
1 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Combinatorial Test Generation for Multiple Input
Models with Shared Parameters

Chang Rao, Nan Li, Member, IEEE, Yu Lei, Member, IEEE, Jin Guo, YaDong Zhang, Raghu N. Kacker,
D. Richard Kuhn, Fellow, IEEE

Abstract—Combinatorial testing typically considers a single input model and creates a single test set that achieves t-way coverage.
This paper addresses the problem of combinatorial test generation for multiple input models with shared parameters. We formally
defne the problem and propose an effcient approach to generating multiple test sets, one for each input model, that together satisfy
t-way coverage for all of these input models while minimizing the amount of redundancy between these test sets. We report an
experimental evaluation that applies our approach to fve real-world applications. The results show that our approach can signifcantly
reduce the amount of redundancy between the test sets generated for multiple input models and perform better than a
post-optimization approach.

Index Terms—Combinatorial Testing, T-way Test Generation, Multiple Input Models, Shared Parameters

1 INTRODUCTION

COMBINATORIAL testing (CT) has been shown to be
a very effective approach to software testing [1] [2].

In particular, CT has been applied in situations where
interactions of certain elements need to be tested, e.g.,
confguration testing [3], GUI testing [4], web application
testing [5], security testing [6], product line testing [7] [8],
and others [9] [10]. A t-way combinatorial test set, or simply
a t-way test set, is designed to achieve t-way coverage that
requires every value combination of any t parameters be
covered by at least one test [11], where t is typically small
and is referred to as the test strength.

CT is a black-box testing strategy in that it generates tests
by modeling and sampling the input space of the subject
application without access to the source code.

Many approaches have been proposed to build a t-way
test set [2] [12] [13]. However, existing approaches have
mainly focused on how to create a t-way test set for a
single input model. In this paper, we consider the problem
of t-way test generation for multiple input models with
shared parameters. A shared parameter is a parameter that
exists in more than one input model. Even though shared
parameters exist in multiple models, their interactions need

• C. Rao is with the School of Information Science and Technology, and also
with the Sichuan Key Laboratory of Transportation Information Engi-
neering and Control, Southwest Jiaotong University, Chengdu, Sichuan,
611756, China. E-mail: changrao@my.swjtu.edu.cn.

• N. Li is with the Research and Development, Dassault Systems, New York,
NY, 10014, USA. E-mail: nli@mdsol.com.

• Y. Lei is with the Department of Computer Science and Engineering, The
University of Texas at Arlington, Arlington, TX, 76013, USA. E-mail:
ylei@cse.uta.edu.

• J. Guo and Y. Zhang are with the School of Information Science and
Technology, Southwest Jiaotong University, Chengdu, Sichuan, 611756,
China. E-mail: {jguo scce, ydzhang}@home.swjtu.edu.cn.

• R. Kacker and D. Kuhn are with the Information and Technology
Laboratory, National Institute of Standards and Technology, Gaithersburg,
MD, 20899, USA. E-mail: {raghu.kacker, kuhn}@nist.gov.

Manuscript received November 26, 2019; revised September 9, 2020.

F

to be tested only once. We refer to this problem as the CT-
MM (Combinatorial Testing for Multiple Models) problem.

The CT-MM problem is found when we perform CT
in practice, especially for large and/or complex software
applications. For example, use case testing is one common
approach to testing a software application. Each use case
represents a scenario the user could use the application to
achieve a goal. When we employ CT to perform use case
testing, we could create one input model for each use case.
Shared parameters may exist between the input models
created for different use cases. Consider a loan management
application. There could be different use cases for different
types of loan applications. These use cases typically have
some unique parameters that are specifc to the loan types,
and also some common parameters that are shared between
the different loan types, e.g. parameters that represent the
credit history of the applicant. Interactions between some
shared parameters only need to be tested once when these
parameters are processed by a common code module.

As a second example, based on the write-a-little-test-a-
little strategy, smaller modules are often tested before they
are integrated. When we employ CT to module testing, we
could create one input model for each module. These mod-
ules are not completely independent because they could use
some common components. Inputs that are processed by a
common component may appear as shared parameters in
the input models created for different modules. Since these
parameters are processed by the same common component,
their interactions only need to be tested once.

As a third example, Nguyen et al. present an approach
that combines model-based testing (MBT) and combinatori-
al testing (CT) [14]. In their approach, a subject application
is modeled as a Finite State Machine (FSM), where each
transition is labeled with an event. An event represents a
user action that may take one or more user inputs. To apply
CT, a set of test paths is frst generated from the FSM to
achieve certain coverage, e.g., all-edge coverage. Second,
an input model is created for each test path where each

mailto:kuhn}@nist.gov
mailto:ylei@cse.uta.edu
mailto:nli@mdsol.com

2 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 1. An Example FSM

event is modeled as a parameter. Representative user inputs
are selected for each event as the possible values of the
corresponding parameter. Third, a t-way test set is created
for each of the input models, using post-optimization to
remove redundant tests. This is a CT-MM problem, since
the same event could appear in different test paths, and thus
the corresponding parameter(s) would be shared among the
input models created for the test paths.

Figure 1 gives an example FSM [14]. This FSM models
part of the payment process of a large open-source e-
commerce and banking web application called Cyclos. In
the payment process, the user frst inputs the user name
(e1) and the payment amount (e2). Next, the user schedules
the payment process (e3), i.e., immediately pay or pay in the
future. If the user chooses pay immediately, the user may type
a description about this payment (e4). Otherwise, if the user
chooses pay in the future, they need to choose the number
of payments, which can be single or multiple (e5). Last, the
user presses a button to submit or cancel this payment (e6).
In the FSM, S0 represents the initial state and S6 represents
the fnal state. Table 1 gives the action each event represents
and the representative user inputs that each event takes.

TABLE 1
Event Information in the Example FSM

Event Action Representative
User Inputs

e1 input user ame users in list;
other users;

e2 input payment amount
too small;

valid;
too large;

e3 select payment schedule immediately;
future;

e4 type payment description any string;

e5 select payments in future single;
multiple;

e6 press button submit;
cancel;

To apply CT to this FSM, we frst generate two test
paths, including path1 = (e1, e2, e3, e4, e6) and path2 =
(e1, e2, e3, e5, e6). Then, we create one input model for each
test path. Event ei is modeled as parameter pi. The rep-
resentative user inputs for ei are modeled as the possible
values of pi. The model M1 for path1 consists of parameters
p1, p2, p3, p4 and p6. The model M2 for path2 consists
of parameters p1, p2, p3, p5 and p6. There are four shared
parameters, i.e., p1, p2, p3 and p6, in the two input models.

One straightforward approach to the CT-MM problem
is to build a t-way test set for each input model using an
existing t-way test generation algorithm. However, this ap-
proach would produce redundancy for shared parameters.
That is, combinations of shared parameter values may be
covered multiple times in multiple input models.

The technical challenge of the CT-MM problem is how
to avoid redundant coverage of shared parameter value
combinations in multiple input models.

One approach to addressing the above challenge is to
apply post-optimization [14]. That is, we frst generate a t-
way test set for each input model, and remove the redun-
dant tests afterwards. A test is redundant, and thus can be
removed, if all the value combinations covered by this test
are also covered by other tests.

In this paper, we propose a new approach that tries
to avoid redundant tests in the frst place. Our approach
extends an existing t-way test generation approach, namely
In-Parameter-Order-General (IPOG) [15], for a single input
model to multiple input models. We refer to this approach
as IPOG-MM, where MM again stands for Multiple Models.
The main idea of IPOG-MM is the following. If a com-
bination of some shared parameters appears in multiple
input models, their value combinations, which we refer
to as shared value combinations, could be covered in any
of the test sets generated for these models. Our approach
distinguishes shared value combinations from unique value
combinations. We try to distribute these shared value com-
binations among multiple test sets in a way that minimizes
the total number of tests. Specifcally, our approach uses
a concept called capacity to estimate the number of shared
value combinations a given test set could potentially cover.

One might consider an alternative approach in which
we create a super model that combines all the input models
and then builds a single t-way test set for the super model.
This approach would not work because each test in the
resulting test set must be split into multiple test sets, one
for each input model, so that they can be actually executed.
This split of tests could make t-way coverage incomplete,
because some combinations that are covered in the original
test may no longer be covered in the split tests.

We report an experimental evaluation in which we apply
our approach to fve real-world applications. We compare
our approach to the IPOG approach, i.e., using the IPOG
approach to build a separate t-way test set for each input
model. The results show that IPOG-MM removes a signif-
icant amount of redundant tests produced by the original
IPOG approach. We also compare our approach to another
approach, IPOG-PO, where we frst use IPOG to build
a separate t-way test set for each input model and then
perform post-optimization to remove the redundant tests.
The experimental results show that IPOG-MM can produce
fewer tests in most cases than IPOG-PO while remaining
competitive in terms of test generation time.

In summary, the major contributions of this paper are:

1) To the best of our knowledge, our work is the
frst to identify and formulate the CT-MM problem.
The CT-MM problem is found in different domains,
especially for large and/or complex applications.

2) We propose a test generation approach, i.e., IPOG-
MM, for the CT-MM problem. IPOG-MM tries to
minimizes the number of tests by avoiding redun-
dant coverage of shared value combinations.

3) We report an experimental evaluation on the effec-
tiveness of the IPOG-MM approach. A prototype

3 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 2 TABLE 3
Input Models Pairwise Tests

Parameter = {values} Input model = {parameters}
p1 = {a, b} M1 ={p1, p2, p3, p4, p5}
p2 = {c, d} M2 ={p1, p2, p3, p4, p6}
p3 = {e, f}
p4 = {g, h, i}
p5 = {j, k}
p6 = {n, m}

tool, Stride, is built that implements the IPOG-MM
approach. Stride is made available to the public1.

The paper is organized as follows. Section 2 shows a
motivating example. Section 3 defnes some basic concepts
and the CT-MM problem. Section 4 introduces the existing
IPOG approach. Section 5 presents the details of IPOG-
MM approach. Section 6 summarizes the implementation of
the tool. Section 7 reports some experimental results that
demonstrate the effectiveness of our approach. Section 8
discusses the related work. Section 9 concludes the paper
and discusses future work.

2 MOTIVATING EXAMPLE

In this section, we give an example to show that when di-
rectly applying an existing t-way test generation algorithm
to the CT-MM problem, it could result in redundancy in the
generated test sets. Furthermore, we show that though post-
optimization can remove redundant tests, it can not remove
redundant coverage of some shared value combinations.
As a result, post-optimization can result in more tests than
necessary.

Table 2 shows an SUT that has two input models, M1

and M2. There are a total of six input parameters, p1, p2,
p3, p4, p5, and p6. Parameters p1, p2, p3 and p4 are shared
parameters, as they appear in both M1 and M2. Parameter
p5 appears only in M1 and p6 only in M2. The values of each
parameter are also shown in the Table 2.

Table 3 shows a test suite with two 2-way test sets, T1

and T2, for M1 and M2, respectively. Note that the two
test sets are artifcially bloated for the illustration purpose.
Specifcally, each test set has nine tests in Table 3. However,
it requires only six tests in each test set to achieve 2-way
coverage for M1 and M2, e.g., if we use an existing tool
called ACTS [16]. Also note that the motivating example,
including the two test sets in Table 3, comes from [14], where
the post-optimization approach was originally proposed.

We make two observations from Table 3. First, due to
the existence of shared parameter combinations, there are
shared value combinations in both test sets. For example,
due to the fact that p1 and p2 form a shared parameter
combination, all the value combinations of this parameter
combination are covered in both T1 and T2. Second, cov-
ering the shared value combinations in both test sets pro-
duces redundant tests. For example, τ2 covers 10 value
combinations, (b, c), (b, f), (b, i), (b, k), (c, f), (c, i), (c, k),
(f, i), (f, k), and (i, k). As shown in Table 4, these value
combinations are also covered by other tests. Removing τ2

1. https://github.com/swjtu-railway/IPOG-MM

T1 T2
τ0: (a, c, e, i, j) τ9: (a, c, e, i, m)
τ1: (a, c, e, g, j) τ10: (a, c, e, g, m)
τ2: (b, c, f , i, k) τ11: (b, c, f , i, n)
τ3: (a, d, e, i, k) τ12: (a, d, e, i, n)
τ4: (a, d, f , g, k) τ13: (a, d, f , g, n)
τ5: (b, c, e, h, k) τ14: (b, c, e, h, n)
τ6: (b, c, e, g, k) τ15: (b, c, e, g, n)
τ7: (a, c, e, h, k) τ16: (a, c, e, h, n)
τ8: (b, d, f , h, j) τ17: (b, d, f , h, m)

TABLE 4
Coverage of the VCs Between τ2 And Other Tests

VCs τ0 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ11 τ14 τ15 τ17
(b, c) × × × × ×
(b, f) × × ×
(b, i) ×
(b, k) × ×
(c, f) ×
(c, i) × × ×
(c, k) × × ×
(f, i) ×
(f, k) ×
(i, k) ×

would make T1 by itself no longer a 2-way test set, as some
pairs, e.g., (b, i), (c, f), (f, i) are not covered by other tests
in T1. However, if we remove τ2, T1 and T2 together still
achieve 2-way coverage as all the pairs covered by τ2 are
also covered by some tests in T2. Thus, τ2 is a redundant
test. This suggests that when applying an existing t-way
test generation algorithm to each input model separately,
the redundant tests can be generated due to combinations
of shared parameters.

Nguyen et al. [14] applied a post-optimization approach
to reduce redundant tests. Similar to what we described
above, they frst generate a test set for each input model
separately. Then, they apply the post-optimization approach
as follows. For each test, they check whether the test covers
any value combination that is not covered by any other tests.
If so, the test is kept. Otherwise, the test is removed. This
process is repeated until no more test can be removed. Note
that the fnal test set produced by the post-optimization
approach depends on the order in which the tests are
checked.

