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Abstract Post-quantum cryptography has known a Cambrian explo-
sion in the last decade. What started as a very theoretical and mathe-
matical area has now evolved into a sprawling research ˝eld, complete 
with side-channel resistant embedded implementations, large scale de-
ployment tests and standardization e˙orts. This study systematizes the 
current state of knowledge on post-quantum cryptography. Compared 
to existing studies, we adopt a transversal point of view and center 
our study around three areas: (i) paradigms, (ii) implementation, (iii) 
deployment. Our point of view allows to cast almost all classical and 
post-quantum schemes into just a few paradigms. We highlight trends, 
common methodologies, and pitfalls to look for and recurrent challenges. 

1 Introduction 

Since Shor's discovery of polynomial-time quantum algorithms for the factoring 
and discrete logarithm problems, researchers have looked at ways to manage 
the potential advent of large-scale quantum computers, a prospect which has 
become much more tangible of late. The proposed solutions are cryptographic 
schemes based on problems assumed to be resistant to quantum computers, 
such as those related to lattices or hash functions. Post-quantum cryptography 
(PQC) is an umbrella term that encompasses the design, implementation, and 
integration of these schemes. This document is a Systematization of Knowledge 
(SoK) on this diverse and progressive topic. 

We have made two editorial choices. First, an exhaustive SoK on PQC could 
span several books, so we limited our study to signatures and key-establishment 
schemes, as these are the backbone of the immense majority of protocols. This 
study will not cover more advanced functionalities such as homomorphic encryp-
tion schemes, threshold cryptography, et cetera. 

Second, most surveys to-date are either (i) organized around each family [23] 
� (a) lattices, (b) codes, (c) multivariate equations, (d) isogenies, (e) hash and 
one-way functions � or (ii) focused on a single family [146, 83]. Our study instead 
adopts a transversal approach, and is organized as follows: (a) paradigms, (b) 
implementation, and (c) deployment. We see several advantages to this approach: 
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� Compared to previous surveys, it provides a new point of view that abstracts 
away much of the mathematical complexity of each family, and instead em-
phasizes common paradigms, methodologies, and threat models. 

� In practice, there are challenges that have been solved by one family of 
scheme and not another. This document's structure makes it easy to highlight 
what these problems are, and how they were solved. Consequently, it aims 
to provide speci˝c direction for research; i.e., (i) problems to solve, and (ii) 
general methodologies to solve them. 

� If a new family of hardness assumptions emerges � as isogeny-based cryptog-
raphy recently has � we hope the guidelines in this document will provide a 
framework to safely design, implement, and deploy schemes based on it. 

1.1 Our Findings 

A ˝rst ˝nding is that almost all post-quantum (PQ) schemes ˝t into one of four 
paradigms: Fiat-Shamir signatures, Hash-then-sign, Di°e-Hellman key-exchange, 
and encryption. Moreover, the same few properties (e.g., homomorphism) and 
folklore tricks are leveraged again and again. 

Successful schemes do not hesitate to bend paradigms in order to preserve the 
security proof and the underlying assumption. In contrast, forcing an assumption 
into a paradigm may break the assumption, the security proof, or both. 

Our second ˝nding is that many PQ schemes fell short in secure, isochronous 
implementations which in turn lead to undeserved opinions on side-channel vul-
nerabilities. We also ˝nd some PQ schemes are signi˝cantly more amenable to 
implementations in hardware, software, their e°ciencies with masking, which 
then translates into how performant they are in various use-cases. 

Our last ˝nding (see the full version [110]) is that all real-world e˙orts to 
deploy post-quantum cryptography will have to contend with new, unique prob-
lems. They may require a diverse combination of computational assumptions 
woven together into a single hybrid scheme. They may require special attention 
to physical management of sensitive state. And they have very unbalanced per-
formance pro˝les, requiring di˙erent solutions for di˙erent application scenarios. 

2 The Raw Material: Hard Problems 

We ˝rst present the raw material from which cryptographic schemes are made of: 
hard problems. Although there exists a myriad of post-quantum hard problems, 
many of them share similarities that we will highlight. 

2.1 Baseline: Problems that are not Post-Quantum 

We ˝rst present problems that are classically hard but quantumly easy. The 
˝rst family of problems relates to the discrete logarithm in ˝nite groups; that is, 
the Discrete Logarithm (DLOG) problem, the Decisional Di°e-Hellman (DDH), 
and the Computational Di°e-Hellman (CDH) problems. 
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De˝nition 1 (DLOG/DDH/CDH). Let G be a cyclic group of generator 
g. The discrete logarithm problem (DLOG) and the decisional/computational 
Di°e-Hellman problems (DDH/CDH) are de˝ned as follows: 

� DLOG: Given ga for a random a ∈ |G|, ˝nd a. 
a b c� DDH: Given g , g and g for random a, b ∈ |G|, determine if c = ab. 
a b ab� CDH: Given g , g for random a, b ∈ |G|, compute g . 

In cryptography, G is usually the ring Zp for a large prime p, or the group 
of rational points of an elliptic curve. The following algebraic relations are ex-
tremely useful to build cryptosystems, for example Schnorr signatures [168] use 
(1) and (2) whereas the Di°e-Hellman key-exchange [72] uses (2): 

a b a+b g · g = g , (1)� �ab b ab(g a) = g = g . (2) 

The second family of problems relates to factoring. 

De˝nition 2 (RSA and Factoring). Let p, q be large prime integers, N = p·q 
and e be an integer. 

� Factoring: Given N , ˝nd p and q. 
� RSA: E°ciently invert the following function over a non-negligible fraction 

of its inputs: 
e x ∈ ZN 7→ x mod N. (3) 

For adequate parameters, the problems in Def. 1 and 2 are believed hard to 
solve by classical computers. However, Shor has shown that they are solvable 
in polynomial time by a quantum computer [172]. As these problems underlie 
virtually all current public-key cryptosystems, Shor's discovery motivated the 
following research for alternative, quantum-safe problems. 

2.2 Problems on Lattices 

The most well-known problems based on lattices are Learning With Errors 
(LWE) [158, 134], Short Integer Solution (SIS) [2, 130] and �NTRU� [107]. 

De˝nition 3 (SIS, LWE, and NTRU). Let R = Zq[x]/(φ(x)) be a ring, 
and A ∈ Rn×m be uniformly random. The Short Integer Solution (SIS) and 
Learning with Errors (LWE) problems are de˝ned as follows: 

� SIS: Find a short nonzero v ∈ Rm such that Av = 0. 
� LWE: Let b = Ats + e, where s ∈ Rn and e ∈ Rm are sampled from the 

`secret' distribution and `error' distribution, respectively. 

• Decision: Distinguish (A, b) from uniform. 
• Search: Find s. 

� NTRU: Let h = f/g ∈ R, where f, g ∈ R are `short.' Given h, ˝nd f, g. 
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SIS, LWE, and NTRU exist in many variants [158, 134, 130, 150], obtained 
by changing R, n, m, or the error distributions. To give a rough idea, a common 
choice is to take R = Zq [x]/(x

d + 1), with d a power-of-two, and n, m such that 
nd and md are in the order of magnitude of 1000. The versatility of SIS, LWE, 
and NTRU is a blessing and a curse for scheme designers, as it o˙ers freedom 
but also makes it easy to select insecure parameters [148]. 

