] includes a detailed description of the tasks/challenges and performance metrics.

2.1 Task Definition

The Manipulation Detection and Localization (MDL) task was to detect if the media (i.e.,
image or video) had been manipulated and, if so, then to spatially (temporally for video)
localize the manipulated region. For detection, an MDL system provided a confidence
score for each trial with higher numbers indicating the media was more likely to have been
manipulated. For the localization evaluation, the system provided a mask and its bit plane
that indicated the manipulated region(s) with a manipulation type. Local manipulations
(e.g., clone) required a mask output, while global manipulations (e.g., blur) affecting the
entire media did not require a mask. The MDL task was divided into two probe sets: an
image probe set and a video probe set.

The Splice Detection and Localization (SDL) task was to detect if a region of a given
image (i.e., the donor) had been spliced into another image (i.e., the probe) and, if so,
then to localize the region(s) of the donor and probe images that were used for the splice
operation. Similar to the MDL task, a SDL system provided a confidence score along
with two masks: one with the region(s) of the donor that was copied and another with the
region(s) of the probe that was pasted from the donor.

The Event Verification (EV) task was to determine if an image is associated with a
claimed event, given a collection of images and videos from the event. A EV system
provided a confidence score; image localization was not evaluated for this task.

The Provenance Filtering (PF) task was defined as searching for a potential pool of
related images (that may be present in a phylogeny graph [11, 12] with respect to the given
probe image) from a large collection of images (called the world dataset). Given a probe
image, the goal of the PF task was to return up to 500 images of the predicted ancestors
and descendants including the original base images from the provided world dataset. A PF
system provided a JSON file that contained 500 filtered images (represented as nodes)
including the given probe image itself and a confidence score for each node that indicated
how likely the filtered image was related with respect to the probe image.

The Provenance Graph Building (PGB) task was retrieving images related to the given
probe image from the world dataset and constructing the relationships among the retrieved
images. This includes finding the ancestor and descendent sequences. The probe image
could be a base, donor, intermediate, or final modified image. The goal of this task was
to construct a provenance phylogeny graph (for the given probe image) that described the
relationships among the associated images with the manipulation sequences. A PGB sys-
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tem provided a JSON file that contained both nodes and links with the two types of con-
fidence scores: (1) a confidence score for each node indicating how likely the retrieved
image (node) was present in the provenance graph of the probe image and (2) a confidence
score for each link indicating how likely the two nodes between a source node and a tar-
get node have the relationship (link) in the provenance graph. Although PGB system was
required to provide a full provenance graph, for MFC18, we evaluated the system under
two conditions: (1) full-set graph and (2) subset graph. For the full-set graph condition,
all images related to the probe image were evaluated with the ancestors and descendants’
sequences, while for the subset graph condition, the node set (the subset of the related
images) was restricted to ancestors and descendants of the probe image and only directed
paths related to the probe image were evaluated. In this paper, we present the results with
the full-set graph condition only.

The Camera Verification (CV) challenge was to determine if a camera fingerprint from
an image matches a claimed camera fingerprint, given a collection of camera device IDs.
This task supported both image and video probes, and the dataset consisted of three training
sets (image, video, and multimedia) and two testing sets (image and video). This yielded
a total of six training-testing conditions with the composition of the training sets and the
testing sets (see Table 4.2). A CV system provided a confidence score indicating how likely
the image was captured with the claimed camera, and the system was required to indicate
the training-testing condition for the submission.

The Generative Adversarial Networks Detection (GAN) challenge was to evaluate if a
system detected manipulated images/videos created by a generative model (called GAN-
based manipulations). With recent advances in GAN (Generative Adversarial Network)
techniques [13], realistic fake objects (e.g., faces) on media can be generated. To the best
of our knowledge, MFC18 was the first evaluation to address such a GAN challenge [9].
For the GAN challenge, the system was allowed to adapt the generative model for their sys-
tem development—the nature of the system for the GAN challenge may have been different
with the MDL task. To compare system performance between the GAN-based manipula-
tions and the other manipulations (non-GAN), both the GAN and non-GAN manipulations
are evaluated in the challenge.

2.2 Performance Measures

For detection and verification evaluations, system performance was measured by Area Un-
der Curve (AUC) and Correct Detection Rate at a False Alarm Rate of 5% (called CDR)
from the Receiver Operating Characteristic (ROC) [14] as shown in Figure 2.1-a.

For localization evaluations, the Matthews Correlation Coefficient (MCC) [15] was
primarily used. The optimum MCC (MCCo) was calculated using an ideal mask-specific
threshold found by computing metric scores over all pixel thresholds t. Figure 2.1-b shows
a visualization of the different mask regions used for image mask evaluations.