After applying the post-optimization approach to the
example, τ3, τ5, and τ7 are removed from T1, and τ13 and τ14

are removed from T2. Though post-optimization removes
redundant tests, there is still redundant coverage of shared
value combinations among the two test sets. For example,
after removing the redundant tests τ3, τ5, τ7, τ13 and τ14,
(a, c) is still covered multiple times, i.e., by tests τ0, τ1, τ9,
τ10, and τ16. Such redundant coverage causes the number of
tests to be more than necessary.

This example indicates that there are opportunities for
further optimization for the CT-MM problem. In the rest
of the paper, we present an approach that aims to avoid
redundant tests from being generated in the frst place
during test generation.

https://github.com/swjtu-railway/IPOG-MM

4 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3 PRELIMINARIES

This section introduces some basic concepts and defnes the
CT-MM problem. Assume the existence of a domain D of
values.

Defnition 1. (Parameter) A parameter p is a set of values.
Formally, p ⊆ D.

A parameter combination P is a set of parameters. Let
Π(P) = p1 × p2... × pi... × p|P |, where pi ∈ P . We refer to
π ∈ Π(P) as a value combination of P . In the rest of the
paper, we refer to parameter combination as PC and value
combination as VC.

Defnition 2. (Input Model) An input model M = (P, C)
consists of a (non-empty) set P of input parameters and a set
C of constraints, where each constraint c ∈ C is a function:
Π(P) → {true, false}.

Let M = (P, C) be a model. A VC of P is also referred to
as a test of M , or simply a test when M is implied. We will
use τ to represent a test. A constraint c maps τ to a boolean
value. A test τ is said to be valid if c(τ) = true. Otherwise,
τ is said to be invalid.

Defnition 3. (SUT) A System Under Test (SUT) M con-
sists of a non-empty set of input models, M1,M2, ..., Mm,
where Mi = (Pi, Ci), for 1 ≤ i ≤ m. Formally, M =
{M1,M2, ..., Mm}.

In the rest of the paper, we are concern with a single
SUT and denote this SUT using M = {M1,M2, ..., Mm}.
We use P to denote the set of all the parameters in M. ThatS S S
is, P = P1 P2 ... Pm.

Let p be a parameter. Let M|p = {Mi|p ∈ Pi, 1 ≤ i ≤
m}. That is, M|p includes all the models in which p appears.
Let P be a PC. Let M|P = {Mi|P ⊆ Pi, 1 ≤ i ≤ m}. That
is, M|P includes all the models in which P appears.

Defnition 4. (Shared Parameter) An input parameter p ∈
P is a shared parameter, if p appears in more than one input
model of M. Formally, p is shared if and only if |M|p| > 1.

A parameter p ∈ P is said to be a unique parameter if it is
not a shared parameter.

Defnition 5. (Shared PC) A PC P is a shared PC, if more
than one input model contains P . Formally, P is shared if
and only if |M |P | > 1.

A PC P ⊆ P is said to be a unique PC if only one input
model contain P . It is possible that a PC is unique whereas
every parameter in the PC is shared.

Further, a VC π of a shared PC is said to be a shared VC.
Otherwise, π is a unique VC.

In the context of the CT-MM problem, we only consider
interactions between parameters that appear altogether in
at least one input model. In practice, parameters in different
input models could interact due to poor modeling. Such
interactions are not considered in our approach. If it is
important to cover such interactions, an input model should
be created that contain these parameters.

Defnition 6. (Cover) A VC π is covered by a test τ , if
π ⊆ τ .

A VC π is covered by a test set T if there exists a test
τ ∈ T such that π is covered by τ . A VC π is said to be valid
if there exists a valid test τ such that π is covered by τ .

Defnition 7. (T -way Test Suite) A t-way test suite T for
M is a set of test sets Ti, where 1 ≤ i ≤ m, one for each
model Mi such that for every VC π of every t-way PC, there
exists at least one test set Ti that covers π.

In the rest of the paper, we will use the term ‘test set’
to refer to a test set for a single input model and ‘test
suite’ to refer to a test set for the entire SUT consisting of
multiple input models. A test suite typically consists of a set
of individual test sets, one for each input model in the SUT.

Defnition 8. (The CT-MM Problem) The CT-MM problem
is to fnd a t-way test suite T for M, such that the total
number of tests in T is minimum.

It is important to note that other metrics, e.g. the length
of the test paths, the test execution cost at runtime, could be
used to defne the CT-MM problem.

We note that CT is a black-box approach. In CT, each test
represents one external input to the system under test and
is executed from an initial state to a fnal state. Furthermore,
the system is typically reset to initial state between two test
executions. Thus, these tests can be executed independently
in terms that the execution of one test does not enable or
disable the execution of another test, nor does it affect the
outcome of another test.

4 THE IPOG ALGORITHM

As mentioned earlier, IPOG-MM is built on top of the IPOG
approach. In this section, we give an overview of the IPOG
approach [17]. We also discuss several issues with directly
applying IPOG to multiple input models.

4.1 Overview

Assume that a system consists of a set P of parameters.
The IPOG approach takes three major steps to generate a
t-way test set T , including test set initialization, horizontal
extension and vertical extension. First, IPOG initializes a test
set T that satisfes t-way coverage for the frst t parameters.
This is simply an enumeration of all the t-way combinations
for the frst t parameters. Next IPOG extends T to build a
t-way test set for the frst (t + 1) parameters by covering
all the t-way combinations, i.e., all the t-way combinations
that involve the new parameter and (t − 1) parameters of
the frst t parameters. IPOG continues the extension for the
frst (t + 2) parameters, the frst (t + 3) parameters, and
so on until it builds a t-way test set for all the parameters.
The extension to cover a new parameter is performed in the
following two steps:

• Horizontal extension: IPOG extends each existing test
in T by adding one value for the new parameter.

• Vertical extension: IPOG adds new tests to T , if need-
ed.

Algorithm 1 shows the IPOG test generation approach.

4.2 Example

We use an example to explain the main idea of horizontal
extension and vertical extension. Assume that an input
model has three parameters, p1, p2, p3, where p1 = {11, 12},
p2 = {21, 22} and p3 = {31, 32, 33}. In order to build a 2-
way test set for this model, IPOG frst initializes a 2-way test
set T for the frst two parameters (Algorithm 1, line 2), as
shown in Figure 2a.

5 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 1: The IPOG Approach
Input: The input model M , strength t
Output: A t-way test set T for M

1 T ← ∅;
2 initialize T with VCs of the frst t parameters of M ;
3 for (int i = t + 1; i ≤ n; i ++) do
4 let Π be the set of VCs involving pi and (t − 1)

covered parameters;
5 // horizontal extension to cover pi;
6 for (each test τ = (v1, v2,, vi−1) in T) do
7 choose a value vi of pi, and extend τ into τ 0 =

(v1, v2,, vi−1, vi), such that τ 0 covers
the most VCs in Π ;

8 remove from Π the VCs covered by τ 0;

9 // vertical extension to cover pi;
10 for (each VC π ∈ Π) do
11 if (π has not been covered by an existing test) then
12 change an existing test, if possible, or other-

wise add a new test to cover π;

13 remove π from Π;

14 return T ;

Second, IPOG extends T to cover p3. There are in
total 12 VCs that involve p3 and thus need to be cov-
ered: (11, 31), (11, 32), (11, 33), (12, 31), (12, 32), (12, 33),
(21, 31), (21, 32), (21, 33), (22, 31), (22, 32) and (22, 33).

During horizontal extension (Algorithm 1, line 6 - 8),
for each of the existing four tests, IPOG chooses a value
of p3 and adds it into the test to cover as many new VCs as
possible. For example, assume that the tests τ1 = (11, 21) and
τ2 = (11, 22) have been extended to τ1 = (11, 21, 31) and τ2

= (11, 22, 32), respectively. Now, IPOG extends the test τ3 =
(12, 21). If we extend τ3 into (12, 21, 31), the new test would
only cover one new VC, i.e., (12, 31), because (21, 31) has
already been covered by τ1. Thus, IPOG extends τ3 to τ3 =
(12, 21, 33) to cover two new VCs, i.e., (12, 33) and (21, 33).
Figure 2b shows the test set after horizontal extension.

After horizontal extension, four VCs remaining uncov-
ered, (11, 33), (12, 32), (21, 32) and (22, 33). IPOG performs
vertical extension to cover them (Algorithm 1, line 10 - 13).
To cover (11, 33), IPOG creates a new test τ5 = (11, ∗, 33) in
T . Note that ∗ here represents a don’t care value of p2, which
is a value that can be changed later to other values while
preserving the coverage. For example, in order to cover
(22, 33), IPOG can directly change the test τ5 = (11, ∗, 33)
into τ5 = (11, 22, 33), i.e., without adding any new test.
Figure 2c shows T after vertical extension. At this point,
all the 12 VCs involving p3 are covered, and T is a complete
2-way test set for all the three parameters, p1, p2 and p3.

4.3 Issues with Applying IPOG to the CT-MM Problem

The IPOG algorithm is designed to build a t-way test set
for a single input model. There are several issues to be
addressed if we directly apply IPOG to the CT-MM problem.

First, since shared VCs exist in multiple input models,
we may face the following two problems.

Fig. 2. An illustration of the IPOG Approach

• Redundancy during initialization. IPOG builds an ex-
haustive t-way test set for the frst t parameters.
If the frst t parameters are shared across multiple
input models, their combinations would be covered
multiple times, one for each model.

• Redundancy during horizontal and vertical extension.
IPOG tries to cover all the t-way VCs for each model
during horizontal and vertical extension. This means
that shared VCs, if exist, would be covered multiple
times, one for each model.

One may consider making a simple improvement on
the original IPOG approach to avoid redundant coverage
on shared VCs, by tracking coverage of shared VCs across
multiple models. When a shared VC is covered for one
model, we mark it as covered and do not cover the VC
again for other models. This approach, however, does not
distinguish between unique and shared VCs, which may
produce more tests than necessary as discussed below:

• During horizontal extension, IPOG extends each ex-
isting test to cover as many uncovered VCs as possi-
ble. No distinction is made on whether such VCs are
unique or shared. This may cause more shared VCs
to be covered than unique VCs. Thus, more unique
VCs would have to be covered by vertical extension,
which could produce more tests than necessary. Note
that shared VCs could be covered in other test sets,
while unique VCs must be covered in the current test
set.

• During vertical extension, IPOG covers all the re-
maining VCs, i.e., VCs that have not been covered.
The remaining VCs may include both unique and
shared VCs. Again, while unique VCs must be cov-
ered in the current test set, shared VCs do not have
to. In particular, shared VCs could be covered during
horizontal extension of the later test sets, without
adding any new test.

The IPOG-MM approach is developed to address above
issues, as detailed in the following section.

5 THE IPOG-MM APPROACH

In this section, we present a new approach, IPOG-MM,
for generating tests on multiple input models. Algorithm 2
shows the major steps of IPOG-MM. Similar to IPOG, IPOG-
MM adopts the one-parameter-at-a-time framework. Howev-
er, unlike IPOG, IPOG-MM makes a distinction between
shared and unique PCs and VCs.

As shown in Algorithm 2, IPOG-MM consists of three
major steps: 1) creating an initial test suite (line 3); 2)

6 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 2: The IPOG-MM Framework
Input: A set M of input models, strength t
Output: A test suite T that satisfes t-way coverage

for M
1 let P be the union of all input parameters in M;
2 sort the parameters in P with a non-ascending order

by the domain size of each parameter;
3 build an initial test suite T for M;
4 // test sets extension
5 for (each parameter p ∈ P) do
6 if (p is a unique parameter) then
7 // cover a unique parameter
8 extend the only test set involving p to cover p;
9 else

10 // cover a shared parameter
11 extend the multiple test sets involving p to

cover p;

12 return T ;

extending a single test set to cover a unique parameter
(line 8); 3) extending multiple test sets to cover a shared
parameter (line 11).

To cover a unique parameter p, we use the same strat-
egy as IPOG. That is, we perform horizontal and vertical
extension to extend the only test set involving p to cover p
(Algorithm 1, line 6-13).

The rest of this section is organized as follows. Section 5.1
discusses the initialization process. Section 5.2 discusses
how to cover a shared parameter in IPOG-MM, Section 5.3
analyzes the complexity of IPOG-MM. Section 5.4 discusses
constraints handling. Section 5.5 provides some miscella-
neous considerations.

Note that in Section 5.1 and 5.2, we assume that the input
models do not have constraints. We discuss how to deal with
constraints in Section 5.4. Also, we assume that no input
model is a sub-model of another model. A sub-model is an
input model whose parameters are all contained in another
input model (which is referred to as a super-model). We
discuss how to deal with sub-models, and some other issues
in Section 5.5.

Also note that in this section, we use a running example
to explain the major steps of IPOG-MM. Assume t = 2.
Table 5 shows the input models of the example.

TABLE 5
Input Models of the Running Example

Parameter = {values} Input model = {parameters}
p1 = {11, 12, 13, 14} M1 = {p1, p2, p3, p4}
p2 = {21, 22, 23} M2 = {p1, p2, p3, p5}
p3 = {31, 32, 33} M3 = {p3, p4, p5}
p4 = {41, 42} M4 = {p4, p5, p6}
p5 = {51}
p6 = {61}

5.1 Initialization

For a given model M , IPOG-MM initializes the test set
using unique VCs. That is, the initial test set for M does

not include shared VCs that also exist in other models. To
minimize the number of tests, IPOG-MM selects a unique
PC that has the largest number of VCs. This is similar
to IPOG, where the parameters are sorted according to a
non-ascending order of their domain sizes [18]. Doing so is
likely to reduce the number of tests. Algorithm 3 shows the
initialization process.