We are not aware of closed formulae for the hardness of SIS, LWE, and 
NTRU. However, the most common way to attack these problems is to interpret 
them as lattice problems, then run lattice reduction algorithms [7, 5]. For exam-
ple, the BKZ algorithm [169] with a blocksize B ≤ nd is estimated to solve these 
in time Õ(20.292·B ) classically [18], and Õ(20.265·B ) quantumly [127] via Grover's 
algorithm. 

2.3 Problems on Codes 

Error-correcting codes provide some of the oldest post-quantum cryptosystems. 
These usually rely on two problems: 

� The Syndrome Decoding (SD) problem, see Def. 4. 
� Hardness of distinguishing a code in a family F from a pseudorandom one. 

We ˝rst present SD. Note that it is similar to SIS (Def. 3). 

De˝nition 4 (SD). Given a matrix H ∈ Fk 
2 
×n and a syndrome s ∈ F2 

k , the 
Syndrom Decoding (SD) problem is to ˝nd e ∈ Fn 

2 of Hamming weight w such 
that He = s. 

Since 1962, several algorithms have been presented to solve the SD problem, 
[155] to 20.0885ntheir complexity gradually improving from 20.1207n [39]. These 

algorithms share similarities in their designs and [177] recently showed that when 
(n/k)w = o(n), they all have the same asymptotic complexity ≈ 2w log2 . For 

many of these algorithms, quantum variants have been proposed. They achieve 
quantum complexities that are essentially square roots of the classical ones, by 
using either Grover or quantum walks. 

The second problem is not as clearly de˝ned, as it is rather a class of prob-
lems. Informally, it states that for a given family C = (Ci)i of codes, a matrix 
G generating a code Ci ∈ C is hard to distinguish from a random matrix. For 
example, two variants of BIKE [9] assume that it is hard to distinguish from 
random either of these quasi-cyclic codes (or QC codes): 

h0/h1 (4) 

g, g · h0 + h1 (5) 

where g, h0, h1 ∈ F2[x]/(x
r − 1), g is random and h0, h1 have small Hamming 

weight. Note that (4) and (5) are reminiscent of NTRU and (ring-)LWE, respec-
tively (see Def. 3). Hence all the lattice problems we have de˝ned have code 
counterparts, and reciprocally. Besides the QC codes of (4)-(5), another popular 
family of codes are Goppa codes [135, 55, 24]. 
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2.4 Problems on Multivariate Systems 

The third family of problems is based on multivariate systems. In practice, only 
multivariate quadratics (i.e., of degree 2) are used. They are the Multivariate 
Quadratic (MQ) and Extended Isomorphism of Polynomials (EIP) problems. 

De˝nition 5 (MQ and EIP). Let F be a ˝nite ˝eld. Let F : Fn → Fm of 
the form F(x) = (f1(x), . . . , fm(x)), where each fi : Fn → F is a multivariate 
polynomial of degree at most 2 in the coe°cients of x. 

� MQ: Given y ∈ Fm and the map F: 
• Decision: Is there an x such that F(x) = y? 
• Search: Find x such that F(x) = y. 

� EIP: Let S : Fn → Fn and T : Fm → Fm be uniformly random a°ne maps. 
Given P = S ◦ F ◦ T and the promise that the map F is in a publicly known 
set F , ˝nd F. 
Note that MQ is solvable in polynomial time for m2 = O(n) or n2 = O(m); 

therefore this problem is more interesting when n = Θ(m), which we assume 
henceforth. Also note that EIP can be parameterized by the set F to which the 
secret map F belongs. For example, the Unbalanced Oil and Vinegar (UOV) and 
Hidden Field Equation (HFEv) problems, used by Rainbow [73] and GeMSS [43] 
respectively, are instantiations of the EIP �framework�. 

Algorithms for solving MQ or EIP include F4/F5 [81], XL [56, 71] or Cross-
bred [121]. The best algorithms [181, 30, 121] combine algebraic techniques � 
e.g., solving Gröbner bases � with exhaustive search, which can be sped up using 
Grover's algorithm in the quantum setting, see [28] as an example. The asymp-
totic complexities of these algorithms are clearly exponential in n, but we did not 
˝nd simple formulae to express them (either classically or quantumly), except 
for special cases (q = 2 and n = m) which do not accurately re˛ect concrete 
instantiations such as the signature schemes Rainbow [73] and MQDSS [165]. 

2.5 Problems on One-Way and Hash Functions 

The most peculiar family of PQ problems relates to properties of (generic) one-
way and hash functions. These problems are algebraically unstructured, which 
is desirable security-wise, but tends to imply more ine°cient schemes. 

De˝nition 6 (Problems on hash functions). Let H : X → Y be a function, 
where Y = 2n . 

� Preimage: Given y ∈ Y , ˝nd x ∈ X such that H(x) = y. 
� Second preimage: Given x1 ∈ X, ˝nd x2 6= x1 such that H(x1) = H(x2). 
� Collision: Find x1 6= x2 such that H(x1) = H(x2). 

The best classical algorithm against (second) preimage is exhaustive search, 
hence a complexity O(2n). Grover's famous quantum algorithm [97] performs 
this search with a quadratic speed-up, hence a complexity O(2n/2). Regarding 
collision, the best classical algorithm is the birthday attack with a complexity 
O(2n/2), and (disputed) results place the complexity of the best quantum attack 
between O(22n/5) [47] and Θ(2n/3) [184]. 
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2.6 Problems on Isogenies 

Isogeny problems provide a higher-level twist on Def. 1. Elliptic curve cryptogra-
phy posits that when given g and ga , with g being a point on an elliptic curve E, 
it is hard to recover a. Similarly, isogeny-based cryptography posits that given 
elliptic curves E and E0 over Fp2 , it is hard to ˝nd a surjective group morphism 
(or isogeny, in this context) φ : E → E0 . 

Isogeny-based cryptography is a fast-moving ˝eld. Elliptic curves can be ordi-
nary (E[p] ' Zp) or supersingular (E[p] ' {0}). Recall that the torsion subgroup 
E[n] is the kernel of the map P ∈ E 7→ [n]P . Most isogeny schemes work with 
supersingular curves, which parameters scale better. Two problems (or variations 
thereof) have emerged. Def. 7 provides simpli˝ed descriptions of them. 

De˝nition 7 (Problems on isogenies). We de˝ne the Supersingular Isogeny 
Di°e-Hellman (SIDH) and Commutative SIDH (CSIDH) problems as follows: 

� SIDH: Given two elliptic curves E, EA and the value of an isogeny φ : E → 
EA on E[`e], ˝nd φ. 

� CSIDH: Given two elliptic curves E, EA, ˝nd an e°ciently computable isogeny√ 
φ ∈ C`(O) s.t. EA = φ · E, where C`(O) is the class group of O = Z[ −p]. 

Note that the CSIDH problem adapts DDH to the isogeny setting, and one 
can similarly adapt CDH (see Def. 1). Note that both problems are quantumly 
equivalent [89], whereas CDH and DDH are not known to be classically equiva-
lent, except in special cases. 