• T P(t) (True Positive) is the overlap area of the reference mask and system output
mask labelled as manipulated at the pixel threshold t(green).
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• FN(t) (False Negative) is where the reference mask indicates the area as manipu-
lated, but the system did not detect it as manipulated at the threshold t (red).

• FP(t) (False Positive) is where the reference mask indicates the region is not-manipulated,
but the system detected it as manipulated at the threshold t (orange).

• T N(t) is the where reference mask indicates not-manipulated, and the system also
detected it as not-manipulated at the threshold t (white).

• NS (No-Score) is the region of the reference mask not scored (purple), the result of
the dilation and erosion operations.

If the denominator is zero, then MCCo = 0. If MCCo = 1, there is perfect correlation
between the reference and system output masks. If MCCo = 0, there is no correlation
between the reference and system output masks. If MCCo = −1, there is perfect anti-
correlation.

For videos, manipulation detection and temporal localization (not including spatial lo-
calization) were evaluated in MFC18. The objective was to detect if a video has been
manipulated and then to determine which time segments have been manipulated. MCC
was calculated on the time segments.

(a) Detection metrics (b) Localization metrics

Figure 2.1. Performance measures (a) Receiver Operating Characteristic (ROC) and Area Under
Curves (AUC) for detection and verification metrics; (b) Computation of mask confusion matrix
for localization metrics [1].

For the PF task, recall of the top-k retrieved images was primarily used to examine sys-
tem performance. For the MFC18 evaluation, we used the list of k ∈ {50,100,200,300}
which are represented as recall@50, recall@100, recall@200, and recall@300, respec-
tively. For the PGB task, we adopted the graph similarity metrics proposed by Papadim-
itriou et al. [16]. The performance metrics determine the overlap of nodes (vertices) and
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links (edges) between the reference and the system output provenance graph and are de-
fined as follows:

simNO = 2
|Vr∩Vs|
|Vr|+ |Vs|

(1)

simLO = 2
|Er∩Es|
|Er|+ |Es|

(2)

simNLO = 2
|Vr∩Vs|+ |Er∩Es|
|Vr|+ |Vs|+ |Er|+ |Es|

(3)

where Gr = (Vr,Er) is the reference provenance graph, Vr is the set of nodes, and Er is the
set of links for the reference while Gs = (Vs,Es) is the system provenance graph, Vs is the
set of nodes, and Es is the set of links for the system output. simNO is the overlap of nodes,
simLO is the overlap of links, and simNLO is the overlap of both nodes and links. If Gs = Gr,
then simNO = simLO = simNLO = 1.

For all the metrics described above, a higher value is considered as better performance.

3. Evaluation Framework

This section gives an overview of the evaluation type, condition, and scoring framework
that were used in the MFC18 evaluation.

3.1 Evaluation Types

For the MFC18 evaluation, there were the two evaluation types: 1) open evaluation and 2)
sequestered evaluation. For the open evaluation, the performers ran their software on their
hardware and configurations, and submitted the system output with the defined format.
On the other hand, for the sequestered evaluation, the performers submitted their run-able
system, and system performance was independently evaluated on the sequestered data using
the evaluator’s hardware. The following report and analysis are based on the results from
the open evaluation only.

3.2 Evaluation Conditions

In the MFC18 evaluation, systems provide their outputs with an option of four differ-
ent conditions: 1) image-only, 2) image-and-metadata, 3) video-only, and 4) video-and-
metadata. For the image-only condition, the system was only allowed to use the pixel-based
content of images as input. On the other hand, for the image-and-metadata condition, the
system was allowed to use metadata, including image header, in addition to the pixel-based
content for the image. For the video-only condition, similar to the image conditions, the
system was only allowed to use the pixel-based content for videos and audio if it existed as
input, while for the video-and-metadata condition, the system was allowed to use metadata,
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including video header or other information. In this paper, we primarily focus on condition
1 and 3; image-only and video-only, respectively.

3.3 Scoring Framework

With advanced editing and deep learning tools, realistic tampered images/videos with di-
verse manipulation techniques (e.g., remove, clone, splice, crop, synthesized media, among
others) are widely available everywhere. Although the goal of the MFC18 evaluation is to
develop a general forensic application, it is often a challenge for a system to attack all of
the diverse manipulation operations. Actual cases that forensic analysts face every day are
different and situational, and sometimes forensic analysts need a robust tool that can sup-
port a specific application domain by taking advantage of a suite of tampering techniques
proven to be effective in that domain. For example, system targeting face-swap detection
may not be able to process a tampered image where a face is not present.

In this regard, the MFC18 evaluation supported three different scoring frameworks: (1)
full scoring, (2) opt-in scoring, and (3) selective scoring. Table 3.1 is a summary of the
scoring frameworks.

