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The interfacial tension of coacervates, the liquid-like phase composed of oppositely charged
polymers that coexists at equilibrium with a supernatant, forms the basis for multiple technolo-
gies. Here we present a comprehensive set of experiments and molecular dynamics simulations to
probe the effect of molecular mass on interfacial tension, γ, far from the critical point, and derive
γ = γ∞(1 − h/N) where N is the degree of polymerization, γ∞ is the infinite molecular mass limit,
and h is a constant that physically corresponds to the number of monomers within the coacervate
correlation volume.

Under suitable conditions, solutions of oppositely
charged polymers can form a liquid-like complex coac-
ervate phase in coexistence with a supernatant phase—a
phenomenon known as complex coacervation [1–6]. A
key feature of these coacervates is their ultra-low inter-
facial tension [7–10] making them appealing for a vari-
ety of applications including underwater adhesives [11],
biomedical technologies [12], etc. [2–4]. Ultra-low inter-
facial tension is also an important property in biological
systems such as membraneless organelles [13], which have
been described as coacervates [14–16]. However, the full
functional dependence of the interfacial tension on all rel-
evant quantities—salt, temperature, molecular mass—in
all regimes is not yet known. This is in direct contrast
with neutral systems, where extensive efforts have led to
a comprehensive characterization of the interfacial ten-
sion and interfacial profiles, including the effects of poly-
dispersity [17–22].

Most work thus far has focused on the salt depen-
dence, as the addition of salt can act as a stimulus shift-
ing the two-phase system to a homogeneous solution.
There have been several experiments [7–9], simulations
[23, 24] and, most notably, a derivation [25] of scaling
laws using the Voorn-Overbeek theory [26] [27] coupled
with the Cahn-Hilliard theory [28]. Specifically, Qin and
coworkers found that the interfacial tension, γ, goes as
(1−ψ/ψcr)3/2/N1/4 near the critical point where ψ is the
salt concentration, ψcr is the critical salt concentration
and N is the degree of polymerization.

Qin and coworkers derived the dependence of the in-
terfacial tension on degree of polymerization—the most
important non-stimuli design parameter—near the criti-
cal point. The behavior far from the critical point, how-
ever, is still unknown. In the context of coacervate-based
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applications, this knowledge is essential for informed de-
sign. For underwater adhesives, the initial formulation
should offer good wettability and be far from the crit-
ical point, such that stimuli such as pH can trigger a
phase transition to a precipitate or gel phase [29]. For en-
capsulation, droplet size depends on the surface tension,
and being far from the critical point enables a dramatic
enrichment of cargo such as RNA, proteins, or flavor-
enhancing molecules [12].

The lack of theory in this regime is partly due to a
scarcity of experimental data to motivate a derivation.
To date, only one study by Priftis and coworkers [8]
has explored the molecular mass dependence. They con-
sidered three molecular masses of poly(l-glutamic acid
sodium salt) and poly(l-lysine hydrochloride). As one
measurement was likely close to the critical point, only
two points were left to ascertain the trend of molecular
mass far from the critical point. In this letter, we fill this
gap in the literature by performing experimental mea-
surements for the molecular mass dependence far from
the critical point. We derive this dependence and fur-
ther validate it via molecular dynamics simulations. The
resulting interfacial profiles are computed and compared
to theory.

In order to experimentally measure the interfacial ten-
sion for different molecular masses, several key elements
are needed: a reliable method for measuring ultra-low
interfacial tensions, low-polydispersity polymers, and a
series of different molecular mass model polymers that
form coacervates at the same salt concentration.