For SIDH, the best classical attack is via a claw-˝nding algorithm due to van 
Oorschot-Wiener [178]. Surprisingly, a recent result [120] shows that the best 
known quantum attack performs worse than [178]. The hardness of CSIDH re-
duces to solving a hidden shift problem, for which Kuperberg proposed quantum 
sub-exponential algorithms [125, 126]. The actual quantum security of CSIDH 
is still being debated [37, 147]. 

2.7 Summary of Problems 

Fig. 1 summarizes the classical and quantum hardness estimates of the prob-
lems we presented. Quantum estimates are particularly prone to change, notably 
due to (a) the lack of clear consensus on the cost of quantum memory, (b) the 
prospect of future algorithmic improvements. 

Figure 1: Classical and quantum hardness of some problems. 

Problem 
Factoring 
/DLOG 

SIS 
SD 

/LWE 
MQ EIP SIDH CSIDH 

(Second) 
Coll. 

Preimg. 

Classical Õ((log p)1/3)e 20.292·B 20.0885·n ? ? 1/4 1/4O(p ) O(p )
√ 

O(2n) O(2n/2) 

Quantum poly(N ) 20.265·B 20.05804·n ? ? 1/4 Õ( log p)O(p ) e O(2n/2) Θ(2n/3) 
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3 Paradigms are Guidelines, not Panaceas 

In the classical world, there are two paradigms for signing: 

� Fiat-Shamir (FS) [85], proven in the random oracle model (ROM) by [153]. 
One example is Schnorr signatures and the (Elliptic Curve) Digital Signature 
Algorithm, (EC)DSA. 

� Hash-then-sign. The most prominent formalization of this paradigm is the 
Full Domain Hash [21] (FDH), proven in the ROM by [22, 54]. Numerous 
instantiations exist, such as RSA-PSS (Probabilistic Signature Scheme) and 
Rabin signatures. 

There are also two paradigms for key establishment: 

� Public-key encryption (PKE), like El Gamal [78] or RSA [160]. 
� Di°e-Hellman (DH) key-exchange [72]. 

At a conceptual level, this section shows that most PQ signature or key establish-
ment schemes can be cast under one of these four paradigms. This is summarized 
by Table 1, which also provides us with two open questions: 

(Q1) Can we have isogeny-based Hash-then-sign schemes? 
(Q2) Can we have multivariate key establishment schemes? 

The prospect that we will have practical key establishment schemes based on 
symmetric primitives only seems unlikely, see [14]. For (Q1) and (Q2), we hope 
that the guidelines provided in this section will help to answer them. Our main 

Table 1: Correspondence between post-quantum schemes and problems. 
Signature Key Establishment 

Hash-&-Sign Fiat-Shamir DH-style PKE 

Lattices 
Codes 

Isogenies 
Multivariate 
Symmetric 

[156, 50] 
[68] 
? 

[73, 43] 
[115] 

[133, 36] 
[174, 180] 
[65, 34] 
[165] 

[183, 32] 

[149] 
[24, 9] 
[45] 
? 
-

[170, 61, 185] 
[1] 
[117] 
? 
-

takeaway is that scheme designers should treat paradigms as guidelines. In par-
ticular, a fruitful approach is to weaken some properties, as long as the ˝nal 
scheme achieves meaningful security notions. For example: 

� E°cient PQ variants of the FDH framework discards trapdoor permutations 
for weakened de˝nitions, which su°ce for signatures, see Sec. 3.3. 

� Fiat-Shamir with Aborts changes the protocol ˛ow and may only prove 
knowledge of an approximate solution. This su°ces for signatures, see Sec. 3.1 

On the other hand, designers should not try to cram a problem into a prede˝ned 
paradigm, as it often results in impractical (if not broken) parameters. Examples 
are rigid adaptations of: 



8 

� DH with lattices [102] and isogenies [66], see Sec. 3.4. 
� FDH with codes [55] or lattices [105], see Sec. 3.3. 

3.1 Schnorr Signatures over Lattices 

Fig. 2 recalls the structure of an identi˝cation scheme, or ID scheme. Any ID 
scheme can be converted into a signature via the Fiat-Shamir transform [85]. A 
e°cient ID scheme is Schnorr's 3-move protocol [168]. It instantiates Fig. 2 with 
the parameters in Table 2 (column 2). It also requires additive and multiplicative 
properties similar to (1)-(2). 

P (Knows sk) V (Knows pk) φcom 

Accept i˙ cond 

com 
chal1 

rsp1 
. . . 

chaln 

rsp 

E Ecom 

Epk Echal 

φsk φchal 

φrsp 

Figure 3: SQISign Figure 2: A (2n + 1)-move ID scheme. 

Fortunately, lattice and code problems do have properties similar to (1)-(2). 
An early attempt to propose Schnorr lattice signatures is NSS (NTRU-based 
Signature Scheme) [106], which was broken by statistical attacks [92]. The high-
level explanation is that the ID scheme in NSS did not satisfy the honest veri˝er 
zero-knowledge (HVZK) property. Each transcript leaked a bit of information 
about sk, which [92] exploited to recover sk. This was ˝xed by Lyubashevsky's 
scheme [132], by giving the prover the possibility to abort the protocol with a 
probability chosen to factor out the dependency to sk from the signature. This 
changes the ˛ow of the ID scheme, but allows to prove HVZK. It is also invisible 
to the veri˝er as the signer will simply restart the signing procedure in case of 
an abort. An example instantiation is shown in Table 2 (column 3). 

On the other hand, properties of lattices enable speci˝c tricks tailored to 
this setting. For example, for LWE, least signi˝cant bits (LSBs) do not really 
matter. Let bucb be a lossy representation of u that discards the b LSBs for each 
coe°cient of u. Finding a search-LWE solution (s1, s2) for (A, btcb) implies a 
solution (s1, s2 

0 ) for (A, t), with ks2 − s2 
0 k∞ ≤ 2b . This indicates that, as long as 

b is not too large, LSBs are not too important for LWE. 
This intuition was formalized by [13], who show that dropping z2 and check-

ing only the high bits of com allowed to reduce the signature size by about 
2, for essentially the same (provable) security guarantees. Similarly, [98] ap-
plied this idea to reduce the public key size. The idea was improved upon by 
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Table 2: Instantiations of Schnorr Signatures. 

Element Schnorr Lyubashevsky (w/ LWE) 

sk 
pk 
com 
chal 
rsp 
cond 

Abort? 

Uniform x 
x g, h = g 

r g for uniform r 
Uniform c 
r − cx 

rspcom = g · hc 

No 

Short (s1, s2) 
A, t = A · s1 + s2 

A · r1 + r2 for short (r1, r2) 
Short c 

(z1, z2) = (r1 − cs1, r2 − cs2) 
(com = Az1 + z2 − ct) ∧ ((zi)i short) 

Yes 

Dilithium [133]. However, qTESLA [36] provides a textbook example of what 
can go wrong by trying to apply this idea without checking that the security 
proof is preserved (in this case, soundness), as it was shown to be completely 
insecure. 