Table 3.1. A Summary of the MFC18 Scoring Frameworks

Det: Detection, Loc: Localization, Target: Target manipulation trials to be detected, Non-Target: Original
media or non-target manipulation trials

Full
Scoring

Opt-In
Scoring

Selective
Scoring

Det Loc Det Loc Det Loc

Target Full Set Full Set
Subset
(Status)

Subset
(Status)

Subset
(Query)

Subset
(Query)

Non-Target Full Set
Subset
(Status) Full Set

For full scoring, performance was scored over a full test set from all trials (for both a
target and non-target set) present in the task, regardless of the trial’s process status or the in-
tended manipulation type detection specified by the system. For localization, performance
was scored on detected target trials only.

Another scoring framework was opt-in scoring. For all tasks, a system could use a
strategy to identify which probes were appropriate for a response. The system indicated for
each trial if it was appropriate for the system to respond for the probe, if it was not appropri-
ate for the system to respond, or if it was only appropriate for the system to respond to one
sub-task (e.g., detection but not localization). For localization sub-tasks, specific portions
of an image mask were also able to be deemed not appropriate for a response, denoting the
region with specific pixel value. Even when a system determined it was not appropriate to
respond, the system was required to enter a response, which was scored under full scoring.
On the other hand, under opt-in scoring, only trials the system deemed appropriate for a
response on the task or sub-task were scored. Both target and non-target trials were subset-
ted, based on the system’s determination. Under opt-in scoring, in addition to performance
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metrics, the fraction of processed trials executed by the system was reported, known as the
trial response rate (TRR).

The third scoring framework was selective scoring, which used a subset (query) that
queried manipulation types from the target trials only. It could be used to filter the target
trials for manipulations of interest, and it was scored on the subset of target trials while
using all non-target trials (fixed number of non-targets). The selective scoring protocol
could also be utilized for localization; mask regions containing non-selected manipulation
types were treated as no-score regions for measuring localization performance; both full
scoring and the opt-in scoring were available for the selective scoring results. Details of
the evaluation framework are available in the MFC18 evaluation plan [1].

For simplicity, in this paper we present the results for full scoring and three instances
of selective scoring only.

4. Dataset

For the MFC18 data collection, an original image or video (called a base) was used to
generate the diverse manipulated media collections. A donor media was defined as a media
that had been spliced into a target manipulated media. While creating manipulations given a
base image or video, it was important to keep track of each manipulation step and to gener-
ate a mask for that manipulation as a unit output (called a journal). Thus, PAR Government
Systems in collaboration with NIST developed a Journaling Tool (JT) by Robertson et al.
[17] that created a graph of manipulation history and its segmentation masks for the unit
output of a graph, a base , donor media, and manipulated media) as shown Figure 4.1-a.

4.1 Journal Type

As illustrated in Figure 4.1, the MFC18 dataset consists of the three journal types for the
data collections, namely: (a) Human-JT, (b) Extended-JT, and (c) Auto-JT. A journal type
is a set of journals that all share a property.

Human-JT denotes the set of journals created by people manually manipulating media
using editing tools and software, including but not limited to Adobe Photoshop, ImageMag-
ick, and GIMP. As illustrated in Figure 4.1-a, a node in the graph represents a piece of
media (an image in this example) and a directed link indicates what manipulation type was
applied to create the following target image from the previous image. Human-based ma-
nipulations are often expensive and time consuming, and the data sample size may not be
statistically balanced and enough for evaluating the accuracy and robustness of a system.
Thus, we provided the other tools that automatically created manipulations.

Extended-JT denotes the set of journals created by an Extended Journaling Tool taking
existing journals and extending them by automatically creating new manipulated media
based on the nodes in the existing journal. Extended-JT augments the collection of ex-
isting journals for supporting or expanding necessary target manipulations in the scope of
research interests. The extended manipulations are marked in green on Figure 4.1-b.
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(a) Human-JT (b) Extended-JT

(c) Auto-JT (Random Design case)

Figure 4.1. Examples of the three journal types; (a) Human-JT denotes the set of journals created
by people manually manipulating media using editing tools; (b) Extended-JT is the set of journals
created by an algorithm taking existing journals and extending them by automatically creating new
manipulated media; (c) Auto-JT is the set of journals automatically generated by an Auto-JT tool
to produce a large corpus of manipulated images by a specified design.
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One drawback of human journals is that there are limitations to cover diverse manipula-
tions; the overall data size may be insufficient for train and evaluation as well as it contains
the unbalanced manipulation types. To support such limitations, the Automated Journaling
Tool was developed to support a large number of datasets (that mimic human-based jour-
nals) and to support a wide domain of manipulation types (balanced sample size). The tool
is capable of creating diverse manipulations by applying a manipulation layer design. For
the MFC18 evaluation, we used three different kinds of layered design: (1) single layer, (2)
k layers, and (3) random number of layers. Auto-JT denotes the set of journals created by
the fully-automated tool without human intervention. Figure 4.1-c is an Auto-JT journal
type example from the auto-generated random layer design in the MFC18 data.