Algorithm 3: Initialize A Test Suite for M

Input: A set M of input models, strength t
Output: An initial test suite T of test sets

1 let T be an empty test suite;
2 for (each input model M ∈M) do
3 let T be an empty test set;
4 if (there exists a unique PC in M) then
5 let P be a unique PC that has the most VCs;
6 add into T each VC π ∈ Π(P) as a test;
7 mark the parameters of P as covered;

8 T ← T ∪ {T };

9 return T ;

Note that there may be no unique PCs in an input model
M . In this case, the initial test set for M will be empty.

Consider the running example. For M1, the VCs of the
PC (p1, p4) is chosen to create an initial a test set T1 for M1.
This is because the PC (p1, p4) is unique and has the largest
number of VCs, i.e., 4 × 2 = 8. Based on this strategy, we
initialize a test set for each input model. Table 6 shows the
test suite after initialization.

TABLE 6
The Initial Test Suite for the Running Example

T1 : {p1, p4}
(11, 41) (11, 42) (13, 41) (13, 42)
(12, 41) (12, 42) (14, 41) (14, 42)

T2 : {p1, p5}
(11, 51) (12, 51) (13, 51) (14, 51)

T3 : {p3, p4, p5}
∅

T4 : {p4, p6}
(41, 61) (42, 61)

5.2 Covering a Shared Parameter

In this section, we present an algorithm, i.e., Algorithm 4
that is used to cover a shared parameter (Algorithm 2, line
11).

Algorithm 4 consists of two phases. In Phase 1, we
extend the test sets to cover all the unique VCs and as many
shared VCs as possible involving the shared parameter
(Algorithm 4, line 3-9). We explain the details of Phase 1
in Section 5.2.1, including the notion of capacity. In Phase
2, we further extend the test sets to cover all the remaining
shared VCs (Algorithm 4, line 11). We explain the details of
Phase 2 in Section 5.2.2.

7 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Algorithm 4: Cover a Shared Parameter
Input: A t-way test suite T , a shared parameter p,

strength t
Output: A t-way test suite that extends T to cover p

1 //Phase 1: cover all unique VCs and most shared VCs
2 let T | be the set of non-empty test sets in T that in-p

volves p, but does not cover p;
3 while (T | is not empty) do p
4 // Phase 1-1: select a test set
5 compute the capacity(T , p) of each T ∈ T | ;p
6 select a test set T that has the maximum capacity;
7 // Phase 1-2: extend the selected test set
8 extend T to cover p;
9 remove T from T | ;p

10 // Phase 2: cover the remaining shared VCs
11 extend multiple test sets in T to cover the remaining

shared VCs;
12 return T ;

5.2.1 Phase 1: Cover all the Unique VCs

In Phase 1, we frst identify test sets that are not empty,
involve p, but do not cover p (Algorithm 4, line 2). A test set
T is not extended in Phase 1 in the following two cases: 1)
T is empty. This is possible if the model has no unique PCs.
The horizontal extension of the IPOG framework requires an
existing test when we try to cover a new parameter; 2) the
shared parameter p to be covered has already been covered
by T . This is possible because p could be covered by a test
set during initialization.

Phase 1-1: Selecting a Test Set. When we extend a test
set to cover a new parameter p, we need to cover all the VCs
of the PCs that involve p and (t − 1) covered parameters.
We aim to select a test set that is likely to cover the most
uncovered VCs.

Assume that we have initialized a test set T for the frst
t parameters. When extending T to cover a new next para-
meter, it is diffcult to calculate the number of uncovered
VCs that T can cover. We introduce a notion, called capacity,
to estimate this number.

To compute the capacity of T , we frst introduce the
concept of matching pair. Let P be a PC introduced by the
new parameter p. Since IPOG-MM covers one parameter at
a time, P consists of (t − 1) parameters that have already
been covered by T , in addition to p. Let π be a VC of P
that has not been covered yet. Let τ be a test in T . π and τ
are a matching pair if the (t − 1) parameters have the same
values in τ and π. Match(T , P) denotes the total number of
matching pairs between the tests in T and the VCs in P .

Note that a test (or VC) could form a matching pair
with multiple VCs (or tests). However, when we count the
number of matching pairs, each test (or VC) can only be
used to form one matching pair.

The capacity with respect to a parameter p represents the
number of VCs involving p that could potentially be covered
by T . We compute capacity(T, p) by adding the number of
matching pairs of all the PCs that involve p. Specifcally, the
capacity is computed using Equation (1), where m represents
the number of shared PCs that are involved in p and (t − 1)

Fig. 3. Possible matching pairs between T1 and (p1, p2)

parameters covered by T .

mX
capacity(T, p) = (Match(T, Pi)) (1)

i=1

We select a test set with the highest capacity as the test
set to extend next. Note that the capacity of each test set is
computed dynamically, since uncovered VCs may change
after a test set is extended. Also note that capacity is an
approximation of the number of VCs that T could actually
cover, since we simply add all the number of matching pairs
without considering possible conficts between different PCs.
The term confict means that the shared parameter p that is
being covered takes different values in the matched VCs.

We use the running example to illustrate how to compute
matching pairs and capacity. Let P be the set of all input
parameters. After sorting, P = {p1, p2, p4, p5, p3, p6, p7}.
As shown in Table 6, p1 has been covered in both test sets T1

and T2 during initialization. We skip p1 and cover the next
parameter p2.

First, we identify two test sets, T1 and T2, that satisfy two
conditions (Algorithm 4, line 2):1) these test sets involve p2;
2) these test sets have not covered p2. Second, we compute
the capacities of T1 and T2. Adding p2 into the test sets
introduces one new shared PC, i.e., (p1, p2). Table 7 shows
the VCs of this PC. All of the 12 VCs of (p1, p2) have not
been covered yet. Figure 3 shows the possible matching
pairs between T1 and (p1, p2).

The only overlapping parameter between T1 and (p1, p2)
is p1. Note that p1 has four values, i.e., 11, 12, 13, and 14. For
the value 11, although there are three shared VCs with 11 in
(p1, p2), there are only two tests in T1 with 11. Thus, there
are only two matching pairs for value 11. Similarly, there are
two matching pairs for each of the other values, i.e., 12, 13,
and 14. Therefore, Match(T1, (p1, p2)) = 2 + 2 + 2 + 2 = 8,
capacity(T1, p2) = 8. Similarly, we get Match(T2, (p1, p2)) =
1+ 1+1+1 = 4 and capacity(T2, p2) = 4. Since capacity(T1,
p2) > capacity(T2, p2), we select T1 to extend frst.

Phase 1-2: Extending the Selected Test Set. The general
strategy is to cover all the unique VCs and as many shared
VCs as possible. A new test could be added to cover
a unique VC if the VC could not be otherwise covered.
However, we never add a new test to cover a shared VC
in this step. This strategy essentially gives higher priority to
unique VCs than shared VCs. This is because unique VCs

8 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

can only be covered in the current test set, whereas shared
VCs can be covered in other test sets. IPOG-MM does not
construct new tests to cover the shared VCs in this phase,
because other test sets may be able to cover them.

IPOG-MM makes two modifcations on the original I-
POG approach:

• During horizontal extension, when adding a new
value of the new parameter p into existing test,
IPOG-MM chooses a new value of p to cover as many
unique VCs as possible. If two or more values of p
can cover the same number of unique VCs, IPOG-
MM chooses a value that can cover more shared VCs;

• During vertical extension, IPOG-MM only tries to
cover all the remaining unique VCs. Shared VCs are
only covered as side effects. That is, when we try to
cover the unique VCs, some shared VCs would be
covered without additional effort.

Consider the running example. We now extend T1 to
cover p2. There are two newly introduced PCs, (p4, p2) and
(p1, p2). Table 7 the VCs of these two PCs. Since (p4, p2) is
a unique PC, all its VCs are unique VCs. Since (p1, p2) is a
shared PC, all its VCs are shared VCs.

TABLE 7
Combinations Introduced by p2 in the Running Example

(p4, p2) (p1, p2)
(41, 21) (11, 21) (13, 21)
(41, 22) (11, 22) (13, 22)
(41, 23) (11, 23) (13, 23)
(42, 21) (12, 21) (14, 21)
(42, 22) (12, 22) (14, 22)
(42, 23) (12, 23) (14, 23)

Next, we extend each test in T1. Recall that T1 has eight
tests as shown in Table 6. First, we extend τ1 = (11, 41).
If we add the value 21 to τ1, τ1 becomes (11, 41, 21). The
new test covers one unique VC (41, 21) and one shared VC
(11, 21). If we add 22 to τ1, the new test would also cover
one unique VC (41, 22), and one shared VC (11, 22). We
would cover one unique VC (41, 23) and also one shared
VC (11, 23) if we add 23 to τ1. Thus, we can choose any of
the three values, 21, 22 or 23 for τ1. Assume that we choose
21 for τ1. We remove the VCs covered by τ1.

Second, we extend τ2 = (11, 42). Similarly, we add 22
into τ2. The new test covers one unique VC, (41, 22), and
one shared VC, (11, 22). Then, we remove (41, 22), and
(11, 22). We continue to do this for other tests.

After extending the test sets, all the unique VCs are
covered. Table 8 shows T1 and T2 after covering p2.

TABLE 8
The Test Sets Involving p2 after Phase 1 Extension

T1 : {p1, p4, p2}
(11, 41, 21) (11, 42, 22) (13, 41, 22) (13, 42, 23)
(12, 41, 23) (12, 42, 21) (14, 41, 21) (14, 42, 22)

T2 : {p1, p5, p2}
(11, 51, 23) (12, 51, 22) (13, 51, 21) (14, 51, 23)

Note that in this example, we do not have to do the ver-
tical extension after covering p2. But there will be remaining

shared VCs after covering the next parameter p3. We discuss
how to cover the remaining shared VCs in Section 5.2.2.

5.2.2 Phase 2: Cover Remaining Shared VCs

In Phase 1, we have covered all the unique VCs, but not
necessarily all the shared VCs. In Phase 2, we cover all the
remaining shared VCs, if exist, either by updating existing
tests (i.e., replacing don’t care values), or by constructing
new tests.

Algorithm 5 shows the details of Phase 2. The goal of the
algorithm is to minimize the number of tests that are added
to cover the remaining (shared) VCs. This is similar to the
goal of the vertical extension in the original IPOG approach.
The difference is that we need to minimize the number of
tests that could be added to multiple test sets, instead of a
single test set.

Algorithm 5: Cover Remaining Shared VCs
Input: A set Π of the remaining shared VCs, a shared

parameter p, an existing test suite T , strength t
Output: An extension of T that covers all the VCs in

Π
1 let T | be a subset of test sets in T that involve p;p
2 // reuse existing tests to cover shared VCs
3 for (each VC π ∈ Π) do
4 change an existing test τ ∈ T | into τ 0 to cover π,p

if possible;
5 remove from Π the VCs that are covered by τ 0;

6 // construct new tests to cover shared VCs
7 while (Π is not empty) do

let τ be an empty test;
for (each test set T ∈ T |) do p

create a test τ 0 such that if added to T , it would
cover the most VCs in Π;

if (τ 0 covers more VCs than τ) then
τ ← τ 0;

add τ to the corresponding test set as a new test;
remove from Π the VCs covered by τ ;

In Algorithm 5, the test suite T of test sets is obtained
after Phase 1. When extending T to cover remaining VCs,
we frst try to cover as many VCs as possible without
adding a new test, i.e., by changing some dont care values
in the existing tests. Then, we cover the remaining VCs
by constructing new tests. For each test set that involves
p, we create a test that would cover the most remaining
VCs if added to the test set. Among all the tests created,
one for each test set, we choose one that could cover the
most remaining VCs. We add the chosen test to extend the
corresponding test set and remove the VCs covered this
chosen test. This process is repeated until all the remaining
VCs are covered.

In order to create a test τ 0 that would cover the most
remaining VCs if added to a test set T , we create a set of
candidate tests from which we choose one that covers the
most remaining VCs. First, we check if there exists a PC P
that have the most remaining VCs. If P does not exist, T

8

9

10

11

12

13

14

15 return T ;

9 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

already covers all the VCs for the parameters involved in
T . Thus no candidate test is built for T . Second, we create
a candidate test τ from each remaining VC of P , such that
in τ , all the parameters involved in the VC take the same
values as in the VC and the other parameters take don’t
care values. Third, we extend each candidate test τ of T
by adding a remaining shared VC π ∈ Π into τ , such that
1) τ is compatible with π; and 2) this addition covers the
most remaining shared VCs. Note that c is compatible with
a VC π if any parameter that exists in τ and π take the same
value in them. We continue to select VCs to extend τ , until
no further extension could be made, which happens when
there exists no more dont care values or no compatible VCs
can be selected from Π.

Let’s continue with the running example. Table 9 shows
T1 and T2 after covering p3 in Phase 1.

TABLE 9
The Test Sets Involving p3 after Phase 1 Extension

T1 : {p1, p4, p2, p3}
(11, 41, 21, 31) (11, 42, 22, 32) (13, 41, 22, 32) (13, 42, 23, 33)
(12, 41, 23, 33) (12, 42, 21, 31) (14, 41, 21, 32) (14, 42, 22, 33)

T2 : {p1, p5, p2, p3}
(11, 51, 23, 31) (12, 51, 22, 32) (13, 51, 21, 33) (14, 51, 23, 31)

The following Table 10 shows the remaining shared VCs
after Phase 1.