3.2 Beyond Schnorr signatures 

For the (vast majority of) problems that do not possess the algebraic proper-
ties needed to instantiate Schnorr signatures, there still exist several tricks that 
enable e°cient FS signatures. Scheme designers need to consider two things: 

� The soundness error � of the ID protocol is often too large. For example, 
Stern's code-based protocol has a soundness error � = 2/3. A simple solution 
is to repeat the protocol k times so that �k ≤ 2−λ for security parameter λ, 
but ˝nding ways to improve � is also important. 

� For some problems, a 3-move ID protocol may be less e°cient than an n-
move protocol with n > 3, or may even not be known. 

We ˝rst elaborate on the ˝rst point. When the soundness � of an ID protocol 
is too small, the protocol is repeated k times. Typically, all k iterations are 
performed in parallel (as opposed to sequentially). Parallel repetition is often 
expected by scheme designers to provide exponential soundness �k , however it is 
not the case in general; it is proven e˙ective for 3-move interactive protocols, 
but counter-examples exist for protocols with 4 or more moves [20]. 

Next, we present 3-moves and 5-moves ID schemes. As long as the underlying 
problem admits some linearity properties, one can build an ID scheme on it [12]. 
It is the case of all the schemes presented below. 
PKP: A 5-move protocol based on the Permuted Kernel Problem (PKP) was 
proposed in [171], with a soundness error of 2p

p 
−2 ≈ 1/2, where p is the cardinal 

of the underlying ring. It was later instantiated by PKP-DSS [33]. 
MQ: The ˝rst ID schemes for MQ were proposed by [164]. A key idea of [164] 
was to use the polar form of F: G(x1, x2) = F(x1 + x2) − F(x1) − F(x2). 
G is bilinear, and this was exploited to propose a 3-move protocol with soundness 
error 2/3, and a 5-move one with soundness error 1/2 + 1/q ≈ 1/2. The latter 
protocol was instantiated by MQDSS [49, 165] using the Fiat-Shamir transform. 
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Codes: Many code-based schemes derive from Stern's elegant protocols [174, 175], 
which are based on the SD problem. Stern proposed a 3-move with soundness 
error 2/3, and a 5-move protocol with soundness error 1/2. The 3-move version 
was improved by Veron [180] using the generator matrix of a code instead of its 
parity check matrix, hence it is often seen as a dual of Stern's protocol. However, 
most derivatives of Stern's protocol are based on the 5-move variant. 
Isogenies: The CSIDH problem has been used to propose an ID scheme that, 
interestingly, is very similar to the well-known proof of knowledge for graph 
isomorphism. A useful trick used by SeaSign [65] is to use n public keys; this 
improves the soundness error down to 1 . CSI-Fish [34] improved it to 1 byn+1 2n+1 
using symmetries speci˝c to isogenies. Both schemes combine this with Merkle 
trees, which provides a trade-o˙ between signing time and soundness error. 
Cut-and-choose: This generic technique [124] provides a trade-o˙ between sign-
ing time and soundness error. It had been used by [31] to provide MQ-based and 
PKP-based signatures that are more compact than MQDSS and PKP-DSS. 

We end on a note of caution. A recent paper [122] shows that for 5-round ID 
schemes with k parallel repetitions, the soundness error may be larger than �k , 
provides a combinatorial attack against the MQ-based schemes of [49, 165], as 
well as the PKP-based scheme of [33], and warns that it might apply on 5-round 
variants of Stern's protocol. Designers of schemes that ˝t this pattern should be 
careful. 

3.3 Full Domain Hash signatures 

Hash-then-sign schemes are among the most intuitive schemes to understand 
at a high level. The standard way to construct them is via the Full Domain 
Hash (FDH) framework. Let (sk, pk) be an asymmetric keypair. Associate to it 
a pair (fpk, gsk) of e°ciently computable functions fpk : D → R (surjective) and 
gsk : R → D (injective). We say (fpk, gsk) is: 

� A trapdoor permutation (TP) if: 
(T1) given only pk, fpk is computationally hard to invert. 
(T2) fpk ◦ gsk is the identity over R. 
(T3) For any y, the distribution of gsk(y) is (statistically) independent of sk. 
(T4) fpk and gsk are permutations (hence D = R). 

� A trapdoor preimage sampleable function (TPSF) if it satis˝es (T1), (T2), 
(T3). Hence (T4) is no longer required. 

� An average TPSF if it satis˝es (T1), (T2), and this relaxation of (T3): 
(T3∗) On average over y, the distribution of gsk(y) is (statistically) indepen-

dent of sk. 

Note that we have the following relation: TP ⇒ TPSF ⇒ Average TPSF. The 
FDH framework [21, 22] allows, in its original form, to build hash-then-sign 
schemes from a hash function and a TP family as in Fig. 4. Note that the function 
of (3) is a RSA-based TP for whoever knows the factorization N = p · q. 

Notable e˙orts at transposing the FDH framework in a post-quantum setting 
are the code-based schemes CFS [55] and RankSign [88]. The bit-security of 
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sign(msg, sk) verify(msg, pk, sig) 

� Compute H(msg) = y ∈ R; 
� Return sig ← fsk 

−1(y). � Accept i˙ fpk(sig) = H(msg). 

Figure 4: The Full-Domain Hash (FDH) framework. 

CFS scales logarithmically in its parameters, making the scheme impractical, 
and [82] showed that its security proof requires infeasible parameters. Similarly, 
[69] showed that RankSign's proposed parameters made the underlying problem 
easy, and that it required impractical parameters for the scheme to be secure. 
Both CFS and RankSign indicate that a rigid transposition of FDH framework 
(using TP) in a post-quantum setting seems highly nontrivial. 

Early lattice-based attempts such as GGHSign [95] and NTRUSign [105] 
instead chose to replace TPs with trapdoor one-way functions (with |D| � 
|R|), so that only (T1) and (T2) were veri˝ed. In particular, the independence 
property (T3) was no longer veri˝ed. However, (T3) plays an important role 
in the original security proof of the FDH,1 which did no longer apply. More 
critically, each y ∈ R now admitted many xi ∈ D such that fpk(xi) = y, and 
the xi picked by the signing algorithm depended of sk. This dependency was 
exploited by learning attacks [141, 77] to recover the signing key. 

For lattices, the ˝rst real progress was done by [93]. Its main contribution 
was to introduce TPSFs, to prove that they can be used to instantiate the FDH, 
and to propose provably secure lattice-based TPSFs. Several follow-up schemes 
have been proposed [137, 76], including Falcon [156]. 

However, it is not known how to instantiate TPSFs from code-based assump-
tions. Hence the work of [68, 46] relaxed � again � this notion by proposing 
average TPSFs, showed that they su°ce to instantiate the FDH framework, and 
proposed a signature scheme based on code-based average TPSFs, Wave [68]. 
Interestingly, this idea was proposed independently by [50], which show that 
lattice-based average TPSFs require milder parameters than TPSFs, hence im-
proving upon the e°ciency of some TPSF-based lattice signatures [29]. 

Trapdoor Permutation ⇒ TPSF ⇒ Average TPSF. 