Using the three journal types, a large scale of the datasets (for both image and video)
was created to support the MFC18 evaluations.

Figure 4.2 is a summary distribution of the three journal types for image datasets. The
EvalPart1 dataset is a test set for evaluation and the Dev1 and Dev2 indicates a training set
for supporting system development. We included a large number of the Auto-JT journals
for the Dev2 training set. The training sets (Dev1 and Dev2) have unbalanced distribution
across the three journal types. The proportion among the three journal types is, however,
balanced for the EvalPart1 test set: Human-JT (30%), Extended-JT (31%), and Auto-JT
(39%), respectively.

Figure 4.2. Distribution of the three journal types (MDL case); the stack histogram shows the
Dev1 and Dev2 training sets have unbalanced distribution across three journal types while the
EvalPart1 test set is balanced with Human-JT (30%), Extended-JT (31%), and Auto-JT (39%),
respectively.
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4.2 Data Distribution

Table 4.1 is a summary of the datasets for each task. Again, the Dev1 and Dev2 are indi-
cated as a training set (incrementally released as the subsets of the training sets). The test
set was divided into the three subsets: EvalPart1, EvalPart2, and EvalPart3. The EvalPart1
dataset was used for open evaluation while the EvalPart2 and EvalPart3 datasets were used
for sequestered evaluation. The paper written by Guan et al. [18] describes the MFC18
dataset collections in details. Since we address the open evaluation only in this paper, we
present our results based on the EvalPart1 dataset only.

Figure 4.3 shows the distribution of the manipulation types that were used for the
MDL-Image task. The x-axis denotes the manipulation types, and the y-axis is the stacked
instance counts of Dev1 (blue), Dev2 (orange), and EvalPart1 (green) datasets for each
manipulation type. The distribution of the manipulation types are unbalanced.

Figure 4.3. MFC18 Manipulation types distribution (MDL-Image); The x-axis denotes the
manipulation types, and the y-axis is the stacked instance counts of Dev1 (blue), Dev2 (orange),
and EvalPart1 (green) datasets for each manipulation type. Note the unbalanced manipulation type
distributions across the three datasets.

The Event Verification (EV) task is a verification task while MDL and SDL are detec-
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tion tasks. The target and non-target trials are therefore a pair-event, and the #N and #NT
in Table 4.1 (EV column) are the number of the pair-event trials.

For the Camera Verification (CV) task, the MFC18 dataset was divided into the six
subsets depending on the training-testing conditions. Table 4.2 shows the training-testing
conditions and their relevant numbers of target and non-target trials. In this paper, for
simplicity, we primarily discuss the results when the training and testing sets are on the
same media type; namely, Image-Image and Video-Video.

As mentioned in Sec. 2.2, the Generative Adversarial Networks Detection (GAN) chal-
lenge allowed the teams to adapt the generative model for their system development. As
illustrated in Table 4.3, we included a GAN image dataset with 855 target trials (mixed
of GAN and non-GAN manipulations) and 485 non-target trials, and a GAN video dataset
with 50 target trials and 68 non-target trials to compare system performance.

For the GAN image dataset, the GAN-based manipulations can be categorized into
local-GAN and global-GAN. The local-GAN operations included the GANFill and GAN-
based PasteSplice. For instance, the donor image generated by the GAN model pastes into
the local area of the probe image. On the other hand, the global-GAN contains Erasure-
ByGAN and anti-forensics (based on camera model anti-forensic techniques generated by
GAN). The definition of manipulation operation types is described in the user guide written
by E.Robertson [19]. Note that the crop and resize operations generated by either GAN or
non-GAN tools are not a part of the target trials for the GAN challenge.

Figure 4.4 illustrates a distribution of the manipulation operations for the GAN image
dataset. A major drawback in this GAN dataset is that GAN manipulations were combined
with non-GAN manipulations in the probe set (as shown Figure 4.4) and design of the
dataset required further examination. For instance, Figure 4.5 is a sample from the MFC18
GAN image dataset; this manipulated image contains both GAN (e.g., ErasureByGAN),
and non-GAN (e.g., ColorBalance) operations, so the authors suggest interpreting the GAN
challenge results (or even using the GAN challenge dataset) with caution.

Table 4.1. Summary of the MFC18 Evaluation Tasks Datasetsa

Dev1 and Dev2 are the training set and EvalPart1 is the test set. #T indicates the number of the target trials
and #NT is the number of the non-target trials. #Probe is a number of the images or videos that are the
subject of the task question posed to the system. #World is the number of images and videos pool that

simulates a real-world collection of unknown provenances.