We mix polyacrylic acid (PAA) and quaternized
poly(dimethyl aminoethyl methacrylate) (qPDMAEMA)
[30] of varying molecular masses at a 1:1 charge stoichio-
metric ratio in water at an initial polymer concentration
of 0.3 mol/L. After trial and error, it was determined that
the measurement criteria were satisfied over a wide de-
gree of polymerization (69 < N < 451) and temperature
(stable down to 0 ◦C) when the salt (NaCl) concentra-
tion is 100 mmol/L and the pH is 6.5. To confirm these
findings, we also measured the concentration in both the
supernatant and the coacervate (see Supplementary In-
formation [31] for details). As can be seen in Table I, the
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TABLE I. Experimental data for total polymer concentra-
tions (cp) and interfacial tension (γ). 1/N∗ = 1/(2NPAA) +
1/(2NqPDMAEMA) for consistency with Ref. [19].

N∗ cp (supernatant) cp (coacervate) γ
(mol/L) (mol/L) (µN/m)

69.5 0.0058 ± 0.0009 3.24 ± 0.1 180 ± 18
145.0 0 3.45 ± 0.11 610 ± 50
218.9 0 3.27 ± 0.11 750 ± 69
485.6 0.001 ± 0.004 3.36 ± 0.11 880 ± 57

concentrations in both phases confirm that the system is
far from the critical point.

To robustly measure ultra-low interfacial tension, we
leverage recent work by Ali and coworkers that combined
deformed drop retraction analysis and the lower criti-
cal solution temperature property of complex coacervates
[9, 32]. Coacervate, in contact with its supernatant, is
placed in a 500 to 800 µm gap between the parallel plates
of a shear-cell. After a temperature jump and subsequent
equilibration at 25 ◦C, well-separated 30 to 150 µm drops
of dilute (supernatant) phase are formed. These spher-
ical drops are deformed to an ellipsoidal shape by ap-
plying a deforming strain controlled via the shear-plate.
After the deforming strain is withdrawn, the retraction
of the drop to a spherical shape is measured. This in-
formation, combined with the zero-shear viscosity of the
coacervate and supernatant, enables quantification of the
interfacial tension. Additional experimental details in-
cluding the necessary rheological analysis and equations
for time-dependent droplet shape analysis are provided
in the Supplementary Information (SI) [31]. The results
of these measurements are in Table I and Fig. 1. The
error bars for the interfacial tension are obtained from
one standard deviation in the retraction times measured
for at least seven independent drops of varying sizes.

Empirically, we find that

γ = γ∞(1− h/N) (1)

(the black line in Fig. 1) where γ∞ is the interfacial ten-
sion for infinite molecular mass and h is a constant that
is dependent on the system and its conditions (temper-
ature, charge density, etc.). In order to understand this
behavior from a theoretical perspective, we start with
two key assumptions: (1) the only N dependence in the
free energy is contained in the ideal gas term and (2)
the system is far from the critical point, where the con-
centration of polymer in the supernatant phase can be
approximated as zero. The first assumption is in line
with a variety of existing theories not only for complex
coacervates [26, 33–36], but also for polymeric systems in
general [37, 38][39]. The second assumption is found to
be true within the uncertainty of our measurements (see
Table I) and is consistent with prior experiments [40, 41]
and simulations [36] where the concentration in the su-
pernatant was found to be 2 to 3 orders of magnitude
smaller than that of the coacervate.

We initially ignore the counterions and salt and relax
this constraint later. The dimensionless free energy den-
sity is

f =
φ

N
lnφ+ g(φ) (2)

where φ is the monomeric density and g(φ) can take any
physically realistic form.

To provide physical intuition, we consider the free en-
ergy of complex coacervation for polymers in a theta sol-
vent, with the electrostatics treated using the random
phase (one-loop) approximation that accounts for con-
nectivity of charges in polymers [33, 34, 42]. Namely,

g(φ) = wφ3 + α3/4φ3/4. (3)

2w is the third virial coefficient and α ≡
12π`Bσ

2
c/((3π)4/3b2) where `B is the Bjerrum length,

which measures the length scale at which the electro-
static energy is 1 kBT , σc is the fraction of charged
monomers, and b is the Kuhn length. Although this
theory is only strictly valid for low charge densities,
unlike the experimental system considered here, it allows
for determination of γ∞ and h, as well as calculation of
interfacial profiles.