Multivariate cryptography encountered and solved this problem indepen-
dently. It was ˝rst noticed in [163] that some multivariate hash-then-sign schemes 
relied on a trapdoor function that only veri˝ed (T1) and (T2). Hence [163] intro-
duced of a salt during the signing procedure in order to satisfy (T3) and enable 
a FDH-style proof. This solution is now used by GeMSS [43] and Rainbow [73]. 

1 In the case of TPs, the situation is simpler since (T2) + (T4) ⇒ (T3). 
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3.4 Di°e-Hellman and El Gamal 

The Di°e-Hellman (DH) key-exchange protocol [72], as well as the encryption 
scheme by El Gamal that is derived from it [78], are staples of classical public key 
cryptography. El Gamal has been notably easier to adapt to PQ assumptions 
than DH. Classically, DH relies on (2), which provides a simple way for two 
parties to agree on a shared secret gab , by instantiating Fig. 5 with Table 3 
(column 2). Unfortunately, such a simple relation is harder to obtain with PQ 
assumptions, as we will see. 

Isogenies over elliptic curves are the most natural candidate to instantiate 
Fig. 5. Unfortunately, the most natural way to do that requires either ordinary 
curves [57, 162] � which parameters don't scale well [66] �, or supersingular curves 
with a restricted class of isogenies like CSIDH [45] � which quantum security is 
debated [37, 147]. A �standard� approach is to use supersingular curves with low-
degree isogenies, however it requires to apply the private isogeny φA : E → EA 

to two special points PB , QB of the elliptic curve E, and send the result in 
addition to EA. Only with this extra information can the two parties agree on a 
common curve EAB . A straightforward adaptation of DH to codes and lattices 

Alice Bob 

Knows a 
A = a ∗ G (+ Hint) 

Knows b 

B = G ∗ b (+ Hint) 

ssk = f(a ∗ B, Hint) ssk = A ∗ b 

Figure 5: Di°e-Hellman with Reconciliation. 

is challenging as well, this time due to noise. For example, a rigid transposition 
with LWE gives: 

t t t(s · A + e )sb ≈ s (A · sb + eb) (6)a a a 

Both parties would end up with �noisy secrets� that di˙er on their lower bits, 
which is problematic. In a purely non-interactive setting, this approach does not 
seem to work, except if q is very large, say q ≥ 2λ , which is impractical [102]. 
This is resolved in [74, 149] by sending a hint indicating �how to round the noisy 
secret�. Note that this approach comes at the cost of non-interactivity. 

Table 3 summarizes the two approaches to achieve �post-quantum DH� (be-
sides CSIDH). In addition to being interactive, these solutions cannot be used 
with static key shares, as it would enable key-recovery attacks [86, 90]. As such, 
they cannot be used as drop-in replacements to non-interactive (semi-)static DH. 

Many desirable properties of classical DH are lost in translation when trans-
posing it to a PQ setting. As such, most practical schemes take El Gamal as 
a starting point instead, replacing DLOG with LWE [140, 170], Learning With 
Rounding (LWR) [61], or SIDH [117]. Schemes that rely on �trapdoors� � like 
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Table 3: A few ways to instantiate Fig. 5. 
(EC)DH SIDH [118, 84] LWE [74, 149] 

G 
a 
A 
B 

Hint 
Static 

g ∈ G 
a ∈ |G|

a g 
b g 

No 
Yes 

(Pi, Qi)i 

Isogeny φA : E → EA 

EA, φA(PB ), φA(QB ) 
EB , φB (PA), φB (QA) 

Two-way 
No 

A ∈ Rk×k 
q 

(sa, ea) short 
t t sa · A + ea 

A · sb + eb 

One-way 
No 

McEliece [135, 24] or BIKE-2 [9] � are more akin to RSA encryption, though 
this analogy is a weaker one. 

4 Return of Symmetric Cryptography 

Another takeaway is that, despite PQC being mostly a public-key matter, sym-
metric cryptography plays a surprisingly important role and should not be ne-
glected. In particular, two families of signatures based on one-way and hash 
functions have emerged, with two radically di˙erent philosophies: 

� Hash-based signatures treat hash functions as black boxes and build signa-
tures using only generic data structures and combinatorial tricks, see Sec. 4.1. 

� Signatures based on zero-knowledge proofs treat one-way functions as white 
boxes and leverage knowledge of their internal structure to maximize their 
e°ciency, see Sec. 4.2. 

Interestingly, some techniques developed by these schemes have also bene˝ted 
more �standard� schemes. Examples are Merkle trees, used by multivariate [35] 
and isogeny-based [65, 34] schemes, or the cut-and-choose technique [124]. 

4.1 Hash-based signatures 

Hash-based signatures (HBS) are a peculiar family of schemes for two reasons; 
(a) they rely solely on the hardness properties of hash functions, (b) they follow 
a paradigm of their own. At a high level: 

� The public key pk commits secret values using one or more hash functions. 
� Each signature reveals (intermediate) secret values that allow to recompute 

pk and convince the veri˝er that the signer does indeed know sk. 

Lamport's HBS [129] epitomizes this idea. In its simplest form, the public key is: 
pk = (pki,0, pki,1)i∈[λ] = (H(ski,0), H(ski,1))i∈[λ], and the signature of a message 

msg = (bi)i ∈ {0, 1}λ is sig = (ski,bi )i. The veri˝er can then hash sig component-
wise and check it against pk. It is easily shown that Lamport's signature scheme 
is secure under the preimage resistance of H. However, there are two caveats: 

� pk and sig require O(λ2) bits, which is rather large. 
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� It is a one-time signature (OTS), meaning it is only secure as long as it 
performs no more than one signature. 

For four decades, several tricks have been proposed to mitigate these caveats. 
Because of the unstructured nature of hash functions, these tricks typically rely 
on combinatorics and/or generic data structures. 

One line of research proposes e°cient data structures that use OTS as build-
ing blocks. By hashing public keys into a tree, Merkle trees [136] allow to improve 
e°ciency and sign more than one message. Goldreich trees [94] use trees' leaves to 
sign other trees' roots. Both ideas can be combined, as done by SPHINCS(+) [26, 
27, 115]. Finally, e°cient Merkle tree traversal algorithms were proposed [176]. 

Another line of research proposed more e°cient OTS. The most e°cient one 
so far is a variant of Winternitz's OTS (see [136, 42]), called WOTS+ [114], 
which uses bitmasks to rely on second-preimage resistance � instead of collision 
resistance for the original scheme. Stateless few-time signatures (FTS) were also 
proposed, such as BiBa [151], HORS (Hash to Obtain Random Subsets) [159], 
a HORS variant with trees, HORST [26], one with PRNGs, PORS [11], and 
another one with forests, FORS [27, 115]. These can be used to build stateless 
signatures, discussed below. 

These tools allow to build hash-based signatures, which can be categorized 
in two families: stateful and stateless signatures. 

Stateful schemes require the signer to maintain an internal state in order 
to keep track of the key material used. This encompasses XMSS, its multi-tree 
variant XMSSMT and LMS, all recently standardized by NIST [52]. Stateful 
schemes can be e°cient but their statefulness is often an undesirable property. 