MFC18
Datasets

Image Provenance
(PF + PGB)

Video
MDL SDL EV MDL

#T #NT #T #NT #T #NT #Probe #World #T #NT
Dev1 4,395 1,162 2,496 47,504 400 1,200 209 13,304
Dev2 36,910 1,429 10,009 39,991 398 1,194 318 31,005

EvalPart1 3,265 14,156 1,105 15,618 600 6,600 1,122 1,020,339 323 713
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Table 4.2. MFC18 Camera Verification (CV) Challenge Dataset

The MFC18 dataset was divided into subsets depending on the training-testing conditions. The primary
focus in this paper is the conditions from Image-Image and Video-Video only.

Condition #T #NTTrain Test
Image Image 2,440 2,835
Video Image 1,720 1,663

Multimedia Image 1,720 1,663
Image Video 101 188
Video Video 101 188

Multimedia Video 101 188

Table 4.3. MFC18 Generative Adversarial Networks Detection (GAN) Challenge Dataset

#T indicates the number of the target trials and #NT is the number of the non-target trials.
Image Video

#T #NT #T #NTLocal/Global GAN Non-GAN
729 126 485 50 68

Figure 4.4. Manipulation type distribution on GAN image dataset; both GAN-based (marked in
red) and non-GAN manipulation types were used for the target trial and unbalanced manipulation
types was used in the MFC18 evaluation.
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(a) Original image (b) Manipulation using both GAN & non-GAN

Figure 4.5. An example of the MFC18 GAN dataset (approved by IRB ITL-0018); (a) genuine
image; (b) the manipulated image contains both GAN (e.g., ErasureByGAN) and non-GAN (e.g.,
ColorBalance) operations, so the authors suggest interpreting the GAN challenge results with
caution.

5. Results

Although all MFC18 results are available with the different conditions, frameworks, and
datasets described in Secs. 3 and 4, in this paper, the results for the image-only and the video-
only conditions and the full scoring framework on the MFC18 EvalPart1 dataset are pre-
sented to describe results and demonstrate analysis methods.

5.1 Full Scoring Framework

A total of 25 teams from the academic and industrial sectors participated in the MFC18
evaluations, and the teams were allowed to have multiple submissions with their validated
system outputs. Each team had the option to participate only in selected tasks and chal-
lenges. No team was in every task and challenge; hence the resulting summary in Table 5.1
has many missing values which resulted in analysis complications.

For performance measures, we used AUC (Area Under Curve) and CDR (Correc-
tion Detections at False Alarms = 0.05) for detection and verification tasks (MDL, SDL,
EV, CV), while using MCCo (Matthew Correlation Coefficient with an optimal threshold)
for localization (MDL, SDL). Figures 5.1 and 5.2 illustrates ROC curves for detection and
mask confusion matrix for localization, respectively.

Out of all the submissions, for each task and sub-task, we first identified the submis-
sions under the evaluation conditions and frameworks for this paper. If there were multiple
submissions for the team, we used the submission that had the highest system performance
on the primary metric for the task or sub-task. For instance, in the case of team T12 , we
identified a total of 27 submissions for the MDL-Image detection task. We then picked a
submission with the highest AUC value for the detection. If two or more systems tied for the
highest AUC value but had different CDR values, the system with the highest CDR value
was chosen. For the MDL-Image localization, the T12 system with the highest MCCo was
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Figure 5.1. An example of ROC curves for participants in the MFC18 MDL-Image detection task;
the x-axis is a false alarm rate (FAR) and the y-axis is a correct detection rate (CDR).

Figure 5.2. A graphical example of localization evaluations; top-left: ground-truth masks marked
in color by different manipulation types, top-right: system output mask, bottom-left: Mask
confusion matrix visualization, bottom-right: confusion matrix results for scoring localization.

chosen, which may be different than the T12 system chosen for the detection task; pMCCo
indicates the probe localization metric while dMCCo is the donor localization metric. Ta-
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ble 5.1 shows the top values for each team on the tasks; the primary metrics are described
in Sec. 3. For all the metrics, a higher value is considered as better performance.

Table 5.1 shows team performance for the five evaluation tasks for both image and
video detection and localization. For image evaluations, we had system submissions from
17 teams for MDL, 4 teams for SDL, 2 teams for EV and 3 teams for the PF and PGB tasks.
For video evaluations, we had system submissions from 4 teams for the MDL task.