TABLE 10
Remaining Shared VCs Involving p3

From: (p1, p3) From: (p2, p3)
(11, 33) (22, 31)
(13, 31) (23, 32)

Since there are no don’t care values in existing tests for
reusing, we build new tests to cover the VCs in Π. Figure 4
shows the major steps for constructing a new test for T1

(Algorithm 5, line 10 - 12).
At step 1, we initialize a set of candidate tests. The PCs

(p1, p3) and (p2, p3) are both involved in T1. They have the
same number of remaining VCs Thus, for T1, we could use
the VCs of either PC to initialize candidate tests. Without
loss of generality, we use the VCs of (p1, p3) to initialize the
candidate tests τ11 and τ12.

At step 2, we extend the candidate tests. We use the VCs
of (p2, p3) for the extension based on the greedy strategy.
For τ11, since there are no VCs could be used to extend, we
assign don’t care values to the parameters p2 and p4, respec-
tively. For τ12, since it is compatible with the remaining VC
(22, 31), we assign the value 22 to p2 and don’t care values
to p4.

At step 3, we choose a candidate test that can cover
the most remaining VCs. The candidate test τ12 is chosen
because it covers more remaining VCs than τ11, i.e., (13, 31),
(22, 31).

A test could be similarly constructed for T2 to cover
the most remaining VCs. In this example, τ12 is selected
and added into T1 as a new test. After this extension, the
remaining VCs (13, 31) and (22, 31) are covered and thus
being removed from Π. We continue the above steps until

all the remaining VCs in Π are covered. Table 11 shows the
fnal test suite that achieves 2-way coverage for the running
example.

TABLE 11
The Final Test Suite for the Running Example

T1 : {p1, p4, p2, p3}
(11, 41, 21, 31) (11, 42, 22, 32) (13, 41, 22, 32) (13, 42, 23, 33)
(12, 41, 23, 33) (12, 42, 21, 31) (14, 41, 21, 32) (14, 42, 22, 33)
(13, ∗, 22, 31) (11, ∗, ∗, 33) (∗, ∗, 23, 32)

T2 : {p1, p5, p2, p3}
(11, 51, 23, 31) (12, 51, 22, 32) (13, 51, 21, 33) (14, 51, 23, 31)

T3 : {p3, p4, p5}
∅

T4 : {p4, p6, p5}
(41, 61, 51) (42, 61, 51)

5.3 Complexity Analysis

In this section, we assume that the strength is t. Also assume
that there are n input models, at most k parameters in one
input model, and at most d values for one parameter.

5.3.1 Space complexity

The space complexity is dominated by the number of VCs
involving a new parameter when extending a test set to
cover the new parameter p. There are at most C(k − 1, t − 1)
PCs when extending a test set. Each PC contains O(dt) VCs.
Thus, the space complexity for the VCs is O(dt × kt−1).

5.3.2 Time complexity for test set selection

To select the next test set for extension, the time complexity
is dominated by computing the capacity for each test set
when covering a new parameter. IPOG-MM computes the
capacity of each test set by adding all the matching pairs
between the tests and the shared VCs. Instead of direct-
ly computing matching pairs by matching the tests with
shared VCs, we count the number of times that a distinct
value combination occurs in the tests and the shared VCs.
We compute the number of matching pairs by adding the
minimum number of times that each distinct value combi-
nation occurs in the tests or the shared VCs.

According to [17], each time when covering a new para-
meter, there will be at most O(dt × logk) tests in a test set.
And there will be at most O(dt) shared VCs for a given PC.
Using the bitmap data structure [15], it takes us O(1) time to
check occurrence times that a distinct combination occur in a
test and a VC. Thus, it takes O(dt × logk) to check matching
pairs between the tests and the VCs of a shared PC. Since
there are at most O(kt−1) newly introduced shared PCs each
time, to compute capacity for a test set, the time complexity
is O(dt × logk × kt−1).

5.3.3 Time complexity for test set extension

The time complexity is dominated by choosing the values
of a new parameter p for the tests to cover the newly
introduced VCs. Since we use a bitmap structure to store
the VCs, which takes O(1) time to check whether τ could

10 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 4. Main steps of Phase 2

cover a newly introduced VC [15]. For a total of O(kt−1)
newly introduced PCs, it takes O(kt−1) to choose a value of
p and determine the number of VCs that a test can cover. To
try each of the d values of p, it takes O(d × kt−1) to choose
which value can cover the most number of VCs. Consider
that in a test set, the number of tests is O(logk × dt),
the time complexity for extending a test set to cover p is
O(dt+1 × logk × kt−1).

In summary, for n test sets, the time complexity of IPOG-
MM is O(n × dt+1 × logk × kt−1)

5.4 Constraint Handling
Constraint handling can be added to IPOG-MM as follows.
First, during initialization (Algorithm 3, line 5), we choose
a unique PC that has the most valid VCs for initialization.
Second, in Phase 1-1, when selecting a test set (Algorithm 4,
line 5), we frst remove the invalid VCs with respect to each
input model. That is, we only try to cover VCs that are valid,
i.e., that satisfy all the constraints. Since the constraints in
different input models may be different, the same VC may
be valid in one input model but invalid in a different model.
A VC is considered shared between two input models only
if it is valid in both input models. Third, when generating
the tests to cover a unique parameter (Algorithm 2, line
8) or a shared parameter (modifed horizontal and vertical
extension), we check and ensure that the tests are valid.
Fourth, in Phase 2, we check and ensure that the tests
(Algorithm 5, lines 4 and 10) are valid.

5.5 Discussion
5.5.1 Single input model
When there is a single input model, IPOG-MM is naturally
reduced to IPOG. This is because all the parameters of the
single input model are treated as unique parameters.

5.5.2 Input model pre-processing

Input models can be pre-processed to improve effciency of
test generation. Let M1 and M2 be two input models. If both
models have no constraints, M1 is a sub-model of M2, or M2

is a super-model of M1, if all the parameters of M1 are also
parameters of M2. In this case, M1 could be removed. This
removal does not affect test coverage.

If M1 or M2 or both have constraints, M1 is a sub-
model of M2, or M2 is a super-model of M1, if whether the
constraints in M1 are stronger than the constraints in M2.
In other words, every valid VC in M1 is also a valid VC in
M2. In this case, we could remove M1. Otherwise, we must
keep M1. A constraint solver could be used to determine

whether the constraints of M1 are stronger than those of
M2. Alternatively, we could just keep both models as long
as they contain constraints. In this case, our approach might
produce more tests.

Also, some input models may have less than t param-
eters while the total number of parameters of the SUT is
greater or equal to t. In this case, we could simply enumer-
ate all possible combinations for these input models. And
during the later test generation, we do not generate tests for
such input models anymore.

5.5.3 Empty test sets

We suggest that a complete test to be added into a test
set which remains empty after test generation. Recall that
during initialization, if an input model M does not have any
unique VCs, we create an empty test set for M . This test set
may remain empty after test generation, as all the VCs for
M are shared VCs and could be covered in other models.
This does not affect t-way coverage. However, in some real-
world applications, one may desire to have at least one test
in each test set. For example, in [14], a test set is created
for each path. No test in a test set means the corresponding
path would not be executed, which may compromise the
path coverage.

5.5.4 Model Evolution

As discussed in [19], input models could be changed due to
model corrections and software changes such as bug fxes
and enhancements. When this happens, the test sets must
be updated in order to maintain t-way coverage. It is often
desired to reuse as many existing tests as possible so that
the time and effort spent on the existing tests could be
saved [20].

We consider the following types of model changes and
their impact on the existing test sets:

• Adding a new input model: The new model may or may
not include shared parameters. In either case, we
need to generate a test set for the new model to cover
the VCs that are unique to this model. All the existing
test sets could be reused. Note that when the new
model includes shared PCs, the test set generated for
the new model could cover some shared VCs. Thus,
the existing test sets could potentially be reduced.

• Removing an existing input model: When we remove
a model that does not include any shared PCs, we
could simply remove the corresponding test set. The
other test sets could be reused. However, when we
remove a model that includes shared PCs, some

11 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 5. Overview of the Stride tool

shared VCs (of these PCs) may be covered only in
the test set for this model. In this case, the existing
test sets must be updated to cover these shared VCs.

• Modifying an existing input model: An existing mod-
el could be modifed in different ways, including
adding and/or removing parameters, parameter val-
ues, and/or constraints. Let M be the model being
modifed. Let T be the existing test set for M . T must
be updated to cover all the unique VCs in M , e.g.,
introduced by adding a new parameter or parameter
value. In addition, if a test is removed due to some
parameter value being removed from M , T must be
updated to cover shared VCs that are covered only
in this test. This could help minimize changes to, and
thus maximize the reuse of, the other test sets. Note
that it is possible that a shared VC π was originally
covered in T , but could no longer be covered in T
due to a constraint change. In this case, some other
test sets must be updated to cover π

6 STRIDE: A PROTOTYPE TOOL

We have built a prototype tool, called Stride, that imple-
ments the IPOG-MM approach. Stride also implements two
other approaches, IPOG and IPOG-PO, which are needed
for our experimental evaluation, as explained in Section 7.
The tool, with its source code, is made publicly available
on GitHub2. In this section, we discuss the major design
decisions of the tool and our effort to verify the tool imple-
mentation.

6.1 Major Components
The Stride tool is written in Java. It takes as input a data fle
that contains a group of input models and a test strength.
The output is a data fle that contains a test suite that
satisfes t-way coverage for the group of input models.

Figure 5 gives an overview of Stride.
There are fve major components, including Input Model

Manager, Test Generation Engine, Combination Manager,
Test Set Manager, and Constraint Handler. The major re-
sponsibilities of these components are shown below:

• Input Model Manager: This component is responsi-
ble for managing input models. In particular, it is
responsible for parsing the input model fles, pre-
processing the input models, and performing query
operations, e.g., retrieving the models that contain a
shared PC.

2. https://github.com/swjtu-railway/IPOG-MM

• Test Generation Engine: This component implements
the core algorithms of the three test generation ap-
proaches, including IPOG, IPOG-PO, and IPOG-MM.
The three approaches share common data structures
and functions such as covering the unique VC-
s. IPOG-PO implements the post-optimization ap-
proach, which was originally proposed and imple-
mented in the M[agi]C tool [21]. However, we found
some faults in the implementation as confrmed by
its developer.

• Combination Manager: This component is responsi-
ble for managing different types of combinations,
including both shared/unique PCs and VCs. This
component employs advanced data structures which
are similar to [15], so that combinations can be gen-
erated, updated, and searched effciently.

• Test Set Manager: This component is responsible for
managing and outputting test sets, including adding
new tests, updating existing tests, and performing
query operations, e.g., checking whether a VC is
covered by a test, retrieving the value of a given
parameter, and others.

• Constraint Handler: This component is responsible
for handling constraints. In particular, it performs
two types of validity checks. One is to check the
validity of a combination, and the other is to check
the validity of a test. We used the constraint handler
from our earlier work [22]. Currently, the tool only
supports constraints that are written as forbidden
tuples.

In addition, Stride includes a component that generates
random constraints. This component is only used for the
purpose of evaluation, and is thus not needed during pro-
duction use.

6.2 Tool Verifcation
Several steps have been taken to ensure the correctness
of the tool. At the unit level, we have created JUnit3 test
cases to help test key functions, such as fnding shared
combinations, computing capacity, and test set extension,
including horizontal and vertical extension. At the system
level, we have created small input models, run the tool and
manually checked that the output tests are as expected.

We have also implemented an assistive analysis tool
to automatically check the validity and coverage of the
resulted tests. The inputs of the tool include the set of
input models, strength t, and the generated test suite. The
output of the tool includes the validity and coverage of
the generated test sets. In particular, if the test suite fails
to achieve the expected coverage, the tool will produce a
warning message and report the remaining uncovered VCs.
This tool has been integrated inside the Stride after the
verifcation and is also publicly available.

7 EXPERIMENTS

Our experiments are designed to evaluate the effectiveness
and effciency of IPOG-MM in comparison with the follow-
ing two approaches:

3. https://junit.org/junit4/

https://junit.org/junit4
https://github.com/swjtu-railway/IPOG-MM

12 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1) IPOG: This is the baseline approach upon which
IPOG-MM is built upon. IPOG does not made any
effort to avoid redundant tests that may be generat-
ed in multiple test sets.

2) IPOG-PO: This is a competition approach to IPOG-
MM. IPOG-PO also builds upon IPOG, but it uses
post-optimization to avoid redundant coverage of
shared VCs.

We note that the Nguyen et al [14] used post-
optimization to avoid redundant tests in multiple test
sets, and provided a 2-way test generation tool called
M[agi]C [21]. However, the M[agi]C tool does not pro-
duce correct results due to some implementation issues4.
This is the reason why we had to re-implement the post-
optimization approach with IPOG.

7.1 Research Questions

Our experiments are designed to ask the following three
research questions:

RQ1: How does IPOG-MM compare to IPOG?
IPOG-MM builds on top of IPOG by considering how

to avoid redundant coverage of shared VCs. This question
helps to evaluate the impact of this consideration on the test
generation process.

RQ2: How does IPOG-MM compare to IPOG-PO?
IPOG-MM tries to avoid redundant coverage of shared

VCs during test generation, whereas IPOG-PO tries to do
so in a post-mortem manner, i.e. after test generation. This
question is designed to compare the effectiveness and eff-
ciency of these two approaches.

RQ3: How does the amount of shared VCs affect the
effectiveness of IPOG-MM?

IPOG-MM is centered on the idea of how to avoid re-
dundant coverage of shared VCs. This question is designed
to evaluate the impact of shared VCs on the effectiveness of
IPOG-MM.

7.2 Subjects

In the experiments, we used the following applications as
our experimental subjects:

1) NotePad: an Android application for editing text
and taking notes.

2) OpenManager: a free and open source app for fle
management.

3) iosched: a scheduling application for Google I/O
developer conference.

4) k9mail: an Android application for email manage-
ment on smartphones.

5) cyclos, a Java web application for banking. Because
it is a large system, only the payment part is mod-
eled.