Stateless signatures set their parameters so that, even without maintaining a 
state, signing many messages will preserve security with overwhelming probabil-
ity. As a result, they are less e°cient than their stateful counterparts, but more 
˛exible. For example, SPHINCS+ [27, 115] combines Merkle and Goldreich trees 
with WOTS+ as an OTS, FORS as a FTS, plus a few other tricks. 

4.2 Signatures based on ZKPs and OWFs 

Signatures based on zero-knowledge proofs (ZKPs) and one-way functions (OWFs) 
leverage this principle: 

� The public key is pk = F (sk), where F is a OWF. 
� A signature is a ZKP that pk = F (sk); using the MPC-in-the-head [116]. 

Note that all Fiat-Shamir signatures can already be interpreted as ZKP that 
pk = F (sk), however they usually leverage algebraic structure to gain e°ciency, 
and as a result rely on assumptions that are algebraic in nature. 

The protocols discussed here are fully generic as they work with any OWF. 
This is done by leveraging the MPC-in-the-head technique [116]. This technique 
creates non-interactive proofs for an arbitrary circuit (Boolean or arithmetic), by 
simulating the execution of an MPC (multiparty computation) protocol, commit-
ting to the execution, and revealing the state of a subset of the parties in order 
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to let the veri˝er (partially) check correctness of the execution. Two parallel yet 
connected lines of research turned this abstract idea into a reality. 

The ˝rst line of research provides protocols for generic statements. Such pro-
tocols have only recently become practical, see ZKB++[48] and KKW [124]. For 
bit-security λ and a circuit with |C| AND gates, total proof sizes are O(λ|C|), for 
ZKB++, and O(λ|C|/ log n), for KKW, respectively, where the cut-and-choose 
approach of KKW allows a trade-o˙ between signing and signature size, via the 
parameter n. For boolean (resp. arithmetic) circuits of cryptographic sizes, these 
two schemes (resp. the sacri˝cing method [17]) are the current state of the art. 

The second line of research provides circuits with low multiplicative complex-
ity. Because of their unusual constraints, their internal structure is typically very 
di˙erent from classical symmetric primitives and they require new approaches 
to be studied. Prominent examples are LowMC [8], which has been extensively 
studied [75, 119, 131], or the Legendre PRF [59, 96]. Note that these primitives 
have applications that go far beyond PQC; for example, the Legendre PRF is 
used by the Ethereum 2.0 protocol. 

Combining these two lines of research, one obtain signature schemes. For 
example, Picnic [183] combines LowMC with either ZKB++ or KKW, BBQ [67] 
combines AES with KKW, and ˝nally LegRoast [32] combines the Legendre 
PRF with the sacri˝cing method [17]. Due to the novely of this approach, it is 
likely that we will see many more schemes based on it in the future. 

5 The Implementation Challenges in PQC 

This section discusses the implementation challenges in PQC; speci˝cally dis-
cussing attacks via implementation pitfalls and side-channels, countermeasures, 
and ˝nally the jungle of embedded devices and use-cases for PQC schemes. We 
somewhat focus on NIST PQC candidates due to similarities in the operations 
each PQC family requires. 

5.1 Decryption Failures and Reaction Attacks 

Attacks based on decryption failures � also known as reaction attacks � were ˝rst 
discovered about 20 years ago, with an attack [103] on the McEliece [135] and 
Ajtai-Dwork [3] cryptosystems, and another [112] on NTRU [107]. They were 
forgotten for more than a decade before being recently rediscovered. It is clear 
by now that designers of noisy cryptosystems, such as lattice-based and code-
based, need to take these into account. We explain how reaction attacks work 
and how to thwart them. At a high level, all lattice-based and code-based en-
cryption schemes follow this high-level description: ct = pk ·e+e0 +Encode(msg), 
where Encode(msg) is an encoding of msg and (e, e0) is a noisy error vector. The 
decryption key sk is used to obtain Encode(msg) plus some noise, then recover 
msg. However, this may fail for a small portion of the admissible (e, e0), and this 
portion depends on sk. The high-level strategy of reaction attacks uses: 
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� Precomputation. Precompute �toxic� errors (e, e0) that have a high prob-
ability of leading to decryption failures; 

� Query. Use these toxic errors to send ciphertexts to the target; observe 
decryption failures. 

� Reconstruction. Deduce sk from the decryption failures. 

Note that reaction attacks are CCA attacks. In CCA schemes, (e, e0) is generated 
by passing msg and/or pk into a pseudo-random generator (PRG), so adversaries 
have to ˝nd toxic vectors through exhaustive search. Hence precomputation is 
often the most computationally intensive phase. 

Reaction attacks have been proposed against code-based schemes in the Ham-
ming metric [100], in the rank metric [166], and for lattice-based schemes [60, 
64, 101]. Interestingly, attacks against schemes that use lattices or the Hamming 
metric are very geometric (learning the geometry of the private key), whereas 
those that target rank metric schemes learn algebraic relations. 

For lattice-based schemes, directional failure boosting [62] allows, once a toxic 
error (e, e0) has been found, to ˝nd many more at little cost. Therefore, lattice 
schemes must keep their failure probability negligible, as they are otherwise 
directly vulnerable to reaction attacks. No such conclusion has been made for 
code-based schemes yet, but we recommend scheme designers to err on the safe 
side. Scheme designers need to consider two things with respect to reaction 
attacks. First, the probability of decryption failures should be negligible. 

� This can be achieved by selecting the parameters accordingly, as done by 
Kyber [170], Saber [61], HQC [1] and FrodoKEM [140]. One may even elim-
inate them completely like NTRU [185] and NTRU Prime [25], but this may 
result in slightly larger parameters. 

� Another solution is to use redundancy; KEMs need to encapsulate a symmet-
ric key of λ bits, however schemes can often encrypt a much larger message 
msg. One can use the extra bits to embed an error-correcting code (ECC). 
However, this solution has two caveats. First, the ECC should be constant-
time (e.g., XEf [185] and Melas codes [104]), as timing attacks have been 
observed when that was not the case [63]. Second, this requires to perform 
a tedious analysis of the noise distribution; incorrect analyses have led to 
theoretical attacks [64, 101]. 

Second, schemes with decryption failures � even negligible � should use CCA 
transforms that take these into account. In e˙ect, most PQ KEMs in this situa-
tion use variants of the transforms described [108], which do handle them. 

5.2 Implementation Attacks in PQC 

Before NIST began their PQC standardization e˙ort, many PQC schemes were 
susceptible to implementation attacks; meaning that due to bad coding prac-
tices, some attack vectors were found which led to successful attacks. De˝nition 
5 in [111] provides a fairly formal de˝nition for isochronous algorithms (i.e., 
an algorithm with no timing leakage) which allows us to di˙erentiate between 
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these initial implementation attacks, of which many did not qualify. Good pro-
gramming practices exist for ensuring timing analysis resilience and have been 
well discussed before2 . These practices cover much more low-level instances of 
isochronous designs; as conditional jumps, data-dependent branching, and mem-
ory accesses of secret information can also lead to detrimental attacks. Some tools 
such as ctgrind, ctverif, and flow-tracker exist to check whether functions 
are isochronous, however with operations in PQC such as rejection sampling it is 
not clear how e˙ective these tools will be. Thus, it would also be prudent to check 
post-compilation code of the sensitive operations within an implementation. 