Table 5.1. Summary of MFC18 Image/Video Five Evaluation Task Results (Full Scoring Only)

Det: Detection, Loc: Localization, #Team: Number of participants

Team

MDL SDL EV PF PGBImage Video
Det Loc Det Loc Det Loc

AUC CDR MCCo AUC CDR MCC AUC CDR pMCCo dMCCo AUC CDR Re@300 simNLO simNO simLO
T01 0.59 0.06 0.21
T02 0.59 0.21 0.05 0.68 0.31 0.30 0.31
T03 0.65 0.16 0.85 0.48
T04 0.58 0.08 0.07 0.77 0.62 0.36 0.33
T05 0.59 0.13
T06 0.57 0.06
T07 0.83 0.47 0.15 0.59 0.12 0.09
T09 0.90 0.57 0.79 0.29
T10 0.47 0.09 0.05
T12 0.69 0.16 0.15 0.72 0.27
T13 0.72 0.16
T14 0.64 0.10 0.06 0.75 0.43 0.19 0.16
T16 0.90 0.54 0.80 0.27
T17 0.69 0.22 0.05
T18 0.75 0.28
T19 0.51 0.01
T20 0.50 0.04 0.00 0.40 0.03 -0.01
T21 0.54 0.09 0.07
T22 0.56 0.08 0.03
T23 0.72 0.40 0.18 0.16 0.87 0.46 0.77 0.05
T24 0.74 0.29 0.26
T25 0.61 0.07 0.10

#Team 17 17 13 4 4 2 4 4 4 4 2 2 3 3 3 3

Table 5.2 illustrates performance on the two challenge tasks for both image and video.
For image, 8 teams submitted their systems for the CV challenge with image training and
testing sets and 9 teams for the GAN challenge. For video, 3 teams submitted their sys-
tems for the CV challenge with video training and testing sets and 5 teams for the GAN
challenge.

For The MDL-Image task, Figure 5.3-a ranks the 17 teams (ordered by AUC) for the
MDL-Image detection task on 3,265 target trials and 14,156 non-target trials. The red line
is the ranking for AUC, and the blue line is for the corresponding CDR. With obvious ex-
ceptions, the general trend of the two metrics performance is similar across the systems.
Given the manipulation types, the results show that T07 has the highest AUC (0.83) fol-
lowed by T18 (0.75) for the detection. Out of 17, as shown in Figure 5.3-b, only 13 teams
participated in the localization evaluation, and the teams are ordered by optimum MCC
values. For localization, T24 has the highest MCCo (0.26) followed by T01 (0.21). For
at least three teams, there are different systems selected for the detection and localization
tasks than were selected for detection–which implies that a good detection system may not
be necessarily robust to localize the manipulated region.

To demonstrate an analysis methodology, the block plot [20, 21] in Figure 5.4 was used
to address three major questions: 1) how does the system perform on the different journal
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Table 5.2. Summary of MFC18 Image/Video Challenge Results (Full Scoring Only)

Det: Detection, Loc: Localization, #Team: Number of participants

Team

CV GAN

Image-Image Video-Video
Image Video

Det Loc Det
AUC CDR AUC CDR AUC CDR MCCo AUC CDR

T01 0.77 0.55 0.55 0.18
T04 0.51 0.07 0.61 0.03
T07 0.65 0.32 0.69 0.10 0.07 0.68 0.12
T08 0.65 0.20
T10 0.42 0.05 0.02
T11 0.66 0.42
T12 0.66 0.12
T15 0.87 0.77 0.60 0.36
T17 0.55 0.07
T18 0.49 0.09 0.01
T19 0.68 0.24
T20 0.77 0.57 0.70 0.35
T22 0.70 0.08 0.09 0.59 0.06
T24 0.81 0.57 0.79 0.59 0.37 0.74 0.58
T25 0.59 0.14 0.74 0.17

#Team 8 8 3 3 9 9 5 5 5
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(a) Detection (MDL-Image) (b) Localization (MDL-Image)

Figure 5.3. System performance ranking for MDL-Image; (a) detection performance ranking
ordered by AUC; (b) localization performance ranking (OptMCC indicates MCCo); the
highest-performed system in detection is not necessary the highest-performed system in
localization.
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Figure 5.4. Effect of journal types across systems (MDL-Image case); The x-axis is the team and
the y-axis is the mean AUC. The characters inside each bar represent the settings of the journal
types. The journal type has a larger effect on some systems (e.g. T10, T18, T24) but is not as
noticeable for other teams (e.g., T07 and T20).

types?, 2) is the conclusion robust, and 3) is the journal type an important factor?. The
x-axis is the team, and the y-axis is the mean AUC based on the MDL. The characters
inside each bar represent the settings of the journal types: Human-JT (H), Extended-JT
(E), and Auto-JT (A). A taller bar indicates a larger impact of the journal type on that
system compared to a smaller bar. The results showed that Human-JT and Extended-JT
are easier to detect for some teams (e.g., T24) while Auto-JT are easier to detect for other
teams (e.g., T18 and T22). The ranked list of the journal types is not consistent across the
systems, and T07 has the highest AUC regardless the journal type. The journal type has a
larger effect on some systems (e.g. T10, T18, T24) but is not as noticeable for other teams
(e.g., T07 and T20).