We selected these applications because they were used to
evaluate the post-optimization approach in [14]. Use of the

4. The implementation of the post-optimization of the public avail-
able version of M[agi]C is not correct, and it cannot satisfy pair-wise
coverage after the post-optimization. This has been confrmed by the
original developers.

same applications allows us to make a direct comparison be-
tween IPOG-MM and the post-optimization approach. Also,
the FSM models of these subjects were given in [14]. This
helps to remove one major variable that could potentially
impact the comparison.

Table 12 shows the size of each FSM model in terms of
number of states (States #) and transitions (Transitions #), as
given in [14].

TABLE 12
Sizes of FSM Subjects

Subjects NotePad iosched cyclos k9mail Open-
Manager

States # 10 17 27 19 19
Transitions # 20 58 52 53 60

7.3 Input Models
We create both unconstrained and constrained input mod-
els. The purpose of generating constrained/unconstrained
input models is to evaluate the impact of constraints on
the effectiveness of our approach. Many practical applica-
tions have constraints in their input models [13]. Constraint
handling is thus considered to be an important feature for
practical applications of CT.

7.3.1 Input models for unconstrained experiments

A total of ten groups of unconstrained input models are
created for the experiments. Each group consists of multiple
input models. Table 13 gives some statistics of these input
model groups. Note that we have removed sub-models in
each model group.

TABLE 13
Statistics of Input Model Groups

Model
Group

Total # of
Parameters

Total # of
Input Models

of Parameters
in Each Model

max min average
G1 20 14 4 2 2.6
G2 55 43 5 2 2.6
G3 42 23 9 1 6.2
G4 47 33 4 1 2.7
G5 59 42 3 1 2.3
G6 42 103 14 1 10.1
G7 28 52 5 2 4.4
G8 42 167 12 1 10.7
G9 42 128 14 1 9.6
G10 52 48 14 2 8.3

Note that the ten groups of input models are from the
test paths of the subject FSM models. For each subject, we
frst use the M[agi]C tool to generate a set of test paths from
its FSM model, and then construct a group of input models,
one for each test path. The M[agi]C tool provides a number
of algorithms that could be used to generate test paths from
an FSM, among which four algorithms are applicable to
the FSMs in our experiments. The test paths generated by
each of the four algorithms achieve all-edge coverage. In
our experiments, we tried every algorithm that could be
applied. If more than one algorithm can be applied to an
FSM, then multiple groups of input models are created for
the FSM, one for each algorithm.

13 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Table 14 shows the ten input model groups created for
our subjects. If a path generation algorithm can be applied
to a FSM, the name of the input model group is shown in Ta-
ble 14; otherwise, the corresponding cell is empty. Note that
since the test paths are different, for i, j = 1, 2, ..., 10, i =6 j,
the input model group Gi 6= Gj , even if they are generated
based on the same FSM.

TABLE 14
Input Model Groups

Algorithm NotePad iosched cyclos k9mail Open-
Manager

breadth-frst G1 G2 G3 G4 G5
breadth-frst

with loop
(global)

G6

breadth-frst
with loop

(local)
G7 G8

uniform
coverage G9 G10

7.3.2 Input models for constrained experiments

For each unconstrained input model group (or simply each
unconstrained group), we randomly generate fve sets of
forbidden tuples. The forbidden tuples are used to simu-
late constraints that may exist in real-world applications.
We create a constrained input model group (or simply a
constrained group) by combining an unconstrained group
and each of the forbidden tuple sets created for the group.
Thus, there are a total of 10 × 5 = 50 groups of constrained
input models.

To distinguish the fve constrained groups for an un-
constrained group, in the rest of the paper, we name the
constrained groups as CG1, CG2, CG3, CG4, and CG5,
respectively.

Constraints are often expressed as forbidden tuples, al-
lowed tuples, or logical expressions [12]. Constraints could
be identifed from requirements [23], derived from UML
diagrams [24], or learned using machine learning tech-
niques [25]. Our experiments adopt random constraints for
evaluation for two reasons. First, in the literature, we could
not fnd subject applications that provide multiple input
models with constraints. For example, in [14], the subject
applications do not have constrained input models. Second,
random constraints have been commonly used in several
studies that evaluate the impact of constraints on CT, such
as [26].

A random constraint generator is implemented to gener-
ate random constraints. The constraint generator allows the
user to control the following options:

1) The input models involved in forbidden tuples. We
randomly choose from one to ten input models to
be involved in forbidden tuples. If the total number
of input models is less than ten, then we randomly
specify from one to the total input models to be
involved in forbidden tuples.

2) Number of forbidden tuples in an input model. In
our experiments, we randomly create from one to
ten forbidden tuples in an input model.

3) Size of a forbidden tuple. In our experiments, we
choose a random size between 2 and k to construct
the forbidden tuples, where k is the total number of
parameters in the input model.

4) Parameters involved in a forbidden tuple. We ran-
domly select the parameters with two or more val-
ues from the input model.

5) Parameter values in a forbidden tuple. For each
selected parameter, we randomly choose a value
from its value domain.

Table 15 gives the information of the randomly generat-
ed forbidden tuples, in terms of number of forbidden tuples
and size of forbidden tuple for each model group.

TABLE 15
Forbidden Tuples in Constrained Groups

Model
Group

of Tuples in a
Constrained Group

Size of Tuples in a
Constrained Group

max min average max min average
G1 5 3 3.0 2 2 2.0
G2 11 1 4.4 2 2 2.0
G3 21 4 9.6 5 2 2.4
G4 7 1 4.0 2 2 2.0
G5 3 1 2.0 2 2 2.0
G6 38 15 28.2 5 2 2.8
G7 9 3 5.2 2 2 2.0
G8 21 1 9.2 5 2 2.6
G9 19 1 11.2 4 2 2.2
G10 10 3 6.8 2 2 2.0

7.4 Metrics
We measure the effectiveness and effciency of the three
approaches, i.e., IPOG, IPOG-PO, IPOG-MM, in terms of
number of generated tests and the amount of time taken
for test generation. In addition, for RQ1, in order to make
explicit the comparison between IPOG-MM and IPOG, we
compute the following test reduction ratio:

(IP OG tests # − IP OG–MM tests #)
reduction ratio = × 100%

IP OG tests #
(2)

For RQ2, in order to make explicit the comparison
between IPOG-MM and IPOG-PO, we also compute the
following test reduction ratio:

(IP OG–P O tests # − IP OG–MM tests #)
reduction ratio = × 100%

IP OG–P O tests #
(3)

For all RQs, the shared VC ratio for each unconstrained
or constrained group is computed as follows:

of valid shared V Cs
Shared V C Ratio = × 100%

of valid V Cs
(4)

In constrained experiments, a shared VC may be valid
in some input models, and invalid in other input models. In
Equation (4), we count a shared VC only if it is valid in more
than one input model. To evaluate the impact of shared VC
ratio, we perform Spearman Rank Correlations to measure

14 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

the degree of correlation between the shared VC ratio and
the test reduction ratio by IPOG-MM.

We note that the shared VC ratio is a variable that
depends on the input models.

7.5 Procedure

There are a total of 10 groups of unconstrained input models
and 50 groups of constrained input models. For each input
model group, we use the three approaches, i.e., IPOG, IPOG-
PO, and IPOG-MM to create test suites for test strength
t = 2 to 6. Thus, we have conducted a total of 10 × 5 = 50
unconstrained experiments and a total of 50 × 5 = 250
constrained experiments. For each experiment, we record
the number of tests and also measure the amount of time
used to run the experiments.

All the experimental subjects, input models and results
are available on GitHub5. All the experiments are carried
out on the platform with Intel Core i5 CPU (3.20 GHz×2)
and 8GB Memory.

7.6 Results for RQ1

In this section, we present both unconstrained and con-
strained experimental results for RQ1. We also provide some
additional discussion on the results.

7.6.1 Unconstrained Experiments

Table 16 shows the detailed results of unconstrained exper-
iments.

Among the 50 unconstrained experiments, there are 25
experiments where IPOG-MM generates fewer tests than
IPOG. IPOG-MM achieves the highest test reduction rate
of 94.82% for G8 with t = 2.

For the other 25 experiments, IPOG-MM generated the
same number of tests as IPOG. We have investigated the
possible reasons. One reason is that in some experiments,
there are no shared VCs between input models. This means
that all the VCs are unique VCs. There is no opportunity for
optimization as there is no redundant coverage of shared
VCs. Thus, IPOG-MM generates the same number of tests
as IPOG. A second reason is that in some experiments, there
are only a small number of shared VCs. These shared VCs
are all covered as side effect when we try to cover unique
VCs. That is, no additional tests are generated to cover
shared VCs. Thus, avoiding redundant coverage of shared
VCs does not help generate fewer tests.

We observe that in some experiments, as strength t in-
creases, the number of tests generated by IPOG remains the
same, whereas the number of tests generated by IPOG-MM
increases. For example, this happens when t increases from
5 to 6 for G6. The reason is that in each input model of G6,
at most fve parameters have multiple values, while other
parameters are single-value parameters. When t increases
from 5 to 6, the total number of VCs to be covered in
each input model remains the same. Thus, IPOG generates
the same number of tests. However, IPOG-MM considers
shared VCs across multiple input models. As t increases
from 5 to 6, the number of shared VCs decreases. This means

5. https://github.com/swjtu-railway/IPOG-MM

that there are fewer opportunities for optimization. Thus,
IPOG-MM generates more tests.

Table 17 shows the average number of tests and reduc-
tion ratio for each strength for the unconstrained experi-
ments where one or more shared VCs exist between input
models.

TABLE 17
IPOG vs IPOG-MM (Unconstrained): Test Generation Results by

Strength

Strength IPOG IPOG-MM Reduction Ratio
2 479.90 72.40 84.91%
3 1181.25 200.50 83.23%
4 2893.67 598.50 79.32%
5 5296.00 1673.20 68.41%
6 5296.00 3141.00 40.69%

We observe that the reduction ratio decreases as the test
strength increases. This can be explained by the fact that the
shared VC ratio decreases as the test strength increases, and
thus there are fewer chances to do optimization. In general,
the bigger a VC, the more parameters it involves, the less
chance it is shared between different models.

In terms of generation time, we focus on the experiments
where at least one approach spent more than one second.
There are 12 such unconstrained experiments.

Table 18 shows the detailed results for these 12 un-
constrained experiments. IPOG-MM is slower than IPOG
because IPOG-MM has to perform additional computations
to avoid redundant coverage of shared VCs.

TABLE 18
IPOG vs IPOG-MM (Unconstrained): Test Generation Time

Group Strength IPOG IPOG-MM

G6

3 0.45s 2.17s
4 1.13s 10.42s
5 3.92s 20.53s
6 4.65s 29.46s

G8

3 0.59s 3.18s
4 0.92s 16.80s
5 3.40s 43.27s
6 4.89s 73.99s

G9

3 0.26s 1.15s
4 0.40s 4.40s
5 0.63s 8.95s
6 0.87s 9.17s

Average 1.84s 18.62s

7.6.2 Constrained Experiments

Among the 250 constrained experiments, we focus on 170
such experiments where the shared VC ratio is greater than
0, which provides opportunity for optimization.

Table 19 shows the average results of the 170 experi-
ments, including average shared VC ratios, average number
of tests, and average reduction ratios. For each input model
group, the results are averaged over fve random forbidden
tuple groups. The detailed results for individual random
forbidden tuple groups are available on our Github.

The results in Table 19 show that IPOG-MM performs
better than IPOG in most experiments. Specifcally, the
detailed results (available on our Github) show that IPOG-
MM can generate fewer tests than IPOG in 125 out of the

https://github.com/swjtu-railway/IPOG-MM

15 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 16
IPOG vs IPOG-MM (Unconstrained): Detailed Tests Generation Results

Group Strength Shared
VC Ratio IPOG IPOG

-MM
Reduction

Ratio Group Strength Shared
VC Ratio IPOG IPOG

-MM
Reduction

Ratio

G1

2 10.64% 31 23 25.81%

G6

2 93.83% 1213 105 91.34%
3 0.00% 35 35 0.00% 3 90.01% 2905 324 88.85%
4 0.00% 35 35 0.00% 4 85.65% 6199 949 84.69%
5 0.00% 35 35 0.00% 5 79.62% 11383 2403 78.89%
6 0.00% 35 35 0.00% 6 71.27% 11383 4693 58.77%

G2

2 14.75% 193 85 55.96%

G7

2 48.00% 98 59 40.82%
3 5.86% 193 193 0.00% 3 43.23% 98 74 24.49%
4 0.00% 193 193 0.00% 4 28.95% 98 98 0.00%
5 0.00% 193 193 0.00% 5 0.00% 98 98 0.00%
6 0.00% 193 193 0.00% 6 0.00% 98 98 0.00%

G3

2 42.86% 182 85 53.30%

G8

2 96.22% 1836 95 94.83%
3 41.31% 370 206 44.32% 3 89.37% 4072 313 92.31%
4 38.58% 736 460 37.50% 4 79.89% 7918 1033 86.95%
5 33.61% 1312 880 32.93% 5 69.03% 10798 2846 73.64%
6 26.64% 1312 1312 0.00% 6 57.54% 10798 6732 37.66%

G4

2 13.68% 55 55 0.00%

G9

2 87.07% 1010 95 90.59%
3 6.94% 55 55 0.00% 3 78.03% 1630 315 80.67%
4 0.00% 55 55 0.00% 4 66.24% 2284 924 59.54%
5 0.00% 55 55 0.00% 5 52.80% 2860 2110 26.22%
6 0.00% 55 55 0.00% 6 38.95% 2860 2841 0.66%

G5

2 0.59% 54 54 0.00%

G10

2 56.58% 127 68 46.45%
3 0.00% 54 54 0.00% 3 31.56% 127 124 2.36%
4 0.00% 54 54 0.00% 4 14.09% 127 127 0.00%
5 0.00% 54 54 0.00% 5 5.02% 127 127 0.00%
6 0.00% 54 54 0.00% 6 1.46% 127 127 0.00%

170 experiments. In particular, IPOG-MM can achieve the
highest reduction ratio of 94.83% for model group G8 with
test strength equal to 2 for forbidden tuple group CG3.