Prior to determining the interfacial tension, we deter-
mine the coacervate concentration by assuming the poly-
mer concentration to be negligible in the supernatant,
and solving for equal osmotic pressures in both phases
(Π = φf ′(φ)− f(φ) = 0). Applying a perturbative anal-
ysis [43] on φ yields an expansion in powers of 1/N :

φ = φ∞ −
a

N
+O

(
1

N2

)
(4)
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FIG. 1. Interfacial tension as a function of degree of
polymerization for the experimental system of PAA and
qPDMAEMA, as well as molecular dynamics of coarse-
grained polymers in a theta solvent both with and with-
out salt. In all cases, the functional form for the data
is γ = γ∞(1 − h/N). For the experimental data, γ∞ =
999.6 ± 3.5 µN/m, h = 56.97 ± 0.11, and N∗ is used for the
degree of polymerization (see Table I). Uncertainty in the fit
represents standard error.
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where φ∞ and a are subject to

φ∞g
′(φ∞)− g(φ∞) = 0 (5)

and

a = 1/g′′(φ∞). (6)

As g(φ∞) is convex, a is positive.
For the analytic theta solvent case (see Eq. 3),

φ =
α1/3

(8w)4/9
− 27/3

9w5/9α1/3N
+O

(
1

N2

)
, (7)

which recovers the expression derived above in the limit
that N approaches infinity [42, 44–46].

To confirm this expansion numerically, we perform
molecular dynamics simulations of coarse-grained poly-
mers [47] using the Lennard-Jones potential with a well
depth of 0.3 in reduced units and a cutoff of 2.5σ, where
σ is the bead diameter, to mimic a theta solvent [48].
Each bead has a unit charge, and the dielectric constant
is 1 in reduced units (in the weak association regime;
see Ref. [49]). A particle-particle particle-mesh Ewald
scheme with an accuracy of 104, an order of 5 and an
electrostatic cutoff of 5σ is used. No counterions or salt
are included. The simulation box is 35σ by 35σ by 350σ.
Simulations are initialized using a self-avoiding random
walk of polymers in a cubic box of 35σ with a density
of 0.5σ−3 close to the final density. A timestep of 0.005,
and a total of 9 106 steps are used for production after
an equilibration of 106 steps. The lengthy production
run combined with a large box size is required to achieve
good statistics as the fluctuations in the interfacial ten-
sion are large. Equilibration is monitored both through
end-to-end distance of the polymers and interfacial ten-
sion. Error bars are determined from the standard devia-
tion of the five replicates. All simulations are performed
using the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) [50, 51].

The resulting concentration as a function of N is plot-
ted in Fig. 2. The data can be successfully fit using the
derived functional form (Eq. 4). Interestingly, ignoring
higher order terms works well, even down to small values
of N . The experimental data (see Table I) can also be
fit with the derived functional form (see Fig. S3 [31]);
however, we opted not to plot it in Fig. 2 as it can also
be fit to cp = cp,∞ as a = 0 within uncertainty.

Using Cahn-Hilliard theory [28], the interfacial tension
can be written as

γ = 2

∫ φc

0

[κ∆f ]1/2dφ. (8)

Here φc is the monomeric concentration in the coacer-
vate phase, κ is the square gradient term and is equal to
b2/(24φ) [37, 52, 53], while ∆f is the free energy per vol-
ume for transferring a polymer from an infinite reservoir
of φc to φ and is equal to f(φ)− φf ′(φc) [28][54].

After mathematical manipulation (see SI [31] for de-
tails), one finds Eq. 1 with

γ∞ =
φ
1/2
∞ b√

6

∫ 1

0

A1/2(φ∞, η)dη (9)

and

h = −

∫ 1

0

φ∞ ln η

2
√
A(φ∞, η)

dη∫ 1

0

√
A(φ∞, η)dη

(10)

where η ≡ φ/φc and A(φ∞, η) = g(ηφ∞)/η − g(φ∞). As
η must be less than or equal to one, h is positive; h has
no dependence on a because terms that are of O(1/N) in
the expression for h are equivalent to terms that are of
O(1/N2) in γ, and thus can be ignored.