The ˝rst types of implementation attacks on PQC were mainly on the BLISS 
signature scheme and exploited the cache-timing leakages from the Gaussian 
samplers, as they mostly operate by accessing pre-computed values stored in 
memory [40, 152]. The attacks use the FLUSH+RELOAD [182] technique and 
exploit cache access patterns in the samplers to gain access to some coe°cients of 
values that are added during the signature's calculation. However, optimisations 
to the Gaussian samplers, such as using guide-tables, and non-isochronous table 
access enabled these attacks. More leakage sources and implementation attacks 
against the StrongSwan implementation of BLISS were also found [79], which 
range from data dependent branches present in the Gaussian sampling algorithm 
to using branch tracing in the signature's rejection step. These attacks can be 
mitigated by bypassing conditional branches; that is, using a consistent access 
pattern (e.g., using linear searching of the table) and having isochronous run-
time. In particular, making Gaussian samplers provably secure and statistically 
pro˝cient have been researched [111] and thus should be followed for secure im-
plementations of lattice-based schemes such as Falcon and FrodoKEM or more 
advanced primitives such as IBE and FHE. 

Although these attacks are on a scheme's implementation, rather than some-
thing inherently insecure in its algorithm, they have acted as a cautionary note 
for how some schemes have operations, which do not use secret information, 
but could be described as sensitive as if they are implemented incorrectly, they 
can lead to a successful attack. A clear example of this is for Gaussian sam-
plers, which is why they were not used in Dilithium. Once an attacker ˝nds 
the error vector, e, using these side-channels from a LWE equation of the form 
b = A × s + e mod q, then gaining the secret can be achieved using Gaussian 
elimination. Moreover, it is not always necessary to ˝nd the entire secret, as was 
the case in the past for RSA [53], and side-channels can be combined with lattice 
reduction algorithms e°ciently to signi˝cantly improve attacks on post-quantum 
schemes. This has been built into a framework [58], which builds in side infor-
mation into lattice reduction algorithms in order to predict the performance of 
lattice attacks and estimate the security loss for given side-channel information. 

Another sensitive component is in the transient version of the HQC crypto-
suite proposed during the NIST PQC standardization process. In the proposed 
(but now deprecated) reference implementation of decryption, the most costly 
component was a multiplication in F2[X]/(Xn − 1). The crucial operation dur-

2 See for example https://www.bearssl.org/constanttime.html. 

https://www.bearssl.org/constanttime.html


18 

ing decryption is a sparse-dense polynomial multiplication over F2[X]. At one 
point in time (speci˝cally, for less than a month in the overall NIST PQC pro-
cess), it was proposed to use an special algorithm for sparse-dense multiplication, 
where the complexity of the multiplication was better than the obvious school-
book algorithm, by utilizing the sparseness of the secret-key polynomial. That 
is, the multiplication would only access the secret-key polynomial h times, for 
a secret-key containing only h 1's. In particular, a further, �shielded� version of 
this algorithm was proposed which applied a permutation (on the memory-access 
locations) in order to attempt to hide the fact that only h locations were ever 
accessed in the memory cells corresponding to the secret-key polynomial, while 
retaining the e°ciency bene˝ts of an algorithm specialized to the case of sparse-
dense polynomial multiplication. Unfortunately, if an adversary can only observe 
the memory cells accessed during memory (even without seeing the contents of 
those memory cells), then � by analogy to an �Oblivious RAM� adversary, the 
secret key can be directly recovered after one decryption is performed. 

A sensitive component that can potentially a˙ect all PQC candidates is in the 
Fujisaki-Okamoto (FO) transformation. This component is required in lattice-
based and code-based KEMs in order to covert the CPA-secure part into an 
IND-CCA secure scheme. However, it has been shown that this operation is also 
sensitive to timing attacks, even though the operations do not use any secret 
information. This attack [99] was shown on FrodoKEM, and was enabled due 
to its use of non-isochronous memcmp in the implementation of the ciphertext 
comparison step, which allows recovery of the secret key with about 230 decap-
sulation calls. This attack is directly applied to FrodoKEM, but is likely that 
other PQC candidates such as BIKE, HQC, and SIKE are also susceptible. 

An algorithm used within the FO transform is Keccak, or more speci˝cally 
SHAKE, which was standardized by NIST in FIPS-202 for SHA-3 and is used 
extensively within NIST PQC candidates for so-called seed-expansion and com-
putation of the shared secret. This symmetric operation is also sensitive to side-
channels and could potentially lead to recovery of the shared-secret generated in 
the KEM. In particular, a single trace attack was demonstrated on the Keccak 
permutation in the ephemeral key setting [123], but seemingly realistic only on 
8-bit devices. 

Finally we consider the peculiar nature of BIKE's (sensitive) decryption mod-
ule. The BIKE decryption algorithm is naturally designed to proceed in a repet-
itive sequence of steps. Some operations are performed, then the message is 
properly decrypted, or not. Such operations can then be repeated, and the like-
lihood of proper decryption will increase. Unlike most other PQ decryption pro-
cedures, the BIKE decryption algorithm is not inherently isochronous, nor is the 
decryption failure rate well-understood. Given the real-world requirement that 
all secret-sensitive procedures are isochronous, it has been proposed to therefore 
arti˝cially truncate this iterative decryption procedure at some ˝xed number 
of steps. Experimentally, a round-count as small as 10 is su°cient to guaran-
tee proper decryption. However, in contrast to the case of lattice-based KEMs, 
there is no mathematical guarantee that, e.g., 10 iterations is su°cient to reduce 
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the decryption failure rate of the scheme below 2λ , where λ ∈ {128, 192, 256}
is the concrete security parameter.3 Therefore, despite the BIKE scheme being 
designed as ˝rst a CPA scheme along with a CPA-to-CCA transform imple-
mented as low cost, the BIKE team has only formally claimed CPA-security 
(that is, ephemeral key security) for their construction, as opposed to CCA-
security (that is, long-term key security). It remains open to provide a �proper 
analysis� of the BIKE decryption algorithm guaranteeing su°cient precision of 
decryption failures to ensure long-term key security for the scheme. 

5.3 Side-Channels and Countermeasures 

In the Status Report on the Second Round of the NIST Post-Quantum Cryp-
tography Standardization Process [4] it is stated that: 

NIST hopes to see more and better data for performance in the third 
round. This performance data will hopefully include implementations that 
protect against side-channel attacks, such as timing attacks, power mon-
itoring attacks, fault attacks, etc. 

In their initial submission requirements [142] NIST also noted that �schemes that 
can be made resistant to side-channel attacks at minimal cost are more desirable 
than those whose performance is severely hampered by any attempt to resist side-
channel attacks�. Thus, some of the remaining candidates also have o˙er masked 
implementations, or this has been contributed by the research community. 