Similar to the unconstrained results in Table 17, in some
experiments, when t increases, e.g., for G6 from t = 5 to
t = 6, IPOG generates the same number of tests whereas
IPOG-MM generates more tests.

Table 20 shows the average number of tests and reduc-
tion ratio for each strength for the 170 constrained experi-
ments. Similar to the unconstrained results in Table 17, the
reduction ratio decreases as the test strength increases. This
is also due to the same reason, i.e., the number of shared
VCs decreases as the test strength increases.

Note that for constrained experiments on strength t = 5
and t = 6, IPOG still generates the same number of tests
on average. Again, this is because at most 5 parameters
have more than one value in an input model. Thus, the total
number of VCs to be covered remains the same when t is
increased from 5 to 6. Note that the same forbidden tuples
are used to perform the experiments with different strengths
for the same model group.

In terms of generation time, we focus on the experiments
where IPOG and/or IPOG-MM spent more than one second.
There are 60 such experiments. To save space, we do not
present the detailed results for all of the 60 experiments,
which are available on our Github. As an example, Table 21
shows the results for the model group G6 with test strength
equal to 5.

We observe that the average times, in Table 21, i.e., 3.82s
for IPOG and 20.73s for IPOG-MM, are similar to those in
Table 18 for the same experiment, i.e., 3.92s for IPOG and
20.53s for IPOG-MM. Thus, the overhead ratio between un-
constrained and constrained experiments is close. However,
there are signifcant variations for individual experiments.
In particular, the overhead ratio of individual (constrained)

experiments varies from 4.45 to 8.90.

7.6.3 Discussion

Table 22 shows an overall comparison between IPOG and
IPOG-MM. Recall that there are a total of 300 experiments,
including both unconstrained and constrained experiments.
We focus on the results of 204 (out of 300) experiments
where there is one or more shared VCs between input
models. Note that IPOG-MM = IPOG indicates that IPOG-
MM and IPOG generated the same number of tests, and
IPOG-MM < IPOG indicates that IPOG-MM generated
fewer tests than IPOG.

For the 204 experiments, There are a total of 54 exper-
iments where IPOG-MM generated the same number of
tests as IPOG (26.47%). There are a total of 150 experiments
(73.53%) where IPOG-MM generated fewer tests.

For RQ1, we make the following conclusion:

In most cases, IPOG-MM can generate fewer tests than
IPOG, with a test reduction ratio up to 94.83%, when there
exist shared VCs between multiple input models. IPOG-MM
takes more time than IPOG, but all the experiments take no
more than 90 seconds.

7.7 Results for RQ2

In this section, we present both unconstrained and con-
strained experimental results for RQ2. We also provide some
additional discussion on the results. We only focus on the
204 out of the total 300 experiments where the shared VC
ratio is greater than 0, which means both IPOG-MM and
IPOG-PO have opportunities for optimization.

16 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 19
IPOG vs IPOG-MM (Constrained): Tests Generation Results

(Note: The results are average results among fve random forbidden
tuples for each model group)

Model
Group Strength Shared

VC Ratio IPOG IPOG
-MM

Reduction
Ratio

G1 2 10.92% 29.2 22.4 23.25%

G2
2 14.85% 188.6 84.8 55.01%
3 5.95% 188.6 188.6 0.00%

G3

2 43.19% 176 81.8 53.52%
3 41.64% 363.6 199.2 45.22%
4 39.12% 723.6 451.2 37.62%
5 33.84% 1279.4 870.6 31.87%
6 26.86% 1279.4 1279.4 0.00%

G4
2 14.37% 51 51 0.00%
3 7.69% 51 51 0.00%

G5 2 6.26% 52 52 0.00%

G6

2 93.83% 1207.6 105 91.31%
3 90.03% 2890 319.6 88.94%
4 85.68% 6177.8 938.8 84.80%
5 79.65% 11241.6 2410.8 78.55%
6 71.31% 11241.6 4803.6 57.26%

G7

2 48.90% 92.8 56.2 39.43%
3 43.99% 92.8 72.2 22.17%
4 29.69% 92.8 92.8 0.00%

G8

2 96.00% 1832 95 94.81%
3 89.37% 4065.6 312.8 92.31%
4 79.89% 7906 1034.8 86.91%
5 69.04% 10768.6 2852.8 73.51%
6 57.56% 10768.6 6705.4 37.73%

G9

2 87.10% 1002.4 94.8 90.54%
3 78.05% 1619.4 314.6 80.57%
4 66.26% 2263.8 922.8 59.24%
5 52.84% 2839.8 2096.6 26.17%
6 39.01% 2839.8 2821.2 0.65%

G10

2 56.76% 120.4 66.6 44.67%
3 31.96% 120.4 117.8 2.16%
4 14.40% 120.4 120.4 0.00%
5 5.15% 120.4 120.4 0.00%
6 1.49% 120.4 120.4 0.00%

TABLE 20
IPOG vs IPOG-MM (Constrained): Test Generation Results by Strength

Strength IPOG IPOG-MM Reduction Ratio
2 475.20 70.96 85.07%
3 1173.93 196.98 83.22%
4 2475.33 593.47 76.02%
5 5249.96 1670.24 68.19%
6 5249.96 3146.00 40.08%

TABLE 21
IPOG vs IPOG-MM (Constrained): Test Generation Time for G6 with

t = 5

Approach Constrained Group.

CG1 CG2 CG3 CG4 CG5
aver-
age

IPOG 4.54s 4.11s 4.11s 2.49s 3.85s 3.82s
IPOG-MM 23.00s 29.35s 18.30s 22.15s 20.84s 20.73s
overhead

ratio1 5.06 4.71 4.45 8.90 5.41 5.43

1. overhead ratio = (time cost of IPOG-MM) / (time cost of IPOG)

7.7.1 Unconstrained Experiments

There are 34 (out of 50) unconstrained experiments where
the shared VC ratio is greater than 0. Table 23 shows the
detailed results for these experiments.

There are 20 experiments where IPOG-MM generates
fewer tests than IPOG-PO. IPOG-MM achieves the highest

TABLE 22
Overall Comparison between IPOG and IPOG-MM

Strength Unconstrained Constrained
IPOG-MM IPOG-MM
=IPOG <IPOG

IPOG-MM IPOG-MM
=IPOG <IPOG

2 2 8 10 40
3 2 6 10 30
4 2 4 10 20
5 1 4 5 20
6 2 3 10 15

Sum. 9 25 45 125
Total # of Experiments: 204

test reduction ratio of 42.87% for G8 with t = 4.
There are 13 experiments where IPOG-MM generates

the same number of tests as IPOG-PO. There is only one
unconstrained experiment, G7 with t = 2, where IPOG-
MM generates more tests than IPOG-PO. In this experiment,
IPOG-PO generates 57 tests in the experiment while IPOG-
MM generated 59 tests.

Table 24 shows the average number of tests and the
reduction ratio for each strength. IPOG-MM generates fewer
tests than IPOG-PO for each strength, but the reduction ratio
does not show a consistent relationship with test strength.
This is because both IPOG-PO and IPOG-MM are heuristic
approaches. The reduction ratio depends on the number
of shared VCs and also other factors, e.g., some heuristic
decisions made by the two approaches.

TABLE 24
IPOG-PO vs IPOG-MM (Unconstrained): Test Generation Results by

Strength

Strength IPOG-PO IPOG-MM Reduction Ratio
2 82.70 72.40 12.45%
3 269.50 200.50 25.60%
4 855.17 598.50 30.01%
5 2236.80 1673.20 25.20%
6 3424.60 3141.00 8.28%

In terms of generation time, we focus on the experiments
where IPOG-PO and/or IPOG-MM spent more than one
second. There are 12 such experiments. Table 25 shows the
detailed results of these experiments. As Table 25 shows,
IPOG-MM is slower than IPOG-PO in most of these experi-
ments, but on average, the difference is small.

TABLE 25
IPOG-PO vs IPOG-MM (Unconstrained): Test Generation Time

Group Strength IPOG-PO IPOG-MM

G6

3 1.23s 2.17s
4 7.96s 10.42s
5 36.60s 20.53s
6 46.73s 29.46s

G8

3 1.53s 3.18s
4 8.03s 16.80s
5 22.55s 43.27s
6 37.04s 73.99s

G9

3 0.54s 1.15s
4 1.16s 4.40s
5 2.16s 8.95s
6 2.68s 9.17s

Average 14.02s 18.62s

17 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 23
IPOG-PO vs IPOG-MM (Unconstrained): Detailed Tests Generation Results

Group Strength Shared
VC Ratio

IPOG
-PO

IPOG
-MM

Reduction
Ratio Group Strength Shared

VC Ratio
IPOG
-PO

IPOG
-MM

Reduction
Ratio

G1 2 10.64% 23 23 0.00%
G7

3 43.23% 75 74 1.33%

G2
2 14.75% 107 85 20.56% 4 28.95% 98 98 0.00%
3 5.86% 193 193 0.00%

G8

2 96.22% 118 95 19.49%

G3

2 42.86% 93 85 8.60% 3 89.37% 544 313 42.46%
3 41.31% 222 206 7.20% 4 79.89% 1808 1033 42.87%
4 38.58% 460 460 0.00% 5 69.03% 4125 2846 31.01%
5 33.61% 880 880 0.00% 6 57.54% 7022 6732 4.13%
6 26.64% 1312 1312 0.00%

G9

2 87.07% 118 95 19.49%

G4
2 13.68% 55 55 0.00% 3 78.03% 422 315 25.35%
3 6.94% 55 55 0.00% 4 66.24% 1055 924 12.41%

G5 2 0.59% 54 54 0.00% 5 52.80% 2165 2110 2.54%

G6

2 93.83% 132 105 20.45% 6 38.95% 2842 2841 0.04%
3 90.01% 521 324 37.81%

G10

2 56.58% 70 68 2.86%
4 85.65% 1583 949 40.05% 3 31.56% 124 124 0.00%
5 79.62% 3887 2403 38.18% 4 14.09% 127 127 0.00%
6 71.27% 5820 4693 19.36% 5 5.02% 127 127 0.00%

G7 2 48.00% 57 59 -3.51% 6 1.46% 127 127 0.00%

7.7.2 Constrained Experiments

Table 26 gives the average results of the 170 constrained
experiments, where the shared VC ratio is greater than 0.

TABLE 26
IPOG-PO vs IPOG-MM (Constrained): Test Generation Results

(Note: The results are average results among fve random forbidden
tuples for each model group)

Model
Group Strength Shared

VC Ratio
IPOG
-PO

IPOG
-MM

Reduction
Ratio

G1 2 10.92% 22.4 22.4 0.00%

G2
2 14.85% 106.4 84.8 20.30%
3 5.95% 188.6 188.6 0.00%

G3

2 43.19% 90.2 81.8 9.30%
3 41.64% 216.4 199.2 7.95%
4 39.12% 454.2 451.2 0.61%
5 33.84% 865.2 870.6 -0.62%
6 26.86% 1279.4 1279.4 0.00%

G4
2 14.37% 51 51 0.00%
3 7.69% 51 51 0.00%

G5 2 6.26% 52 52 0.00%

G6

2 93.83% 130 105 19.22%
3 90.03% 498 319.6 35.79%
4 85.68% 1495.8 938.8 37.14%
5 79.65% 3802.8 2410.8 36.58%
6 71.31% 5705.8 4803.6 15.77%

G7

2 48.90% 55.6 56.2 -1.08%
3 43.99% 72.4 72.2 0.27%
4 29.69% 92.8 92.8 0.00%

G8

2 96.00% 118 95 19.49%
3 89.37% 542 312.8 42.29%
4 79.89% 1805.8 1034.8 42.70%
5 69.04% 4115.6 2852.8 30.68%
6 57.56% 6998.6 6705.4 4.19%

G9

2 87.10% 117.4 94.8 19.25%
3 78.05% 420.4 314.6 25.17%
4 66.26% 1045.8 922.8 11.76%
5 52.84% 2149 2096.6 2.44%
6 39.01% 2821.8 2821.2 0.02%

G10

2 56.76% 67.2 66.6 0.84%
3 31.96% 117.6 117.8 -0.17%
4 14.40% 120.4 120.4 0.00%
5 5.15% 120.4 120.4 0.00%
6 1.49% 120.4 120.4 0.00%

On average, IPOG-MM can generate fewer tests than
IPOG-PO. The detailed results (available on our Github)
shows IPOG-MM generates fewer tests than IPOG-PO in 93

out of the 170 experiments. Specifcally, IPOG-MM achieves
the highest reduction ratio of 42.86% for constrained group
CG1 of model group G8 with t = 4.

IPOG-MM generates more tests than IPOG-PO in 9 out
of the 170 constrained experiments. Both IPOG-MM and
IPOG-PO are heuristic approaches. Thus, it is possible for
IPOG-MM to generate more tests than IPOG-PO. For ex-
ample, in the experiment of G3 (constrained group CG4,
t = 5), IPOG-MM generates 27 more tests than IPOG-PO.
In general, we fnd that in the experiments where IPOG-
MM generates more tests than IPOG-PO, the number of
shared VCs for some PCs is often signifcantly larger than
the number of unique VCs for any PC. In IPOG-MM, unique
VCs are covered in Phase 1, whereas shared VCs are covered
in Phase 2. Thus, more VCs need to be covered in Phase 2
in these experiments. Unlike Phase 1, which includes both
horizontal and vertical extension, Phase 2 only includes ver-
tical extension. Recall that horizontal extension could cover
VCs without adding any new test. As a result, compared to
Phase 1, Phase 2 typically has to generate more tests to cover
the same set of VCs. This explains why IPOG-MM generates
more tests in these experiments. In contrast, IPOG-PO does
not distinguish between unique and shared VCs. Both types
of VCs are covered in the same way during test generation.