For the MDL-Video detection task, Figure 5.5-a ranks the results of the 4 systems (or-
dered by AUC) on 323 target trials and 713 non-target trials. The red line is the ranking for
AUC, and the blue line is for the corresponding CDR. Over all manipulation types, T07 has
the highest AUC (0.59) followed by T05 (0.59). Figure 5.5-b ranks the results of the 2 sys-
tems for the MDL-Video localization. Over all manipulation types, T07 has the highest
MCC (0.09).

For the SDL task, we evaluated 4 systems on 1,327 target trials and 16,673 non-
target trials. Figure 5.6 shows that T04 has the highest performance for both detection
(AUC = 0.77) and localization (pMCCo = 0.36, dMCCo = 0.33) from probe and donor
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Figure 5.5. System performance ranking for MDL-Video; (a) detection performance ranking
ordered by AUC; (b) localization performance ranking ordered by MCCo; The team T07 has the
highest AUC (0.59) and the highest MCC (0.09).

●

●

●

●

●

●

●

●

AUC

CDR

0.00

0.25

0.50

0.75

1.00

T
04

T
14

T
23

T
02

Team

M
et

ric

●

●

●

●

●

●

●

●

DonorOptMCC

ProbeOptMCC

0.15

0.20

0.25

0.30

0.35

T
04

T
02

T
14

T
23

Team

M
et

ric

(a) Detection (SDL-Image) (b) Localization (SDL-Image)

Figure 5.6. System performance ranking for SDL; (a) detection performance ranking ordered by
AUC; (b) localization performance ranking ordered by pMCCo (ProbeOptMCC and
DonorOptMCC indicate pMCCo and dMCCo, respectively.); The team T04 has the highest
performance for both detection (AUC = 0.77) and localization (pMCCo = 0.36, dMCCo = 0.33).

masks, respectively.
For the EV task, the MFC18 EvalPart1 dataset contained 12 different events. The train-

ing sets consisted of between 100 and 200 images while the testing sets contained 50 im-
ages for each event. The EV evaluation was conducted on 600 target pair-events and 6,600
non-target pair-events. The results in Figure 5.7 show that T03 has the highest AUC (0.85)
for the EV task.
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Figure 5.7. The EV data and system performance ranking; (a) data distribution for MFC18
EvalPart1 and training data; (b) verification performance ranking ordered by AUC; The
team T03 has the highest AUC value (0.85).

For the PF and PGB tasks, three teams participated in both the provenance tasks. The
evaluations were conducted on 1,122 target probes and 1M world data. As illustrated in
Figure 5.8, out of the three teams, T09 has the highest performance for both PF (Recall at
300: 0.90) and PGB (simNLO = 0.57).
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Figure 5.8. System performance ranking for provenance tasks; (a) PF performance ranking by
Recall@300; (b) PGB performance ranking ordered by simNLO; The team T09 has the highest
performance for both PF (Recall@300 = 0.90) and PGB (simNLO = 0.57).

In the CV challenge, we used 2,440 target and 2,835 non-target image trials from the
condition where both training and testing sets are images (namely, Image-Image challenge).
A total of 8 teams participated in the CV (Image-Image) challenge. As shown in Figure 5.9-
a, the general trend of the two primary metrics is similar. The results show that T15 has
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the highest AUC value (0.87) for the CV (Image-Image) challenge. For the CV (Video-
Video) challenge, 3 teams participated and were evaluated their systems with 101 target
188 non-target video trials. Figure 5.9-b shows the general trends on the primary metrics.
The results show that T20 has the highest AUC value (0.70) for the CV (Video-Video)
challenge.
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Figure 5.9. CV System performance ranking for CV; (a) Image-Image performance ranking
ordered by AUC; (b) Video-Video performance ranking ordered by AUC; T15 has the highest
(AUC = 0.87) for Image-Image while T20 has the highest (AUC = 0.70) for Video-Video.

Lastly, for the GAN challenge, Figure 5.10-a illustrates the evaluation results on the
image dataset (855 target trials and 485 non-target trials) for detection while Figure 5.10-b
shows the evaluation results on the video dataset (50 target trials and 68 non-target trials).
As mentioned above, one of the drawbacks for the GAN dataset is that probes contain
multiple manipulation types other than GAN-related operations which can mislead the in-
terpretations of the GAN challenge results. Interpretation of the GAN challenge results
should be done with caution.