For the analytic theta solvent case

γ∞ = 0.070bα2/3w−7/18 (11)

and

h = 2.4α−2/3w−1/9 (12)

The expression for γ∞ recovers previously derived ex-
pressions [42, 44, 45], and the equation for h scales as
the number of monomers within the coacervate correla-
tion volume (φξ3 for w ' 1, where ξ is the correlation
length). See Eqs. 8 and 9 in Ref. [42]. For coacervates
of low density, φ� 1, this physical meaning of h is gen-
eral and independent of the particular form of g(φ), as
demonstrated in the SI [31].

To further test the theory, we can calculate the in-
terfacial tension from the simulations using the pressure
tensor (via the first line of Eq. 24 in Ref. [55]). The
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results, shown in Fig. 1, are also in excellent agreement
with the derived functional form.

The theory also allows us to determine the interfacial
profile numerically for the analytic theta solvent case (see
SI [31] for details). Renormalizing the concentration to
the infinite molecular mass limit and adjusting the con-
stant so the center of the interface is at x = 0 results in
Fig. 3. As one can see, the interfacial width is asymmet-
ric. We also compare our results to those of simulations,
and find them to be in qualitative agreement with the
theory.

Although we recover the empirically observed molecu-
lar mass dependence, the experimental system includes
both counterions and salt, both of which are ignored in
our derivation thus far. We relax this constraint by up-
dating the free energy density according to:

f =
φ

N
lnφ+ ψ lnψ + g(φ, ψ) (13)

where ψ is the salt (and counterion) density and g(φ, ψ)
includes the ideal gas contribution from salt. Two equa-
tions must be satisfied at equilibrium: (1) equality of salt
chemical potential and (2) equality of osmotic pressure
in both phases. The osmotic pressure in the supernatant
is no longer zero due to the presence of salt. Again, the
equality of chemical potentials of the polymer is ignored,
as we constrain the polymer concentration in the super-
natant to be zero. A perturbative analysis yields that
both φ and ψ should be expanded in powers of 1/N .

The analogous interfacial tension expression [28] is

γ = 2

∫ φc

0

[κφ∆f ]1/2

(
1 +

κψ
κφ

(
dφ

dψ

)2
)1/2

dφ (14)
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where

∆f = f(φ, ψ)− (µeqψ (ψ − ψc) + µeqφ (φ− φc) + f(φc, ψc)).

(15)
Subscript c denotes the coacervate phase, and µeq is
the equilibrium chemical potential. These equations
are supplemented by the Euler equations (∆f/∂λ =
κλ(d2λ/dx2) with λ equal to φ or ψ).

The only N dependence in these equations is in ∆f ,
φc, ψc. Thus, an analogous analysis can be performed to
yield the same functional form of the interfacial tension
with molecular mass even in the presence of salt. The
only key difference is that salt has the same functional
form as the polymer.

To further test our derivation, we also perform molec-
ular dynamics simulations with explicit counterions (one
small ion per charged monomer) using the same proce-
dure as outlined above. This serves as a proxy for the
addition of salt, as the counterions may now phase sep-
arate [56]. The results in Figs. 1, 2 and 3 show that the
same dependencies hold. The only additional notable
point is that, for the concentration of small ions in the
supernatant, the first term in the expansion dominates;
this is likely a direct result of the small total ion concen-
tration.

In conclusion, we performed a comprehensive set of
experiments to elucidate the molecular mass dependence
of the interfacial tension far from the critical point, and
proposed a theory to describe the observed scaling in the
same regime. Additional validation of the theory was
provided by molecular dynamics simulations.
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