Table 27 shows the average number of tests and reduc-
tion ratio for each strength for the 170 constrained exper-
iments. Similar to unconstrained experiments, the average
reduction ratio does not show a consistent relationship with
test strength. This is again due to the fact that both IPOG-PO
and IPOG-MM are heuristic approaches.

TABLE 27
IPOG-PO vs IPOG-MM (Constrained): Test Generation Results by

Strength

Strength IPOG-PO IPOG-MM Reduction Ratio
2 81.02 70.96 12.42%
3 263.30 196.98 25.19%
4 835.80 593.47 28.99%
5 2210.60 1670.24 24.44%
6 3385.20 3146.00 7.07%

In terms of generation time, we focus on the experiments

18 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

where IPOG-PO and/or IPOG-MM spent more than one
second. There are 60 such experiments. To save space, we do
not present the detailed results for all of the 60 experiments,
which are available on our Github.

We note that for these 60 experiments, the average times
taken by IPOG-PO is 12.91s, and the average times taken by
IPOG-MM is 18.12s.

7.7.3 Discussion

Table 28 shows an overall comparison between IPOG-PO
and IPOG-MM. We focus on the 204 (out of 300) experi-
ments where there is one or more shared VC during test
generation. Note that MM < PO indicates IPOG-MM gen-
erates fewer test than IPOG-PO. MM = PO indicates IPOG-
MM generates fewer test than IPOG-PO. And MM > PO
indicates IPOG-MM generates more tests than IPOG-PO.

TABLE 28
Overall Comparison between IPOG-PO and IPOG-MM

Strength Unconstrained Constrained
MM < MM = MM >

PO PO PO
MM < MM = MM >

PO PO PO
2 6 3 1 28 17 5
3 5 3 0 21 18 1
4 3 3 0 16 12 2
5 3 2 0 15 9 1
6 3 2 0 13 12 0

Sum. 20 13 1 93 68 9
Total # of Experiments: 204

For the total of 204 experiments, there are a total of
113 experiments where IPOG-MM generates fewer tests
than IPOG-PO (55.39%). There are a total of ten experi-
ments where IPOG-MM generates more tests than IPOG-
PO (4.90%). There are a total of 81 experiments where
IPOG-MM generates the same number of tests as IPOG-PO
(39.71%).

For RQ2, we make the following conclusion:

In most cases, IPOG-MM can generate fewer tests than
IPOG-PO with a test reduction ratio up to 42.87%, when
there exist shared VCs between multiple input models.
IPOG-MM takes more time than IPOG-PO, but all the
experiments also take no more than 90 seconds.

7.8 Results for RQ3
To systematically discuss the impact of shared VCs, we
propose two hypotheses for the correlation between shared
VC ratio and the test reduction ratio of IPOG-MM over
IPOG.

• Null hypothesis (H0): There is no correlation be-
tween the shared VC ratio and the test reduction
ratio. That is, the shared VC ratio does not affect the
test reduction ratio.

• Alternative hypothesis (H1): As the shared VC ratio
increases, IPOG-MM achieves a higher test reduction
ratio.

To determine the rejection and acceptance of the hy-
potheses, we use the Spearman’s rank correlation coeffcien-
t [27] [28] to calculate the correlation between the shared

VC ratio and the reduction ratio. Note that Spearman’s
rank correlation coeffcient is a robust and non-parametric
correlation test method for discovering the strength of a link
between two sets of data [29].

Table 29 shows the calculation results by strength. Note
that the p-value is computed in MATLAB [30] using the
permutation testing method [31] instead of t-testing, since
there is no evidence that shows our data satisfes Student’s
t-distribution.

TABLE 29
Spearman’s Rank Correlation for the Experiments

Strength Unconstrained Constrained
ρ p-value ρ p-value

2 0.87 < 0.05 0.87 < 0.05
3 0.95 < 0.05 0.94 < 0.05
4 0.93 < 0.05 0.91 < 0.05
5 0.90 0.08 0.88 < 0.05
6 0.98 < 0.05 0.93 < 0.05

As Table 29 shows, the correlation coeffcient ρ is always
larger than 0.85 and reaches at most 0.98. This indicates
there is a strong and positive correlation between the shared
VC Ratio and the reduction ratio. The p-value is less than
0.05 in most cases, which provides a strong evidence that
the correlation holds with a high possibility instead of by
chance [32].

Thus, for RQ3, we reject the null hypothesis (H0), and
accept the alternative hypothesis (H1). We make the follow-
ing conclusion:

There exists a high positive correlation between shared
VC ratio tends and the test reduction ratio achieved by
IPOG-MM. This suggests that IPOG-MM can be more
effective when the shared VC ratio is high.

7.9 Threats to Validity
One threat to external validity is that the subjects used in
our experiments may not be representative. The subjects we
used are of different sizes and represent different application
domains. Further, the subjects are also used in other studies
e.g., [14] and [33]. In the constrained test generation part, we
used a tool to randomly generate constraints for the input
models. It is important to note that the results do not depend
on the actual implementation of the SUTs, only the input
models that were constructed based on the test paths and
constraints.

There is also a threat that the implementation of IPOG,
IPOG-PO and IPOG-MM may not be correct. We carefully
examined the results to ensure the correctness. For small
subjects, such as Notepad, we have manually checked the
generated test suite covers all valid VCs and satisfy con-
straints. For large subjects, such as cyclos, we implemented
a tool to automatically check the coverage and validity of
the tests.

8 RELATED WORK

In this section we review existing work on CT, including
both CT for single input model (Section 8.1) and CT for

19 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

multiple input models (Section 8.2). We also briefy review
existing work on test set reduction (Section 8.3), which is
related to our work as it also tries to avoid redundancy in a
test set.

8.1 CT for Single Input Model

A large body of work has been reported on t-way test gen-
eration for a single input model [2] [12] [13]. Mathematical
approaches, e.g., [34] [35] [36], could construct optimal t-
way test sets, but they often impose restrictions on an input
model and typically do not support constraints, limiting
their applications in practice.

Computational approaches can be classifed into greedy
approaches and search-based approaches. Many greedy
approaches e.g., AETG [3] [26] [37] [38], TCG [39], DDA
[40] [41], PICT [42], FoCuS [43], the MDD (Multivalued
Decision Diagram) based approach [44], adopt a one-test-at-
a-time framework, where each test is constructed to cover as
many uncovered VCs as possible. Other greedy approaches,
including IPOG [17] and its variations [18] [45] [46] [47],
adopt a one-parameter-at-a-time framework, where t-way test
set is built to cover the frst t parameters, and then is
repeatedly extended to cover the remaining parameters, one
at a time.

Search-based approaches, e.g. [48] [49] [50] [51] [52] [53],
typically start with a randomly construct test set and then
use some search strategies to fnd a t-way test set that is as
small as possible.

More recently approaches are reported that convert the
problem of t-way test set generation to a constraint satisfac-
tion problem and then use a constraint solver to generate
tests [54] [55] [56]. These approaches could leverage the
power of existing constraint solvers and handle constraints
naturally.

Our work differs from the above work in that we focus
on t-way test generation for multiple input models. In
principle, the general idea of our approach, i.e., trying to
avoid redundant coverage of shared VCs across multiple
input models, could be applied to these single-model test
generation approaches to extend them for multi-model test
generation.

IPOG-MM is built on the top of IPOG. However, there
are major differences between the two. IPOG-MM addresses
multiple input models with shared parameters. During ini-
tialization, IPOG-MM creates initial test sets with the VCs
of unique PCs instead of the VCs of frst t parameters.
During test sets extension, IPOG-MM distinguishes shared
parameters and unique parameters. As a result, it extends
each test set differently.

IPOG-MM uses the notion of capacity to estimate the
number of VCs a test set could potentially cover, which is
used to choose which test set to extend. Bryce et. al [40] [41]
used in their DDA algorithms the concepts of factor density
and level density to estimate the number of VCs a parameter
value could potentially cover in a test, which are used to
determine which parameter value to use.

While the notion of capacity is similar to the two density
notions, they are computed very differently and are used for
different purposes.

8.2 CT for Multiple Input Models

Anna et al. [57] described a method for combinatorial test
generation for multiple input models. Their input models
are required to have a sequential relationship, i.e., the output
of the previous model is used as the input of the next model.
Kampel et al. [58] presented a test generation approach for
hierarchical models. There are two levels of input models.
Each lower-level model is considered to be an abstract
parameter in the upper-level model. During test generation,
they frst generate a t-way test set for each input model at
the lower level. Next, they generate an abstract t-way test set
at the upper level, where each test of a lower level model
is considered as an abstract value of the corresponding
abstract parameter at the upper level. A structure called
nested covering array is used to represent the fnal test set.
In contrast, our work does not assume a sequential or hier-
archical relationship between input models. Instead, input
models in our work are in a peer-to-peer relation. Also, no
nesting relationship exists between test sets.

Two approaches have been reported on applying CT to
systems that are modeled as FSMs. Nguyen et al. [14] frst
select test paths from an FSM, and then construct an input
model from each of the selected test paths. A pairwise test
set is constructed for each input model. A post-optimization
approach is used to remove redundant tests that may exist
in multiple test sets. In contrast, IPOG-MM tries to avoid
generating redundant tests in the frst place.

Chang et al. [10] reported an empirical study where they
constructed multiple input models from the FSMs of a track
circuit receiver used in high-speed rail systems, and then
generated pairwise test sets for these input models. This
study did not remove redundant tests, but it provided the
original motivation for the CT-MM problem.

8.3 Test Set Reduction

The problem of test set reduction has been studied exten-
sively in the literature, especially in the context of regression
testing [59].

Test set reduction is typically performed with respect to
a set of test requirements. A test requirement is an entity
that must be covered, e.g. statement, branch, or interaction.
The reduced test set is a subset of the original test set that
covers the same set of test requirements. Most approaches,
e.g. [60] [61] [62], adopt a greedy framework to construct
the reduced test set. Each time when they add a test into
the reduced test set, they try to select a test that covers
the most uncovered test requirements. Some heuristics are
developed to optimize the framework, e.g., by covering test
requirements that are more diffcult to cover frst.

Post-optimization [14] can be considered as a test set
reduction approach. Instead of trying to add tests into the
reduced test set, it tries to remove redundant tests one at a
time. A test is redundant if it could be removed while still
preserving the same coverage, i.e., covering the same set of
test requirements as the original test set.

Test set reduction is in principal a post-mortem ap-
proach. That is, redundant tests are removed after they
come into existence. In contrast, IPOG-MM tries to prevent
redundant tests from being generated in the frst place.

20 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

9 CONCLUSIONS AND FUTURE WORK

Existing research on CT has mainly considered a single
input model. In this paper, we formulated the CT-MM
problem, i.e. CT for multiple input models, for the frst time.
We developed a test generation approach, i.e., IPOG-MM,
to address the CT-MM problem. IPOG-MM distinguishes
unique VCs from shared VCs, and tries to minimize the
number of tests by avoiding redundant coverage of shared
VCs. Our experimental results show that IPOG-MM can
signifcantly reduce the number of tests in comparison with
two other approaches, i.e., IPOG and IPOG-PO.

The key insight behind existing work on CT for single
input model is that many faults in practical applications
are caused by interactions between a small number of fac-
tors [2]. We believe that this insight also applies when there
exist multiple input models. Similar to existing approaches
to CT for single input model, IPOG-MM constructs a t-way
test suite for multiple input models to cover every t-way
interaction at least once. Thus, it is reasonable to believe that
tests generated by IPOG-MM would be effective for fault
detection. This has been demonstrated by the experimental
results in [14]. As part of our future work, we plan to
conduct a thorough evaluation of the fault detection effec-
tiveness of the tests generated by IPOG-MM. In particular,
we plan to evaluate the impact of avoiding redundant tests
on the numbers and types of fault that could be detected in
different types of application.

There are several additional directions for future work.
First, IPOG-MM currently assumes the same test strength
for all the input models. We plan to support different test
strengths for different input models. Second, our algorithm
currently minimizes the total number of tests. We plan to
investigate other optimization goals, e.g., the total length of
tests, or the total cost of test execution. The length of a test
could be defned as the length of a test path in an FSM or
in the source code. The cost of a test could be defned as
the time or other resources taken to execute a test. Third, we
currently use randomly generated constraints to evaluate
the impact of constraints on the performance of IPOG-MM.
We plan to investigate the characteristics of constraints that
occur in real-world applications and use these characteris-
tics to improve our random constraint generator. We also
plan to use real-world constraints, in addition to random
constraints, to evaluate the impact of constraints. Finally,
we plan to develop algorithms to support model evolution.
These algorithms aim to reuse existing test sets as many as
possible, i.e., without building them from scratch, when one
or more input models are changed due to model correction
and/or updates.

ACKNOWLEDGMENT

This research is partly supported by China Scholarship
Council (201707000108), National Natural Science Founda-
tion of China (Grant No. 61703349), China State Railway
Corporation (Grant No. N2018G062 and K2018G011) and
Fundamental Research Funds for the Central Universities
(Grant No. 2682017CX101). In addition, Lei’s work is partly
supported by a research grant (70NANB15H199) from Na-
tional Institute of Standards and Technology.

Disclaimer: We identify certain software products in this
document, but such identifcation does not imply recom-
mendation by the US National Institute of Standards and
Technology, nor does it imply that the products identifed
are necessarily the best available for the purpose.