5.2 Selective Scoring Framework (MDL-Image only)

For the MDL-Image task, there were at least 11 selective scoring queries under which
teams could be scored. Teams indicated which scoring queries would be appropriate for
each system. In this paper, for demonstration purposes, we selected 3 selective queries,
namely, Clone, Remove, and Crop.

For the Clone selective scoring in the MDL-Image detection, Figure 5.11-a ranks the 6
teams (ordered by AUC from the full scoring). The red line is the ranking for AUC, and
the blue line is for the corresponding CDR. With obvious exceptions, the general trend of
the two metrics performance is similar across the systems. On the clone manipulation, the
results show that T24 has the highest AUC (0.81) followed by T07 (0.80) for the detection.
Out of 6 teams, 5 participated in the localization for the Clone selective scoring evaluation.
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Figure 5.10. System performance ranking for GAN; (a) GAN-Image performance ranking ordered
by AUC; (b) GAN-Video performance ranking ordered by AUC; note that probes contain multiple
manipulation types other than GAN-related operations which require caution to interpret the GAN
challenge results.

For the localization, Figure 5.11-b shows that T24 has the highest MCCo (0.27), followed
by T07 (0.13).

For the Remove selective scoring in the MDL-Image detection, Figure 5.12-a ranks the
results of the 7 teams (ordered by AUC from the full scoring). On the Remove manipula-
tion, the results show that T07 has the highest AUC (0.81) followed by T13 (0.79) for the
detection.

For the Crop selective scoring in the MDL-Image detection, Figure 5.12-b ranks the
results of the 6 teams (ordered by AUC from the full scoring). On the Crop manipula-
tion, T07 has the highest AUC (0.83) followed by T22 (0.82) for the detection.

5.3 NC17 and MFC18 Comparison

Prior to the MFC18 evaluations, we introduced the 2017 Nimble Challenge (NC17) to ad-
vance the state-of-the-art for media forensics technologies that automatically determine the
region and type of manipulations in imagery [22]. In this section, we briefly discuss the
comparison of results between the NC17 and MFC18 evaluations. For the performance
comparison, we picked the highest performance value for each task as illustrated in Fig-
ure 5.13. Note that different datasets and different system submissions between the NC17
and MFC18 evaluations were used in this comparison. The paper [18] introduced both
NC17 and MFC18 datasets in detail as well as how they were built to support the research
community.

The results in Figure 5.13 indicate that the MDL and SDL system performance in
the MFC18 evaluation was slightly improved while the PF and PGB performance in the
MFC18 had a significant improvement compared to the prior NC17 evaluation. For the Prove-
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Figure 5.11. System performance ranking for selective scoring (MDL-Image: Clone); (a)
detection performance ranking ordered by AUC; (b) localization performance ranking; T24 has the
highest performance for both detection (AUC = 0.81) and localization (MCCo = 0.27).
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Figure 5.12. System performance ranking for selective scoring (Remove and Crop); (a) Remove
detection performance ranking ordered by AUC; (b) Crop detection performance ranking ordered
by AUC; T07 has the highest performance for both the Remove and Crop detection (AUC = 0.81
and AUC = 0.83, respectively).

nance Filtering (PF) comparison, the metric Recall@200 was used for the comparison
since Recall@300 was not available in the NC17 evaluation; hence the PF highest values
between Table 5.1 and Figure 5.13 are not the same.
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Figure 5.13. Tasks performance comparison of the NC17 and MFC18 evaluations (different
systems and different datasets were used for the comparison).

6. Conclusions

In this paper, we presented an evaluation framework, analysis methodology, and how it
was applied to the MFC18 results with a full scoring and selective scoring evaluation. For
MFC18, we defined the five tasks (MDL, SDL, EV, PF, and PGB) and two challenges (CV
and GAN) with associated performance metrics. A total of 25 teams participated in the
MFC18 evaluations for the image and video tasks, and the experiments were conducted for
comparative analysis using a structured evaluation framework to assess the accuracy and
robustness of a system. The MFC18 evaluation produced a large number of diverse datasets
(both manually and automatically) for evaluating the defined tasks. We also provided a
ranked list of system performance for each task and demonstrated the factor effect using
the journal type. Our results showed that the highest AUC value is 0.83 (T07) for the MDL-
Image detection, and MCCo is 0.26 (T24) for the MDL-Image localization. For video, we
found the highest AUC value is 0.59 (T05 and T07) for the MDL-Video detection. We
found a general difference between detection and localization performance and that some
teams had different systems with best performance for each task, implying that a good
detection system may not be necessarily robust to localize the manipulated region. The
journal type has effect on some systems.

We hope that the MFC18 evaluation provides researchers insight on their system per-
formance and direction of their system development. Further, it is our hope that it provides
the computer vision community the data and evaluation foundation needed for advancing
media forensics technology.
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