Migliore et al. [138] demonstrate DPA weaknesses in the unmasked Dilithium 
implementation, and in addition to this provide a masking scheme using the 
Ishai-Sahai-Wagner (ISW) probing model following the previous techniques for 
masking GLP and BLISS [15, 16]. Like the previous provably secure masking 
schemes, they alter some of the procedures in Dilithium by adding in e°cient 
masking of its sensitive operations. Moreover, some parameters are changed to 
gain extra performance e°ciencies in the masked design, such as making the 
prime modulus a power-of-two, which increases the performance by 7.3 to 9 
times compared to using the original prime modulus during masking. A power-of-
two modulus means the optimised multiplication technique, the NTT multiplier, 
is no longer possible so they proposed Karatsuba multiplication. The results 
for key generation and signing are between 8 to 12 times slower for order 2 
masking and 13 to 28 times slower for order 3 masking, compared to the reference 
implementations. This is also backed-up by experimental leakage tests on the 
masked designs. 

Similarly, Verhulst [179] provides DPA on Saber, as well as developing a 
masking scheme for its decryption protocol, which is later extended in [19]. The 
masking schemes only use additive ˝rst-order masking which thus makes it only 
2 to 2.5 times slower than being unprotected. However it is probably still vulner-
able to template attacks [143]. Saber lends itself to practical masking due to its 
use of LWR, as opposed to other KEMs using (M-)LWE. However, Saber uses 

3 Known, formal analyses guarantees are closer to 2−40 at 128-bit security. 
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a less e°cient multiplication method (a combination of Toom-Cook, Karatsuba, 
and schoolbook multiplication) compared to schemes which use number theoretic 
transform (NTT); thus it is an interesting open question as to whether NTT is 
the most practical multiplication method (due to its con˛ict with e°cient mask-
ing) and how these masked PQC schemes practically compare, particularly with 
the recent research improving the performance of Saber and others using NTTs 
[51]. 

NTRU and NTRU Prime both have the potential of using a combination of 
Toom-Cook and Karatsuba to speed-up their polynomial multiplication, thus 
whether they can reuse techniques from Saber's masked implementation is an 
important research question. NTRU Prime in particular requires masking since 
some power analysis attacks can read o˙ the secret key with the naked eye 
[113]. Attacks on these multiplication methods, which are in the time-domain, 
are likely to be simpler than those in the NTT or FFT domains as there is only 
one multiplication per coe°cient of the secret, which thus makes protection of 
this multipliers more urgent. A single-trace power analysis attack on FrodoKEM 
exploits the fact that the secret matrix is used multiple times during the matrix 
multiplication operation, enabling horizontal di˙erential power analysis [38]. 

Correlation power analysis and algebraic key recovery attacks have also been 
shown on the schemes Rainbow and UOV [144] by targeting the secret maps 
within the MQ signature schemes, during the matrix-vector computations. This 
attack is relevant for many MQ schemes that use the a°ne-substitution quadratic-
a°ne (ASA) structure. They also discuss countermeasures to simple and di˙er-
ential power analysis by using standard methods seen before such as shu˜ing of 
the indices or adding a pseudo-random matrix (i.e., additive masking). 

QcBits, a variant of McEliece PKE, was shown to be susceptible to DPA [161]. 
The attack partially recovers the secret key during the syndrome computation of 
the decoding phase. They also propose a simple countermeasure for the syndrome 
calculation stage, which exploits the fact that since QC-MDPC (quasi-cyclic 
moderate-density parity-check) codes are linear, the XOR of two codewords is 
another codeword. Thus, a codeword can be masked by XORing it with another 
random codeword before the syndrome calculation. 

This attack was then extended [173] to recover the full secret of QcBits, with 
more accuracy, using a multi-trace attack. Moreover, using the DPA counter-
measures proposed in [161] and in the ephemeral key setting, they provide a 
single-trace attack on QcBits. Lastly and most interestingly, they describe how 
these attacks can be applied to BIKE, by targetting the private syndrome de-
coding computation stage where long-term keys are utilized. For ephemeral keys, 
the multi-target attacks are not applicable, however the single-trace attack can 
be applied to recover the private key and also the secret message. 

Classic McEliece is also not immune from side-channel attacks targeting this 
operation. A reaction attack [128] using iterative chunking and information set 
decoding can enable recovery of the values of the error vector using a single 
decryption oracle request. 
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Masking schemes which use matrix multiplication have the potential to be 
e°ciently masked using a°ne masking (i.e., a combination of additive and mul-
tiplicative masking) similarly used in the Advanced Encryption Standard (AES) 
[87]. First-order additive masking has already been proposed for FrodoKEM 
[109]. Warnings for side-channel protection were also seen in Picnic, where the 
attack was able to recover the shared secret and the secret key, by targetting the 
LowMC block cipher, a core component to the signature scheme [91]. 

PQC schemes have also been shown to be susceptible to cold-boot attacks 
[154, 6], which was previously shown on NTRU [145]. Cold-boot attacks exploit 
the fact that secret data can remain in a computer's memory (DRAM) after 
it is powered down and supposedly deleted. Albrecht et al. [6] describe how to 
achieve this by attacking the secret-keys stored for use in the NTT multiplier in 
Kyber and NewHope, and after some post-processing using lattice reductions, is 
able to retrieve the secret-key. 

Fault attacks have also been investigated for PQC schemes. One of the most 
famous (microarchitectural) fault attacks is the Rowhammer exploit (CVE-2015-
0565), which allows unprivileged attackers to corrupt or change data stored in 
certain, vulnerable memory chips, and has been extended to other exploits such 
as RAMBleed (CVE-2019-0174). QuantumHammer [139] utilises this exploit to 
recover secret key bits on LUOV, a second round NIST PQC candidate for 
multivariate-quadratic signatures. The attack does somewhat exploit the `lifted' 
algebraic structure that is present in LUOV, so whether this attack could be 
applied to other PQC schemes is an open question. 

Determinism in signatures is generally considered preferable from a security 
perspective, as attacks are possible on randomly generated nonces (e.g., [80]). 
This prompted EdDSA, which uses deterministically generated nonces. NIST 
[4] noted the potential for nonce reuse in PQC schemes such as Kyber. Indeed, 
fault attacks which exploit the scheme's determinism have been demonstrated on 
SPHINCS+ [44] and Dilithium [41, 157], with EdDSA also showing susceptibility 
to DPA [167]. As such, some PQC candidates o˙er an optional non-deterministic 
variant, such as SPHINCS+ using OptRand, or random salt used in Dilithium, 
Falcon, GeMSS, Picnic, and Rainbow. 

An interesting alternative to mitigating these fault attacks (and random-
ness failures) is by using hedging, which creates a middle-ground between fully 
deterministic and fully probabilistic signatures, by deriving the per-signature 
randomness from a combination of the secret-key, message, and a nonce. This is 
formalized for Fiat-Shamir signatures and apply the results to hedged versions 
of XEdDSA, a variant of EdDSA used in the Signal messaging protocol, and to 
Picnic2, and show hedging mitigates many of the possible fault attacks [10]. 

Key reuse attacks, which have been shown to cause issues for real-world 
implementations of the EMV (�Europay, Mastercard, Visa�) standard [70], are 
also applicable in PQC; such as lattice-based schemes [86], supersingular isogeny-
based schemes [90], and potentially more. 

We continue the practical discussions on PQC in the full version of this paper 
[110], focusing on embedded implementations and use cases, and then providing 
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an overview of how PQC is being standardized, what new protocols are being 
designed, and any large scale experiments that have been conducted thus far. 
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