REFERENCES

[1] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton,
“The aetg system: An approach to testing based on combinatorial
design,” IEEE Transactions on Software Engineering, vol. 23, no. 7,
pp. 437–444, 1997.

[4] X. Yuan, M. B. Cohen, and A. M. Memon, “Gui interaction testing:
Incorporating event context,” IEEE Transactions on Software Engi-
neering, vol. 37, no. 4, pp. 559–574, 2010.

[5] W. Wang, S. Sampath, Y. Lei, R. N. Kacker, D. R. Kuhn, and
J. Lawrence, “Using combinatorial testing to build navigation
graphs for dynamic web applications,” Software Testing, Verifcation
and Reliability, vol. 26, no. 4, pp. 318–346, 2016.

[6] D. E. Simos, D. R. Kuhn, A. G. Voyiatzis, and R. N. Kacker, “Com-
binatorial methods in security testing,” IEEE Computer, vol. 49,
no. 10, pp. 80–83, 2016.

[7] M. F. Johansen, O. Haugen, and F. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,” in
Proceedings of the International Conference on Software Product Lines.
Springer, 2012, pp. 46–55.

[8] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans,
and Y. L. Traon, “Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test confgurations for
software product lines,” IEEE Transactions on Software Engineering,
vol. 40, no. 7, pp. 650–670, 2014.

[9] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combina-
torial test data generation to big data applications,” in Proceedings
of the International Conference on Automated Software Engineering.
ACM, 2016, pp. 637–647.

[10] C. Rao, J. Guo, N. Li, Y. Lei, Y. Zhang, Y. Li, and Y. Cao, “Applying
combinatorial testing to high-speed railway track circuit receiver,”
in Proceedings of the International Conference on Software Testing,
Verifcation and Validation Workshops. IEEE, 2017, pp. 199–207.

[11] P. Ammann and J. Offutt, Introduction to software testing. Cam-
bridge University Press, 2016.

[12] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in Proceedings
of the International Symposium on Software Reliability Engineering.
IEEE, 2014, pp. 323–334.

[13] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “A survey of
constrained combinatorial testing.” arXiv: Software Engineering,
2019.

[14] C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining model-
based and combinatorial testing for effective test case generation,”
in Proceedings of the International Symposium on Software Testing and
Analysis. ACM, 2012, pp. 100–110.

[15] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog:
A general strategy for t-way software testing,” in Proceedings of
the International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07). IEEE, 2007, pp. 549–556.

[16] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Acts: A combinatorial
test generation tool,” in Proceedings of the International Conference on
Software Testing, Verifcation and Validation. IEEE, 2013, pp. 370–
375.

[17] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“Ipog/ipog-d: effcient test generation for multi-way combinatori-
al testing,” Software Testing, Verifcation and Reliability, vol. 18, no. 3,
pp. 125–148, 2008.

[18] M. A. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn,
“Refning the in-parameter-order strategy for constructing cover-
ing arrays,” Journal of Research of the National Institute of Standards
and Technology, vol. 113, no. 5, pp. 287–297, 2008.

21 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[19] R. Tzoref-Brill and M. Shahar, “Modify, enhance, select: Co-
evolution of combinatorial models and test plans,” in Proceedings
of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2018,
pp. 235–245.

[20] A. Vahabzadeh, S. Andrea, and A. Mesbah, “Fine-grained test
minimization,” in Proceedings of the International Conference on
Software Engineering. IEEE, 2018, pp. 210–221.

[21] C. D. Nguyen, “M[agi]c tool and fsm subjects,”
http://selab.fbk.eu/magic/, accessed: 09-01-2019.

[22] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Constraint
handling in combinatorial test generation using forbidden tuples,”
in Proceedings of the International Conference on Software Testing,
Verifcation and Validation Workshops (ICSTW). IEEE, 2015, pp. 1–9.

[23] M. Grindal and J. Offutt, “Input parameter modeling for combi-
nation strategies,” in Proceedings of the International Conference on
Software Engineering. IEEE, 2007, pp. 255–260.

[24] P. Satish, K. Sheeba, and K. Rangarajan, “Deriving combinatorial
test design model from uml activity diagram,” in Proceedings
of the International Conference on Software Testing, Verifcation and
Validation Workshops. IEEE, 2013, pp. 331–337.

[25] C. D. Nguyen and P. Tonella, “Automated inference of classifca-
tions and dependencies for combinatorial testing,” in Proceedings
of the International Conference on Automated Software Engineering.
ACM, 2013, pp. 622–627.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-confgurable systems in the presence of
constraints: A greedy approach,” IEEE Transactions on Software
Engineering, vol. 34, no. 5, pp. 633–650, 2008.

[27] K. H. Zou, K. Tuncali, and S. G. Silverman, “Correlation and
simple linear regression,” Radiology, vol. 227, no. 3, pp. 617–628,
2003.

[28] J. L. Myers, A. D. Well, and R. F. Lorch Jr, Research design and
statistical analysis. Routledge, 2013.

[29] V. H. Durelli, J. Offutt, N. Li, M. E. Delamaro, J. Guo, Z. Shi, and
X. Ai, “What to expect of predicates: An empirical analysis of
predicates in real world programs,” Journal of Systems and Software,
vol. 113, pp. 324–336, 2016.

[30] H. Moore, MATLAB for Engineers. Pearson, 2017.
[31] F. Pesarin, Multivariate permutation tests: with applications in bio-

statistics. Wiley Chichester, 2001, vol. 240.
[32] J. Cohen, Statistical power analysis for the behavioral sciences. Rout-

ledge, 2013.
[33] P. Tonella, R. Tiella, and C. D. Nguyen, “Interpolated n-grams

for model based testing,” in Proceedings of the 36th International
Conference on Software Engineering. IEEE, 2014, pp. 562–572.

[34] A. Hartman and L. Raskin, “Problems and algorithms for covering
arrays,” Discrete Mathematics, vol. 284, no. 1-3, pp. 149–156, 2004.

[35] C. J. Colbourn, “Covering arrays from cyclotomy,” Designs, Codes
and Cryptography, vol. 55, no. 2-3, pp. 201–219, 2010.

[36] L. Moura, S. Raaphorst, and B. Stevens, “Upper bounds on the
sizes of variable strength covering arrays using the lovsz local
lemma,” Theoretical Computer Science, vol. 800, pp. 146–154, 2019.

[37] M. B. Cohen, M. B. Dwyer, and J. Shi, “Exploiting constraint solv-
ing history to construct interaction test suites,” in Proceedings of
the Testing: Academic and Industrial Conference Practice and Research
Techniques. IEEE, 2007, pp. 121–132.

[38] L. Kampel, M. Leithner, and D. E. Simos, “Sliced aetg: a memory-
effcient variant of the aetg covering array generation algorithm,”
Optimization Letters, pp. 1–14, 2019.

[39] Y.-W. Tung and W. S. Aldiwan, “Automating test case generation
for the new generation mission software system,” in Proceedings of
the Aerospace Conference, vol. 1. IEEE, 2000, pp. 431–437.

[40] R. C. Bryce and C. J. Colbourn, “The density algorithm for pair-
wise interaction testing,” Software Testing, Verifcation and Reliabili-
ty, vol. 17, no. 3, pp. 159–182, 2007.

[41] ——, “A density-based greedy algorithm for higher strength cov-
ering arrays,” Software Testing, Verifcation and Reliability, vol. 19,
no. 1, pp. 37–53, 2009.

[42] J. Czerwonka, “Pairwise testing in real world,” in Proceedings
of the 24th Pacifc Northwest Software Quality Conference, vol. 200.
Citeseer, 2006.

[43] I. Segall, R. Tzorefbrill, and E. Farchi, “Using binary decision
diagrams for combinatorial test design,” in Proceedings of the
International Symposium on Software Testing and Analysis. ACM,
2011, pp. 254–264.

[44] A. Gargantini and P. Vavassori, “Effcient combinatorial test gen-
eration based on multivalued decision diagrams,” in Proceedings of
the International Symposium on Software Reliability Engineering, vol.
8855. IEEE, 2014, pp. 220–235.

[45] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn,
“An effcient algorithm for constraint handling in combinatorial
test generation,” in Proceedings of the International Conference on
Software Testing, Verifcation and Validation. IEEE, 2013, pp. 242–
251.

[46] K. Kleine and D. E. Simos, “An effcient design and implementa-
tion of the in-parameter-order algorithm,” Mathematics in Computer
Science, vol. 12, no. 1, pp. 51–67, 2018.

[47] H. Zhong, L. Zhang, and S. Khurshid, “Combinatorial genera-
tion of structurally complex test inputs for commercial software
applications,” in Proceedings of the International Symposium on the
Foundation of Software Engineering. ACM, 2016, pp. 981–986.

[48] J. Torres-Jimenez and E. Rodriguez-Tello, “New bounds for binary
covering arrays using simulated annealing,” Information Sciences,
vol. 185, no. 1, pp. 137–152, 2012.

[49] H. Wu, C. Nie, F. Kuo, H. Leung, and C. J. Colbourn, “A discrete
particle swarm optimization for covering array generation,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 4, pp. 575–591,
2015.

[50] J. Torresjimenez, H. Avilageorge, and I. Izquierdomarquez, “A
two-stage algorithm for combinatorial testing,” Optimization Let-
ters, vol. 11, no. 3, pp. 457–469, 2017.

[51] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combi-
natorial interaction test generation strategies using hyperheuristic
search,” in Proceedings of the International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 540–550.

[52] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “Tca: An
effcient two-mode meta-heuristic algorithm for combinatorial test
generation,” in Proceedings of the International Conference on Auto-
mated Software Engineering. ACM, 2015, pp. 1–12.

[53] S. Esfandyari and V. Rafe, “A tuned version of genetic algorithm
for effcient test suite generation in interactive t-way testing strate-
gy,” Information and Software Technology, vol. 94, pp. 165–185, 2018.

[54] A. Calvagna and A. Gargantini, “A formal logic approach to
constrained combinatorial testing,” Journal of Automated Reasoning,
vol. 45, no. 4, pp. 331–358, 2010.

[55] A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental sat solv-
ing,” in Proceedings of the tInternational Conference on Software
Testing, Verifcation and Validation. IEEE, 2015, pp. 1–10.

[56] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi,
“Greedy combinatorial test case generation using unsatisfable
cores,” in Proceedings of the International Conference on Automated
Software Engineering. ACM, 2016, pp. 614–624.

[57] A. Zamansky, A. Shwartz, S. Khoury, and E. Farchi, “A
composition-based method for combinatorial test design,” in Pro-
ceedings of the International Conference on Software Testing, Verifcation
and Validation Workshops. IEEE, 2017, pp. 249–252.

[58] L. Kampel, B. Garn, and D. E. Simos, “Combinatorial methods for
modelling composed software systems,” in Proceedings of the In-
ternational Conference on Software Testing, Verifcation and Validation
Workshops. IEEE, 2017, pp. 229–238.

[59] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: a survey,” Software Testing, Verifcation and
Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[60] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 2, no. 3, pp. 270–285,
1993.

[61] T. Y. Chen and M. F. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5-6, pp. 347–354,
1998.

[62] D. E. Blue, I. Segall, R. Tzorefbrill, and A. Zlotnick, “Interaction-
based test-suite minimization,” in Proceedings of the International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 182–
191.

http://selab.fbk.eu/magic

22 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Chang Rao is a PhD candidate in the School
of Information Science and Technology, South-
west Jiaotong University. He has 7 publication-
s in journals and proceedings, including INT J
COMPUT MATH, IWCT and QRS. His current
research interests include the software testing
and railway signaling software safety and reli-
ability, especially combinatorial testing, model-
based testing and applications of software test-
ing in railway signaling system.

Nan Li is an engineering manager at Dassault
Systems, where he is leading mobile develop-
ment and testing. He serves on program commit-
tees for ICST and FSE. He has been serving as
a reviewer for multiple journals and conferences
including TSE, CSUR, JSS, IST, SoSyM. He won
the 2015 Medidata Innovator Award, and holds
two U.S. and Canada patents. Li received a BE
in Software Engineering from Beihang University
and received the PhD in Information Technology
from George Mason University.

Yu Lei is a full professor in the Department
of Computer Science and Engineering at the
University of Texas, Arlington. He received his
PhD degree from North Carolina State Universi-
ty. He was a Member of Technical Staff in Fujitsu
Network Communications, Inc. for about three
years. His research is in the area of automated
software analysis, testing and verifcation, with a
special interest in software security assurance at
the implementation level.

Jin Guo is a full professor in the School of
Information Science and Technology, Southwest
Jiaotong University. He received his PhD degree
from Southwest Jiaotong University in 2006. He
is a Senior Fellow of China Railway Society. His
research interest is in the area of automatic train
control methods, railway signaling system safety
and reliability, railway signaling system model-
ing, simulation and testing.

Yadong Zhang is a teacher in the School of
Information Science and Technology, Southwest
Jiaotong University. He received his PhD degree
from Southwest Jiaotong University in 2013. His
research interest is in the area of system safety
analysis and evaluation, railway signaling sys-
tem modeling, simulation and testing.

Raghu N. Kacker is currently a Mathematical
Statistician with the Applied and Computation-
al Mathematics Division, Information Technolo-
gy Laboratory, National Institute of Standards
and Technology, Gaithersburg, MD, USA. He has
coauthored more than 125 refereed publications
and one book. His research interests include
development and use of combinatorial methods
for testing software and systems.

D. Richard Kuhn is currently a Computer Scien-
tist with the Computer Security Division, National
Institute of Standards and Technology (NIST),
Gaithersburg, MD, USA. He has authored three
books and more than 150 conference or journal
publications on information security, empirical s-
tudies of software failure, and software assur-
ance. His research interests include software
failure analysis and applications of combinatorial
methods to software assurance.

