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Abstract—Combinatorial testing typically considers a single input model and creates a single test set that achieves t-way coverage. 
This paper addresses the problem of combinatorial test generation for multiple input models with shared parameters. We formally 
defne the problem and propose an effcient approach to generating multiple test sets, one for each input model, that together satisfy 
t-way coverage for all of these input models while minimizing the amount of redundancy between these test sets. We report an 
experimental evaluation that applies our approach to fve real-world applications. The results show that our approach can signifcantly 
reduce the amount of redundancy between the test sets generated for multiple input models and perform better than a 
post-optimization approach. 

Index Terms—Combinatorial Testing, T-way Test Generation, Multiple Input Models, Shared Parameters 

1 INTRODUCTION 

COMBINATORIAL testing (CT) has been shown to be 
a very effective approach to software testing [1] [2]. 

In particular, CT has been applied in situations where 
interactions of certain elements need to be tested, e.g., 
confguration testing [3], GUI testing [4], web application 
testing [5], security testing [6], product line testing [7] [8], 
and others [9] [10]. A t-way combinatorial test set, or simply 
a t-way test set, is designed to achieve t-way coverage that 
requires every value combination of any t parameters be 
covered by at least one test [11], where t is typically small 
and is referred to as the test strength. 

CT is a black-box testing strategy in that it generates tests 
by modeling and sampling the input space of the subject 
application without access to the source code. 

Many approaches have been proposed to build a t-way 
test set [2] [12] [13]. However, existing approaches have 
mainly focused on how to create a t-way test set for a 
single input model. In this paper, we consider the problem 
of t-way test generation for multiple input models with 
shared parameters. A shared parameter is a parameter that 
exists in more than one input model. Even though shared 
parameters exist in multiple models, their interactions need 
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to be tested only once. We refer to this problem as the CT-
MM (Combinatorial Testing for Multiple Models) problem. 

The CT-MM problem is found when we perform CT 
in practice, especially for large and/or complex software 
applications. For example, use case testing is one common 
approach to testing a software application. Each use case 
represents a scenario the user could use the application to 
achieve a goal. When we employ CT to perform use case 
testing, we could create one input model for each use case. 
Shared parameters may exist between the input models 
created for different use cases. Consider a loan management 
application. There could be different use cases for different 
types of loan applications. These use cases typically have 
some unique parameters that are specifc to the loan types, 
and also some common parameters that are shared between 
the different loan types, e.g. parameters that represent the 
credit history of the applicant. Interactions between some 
shared parameters only need to be tested once when these 
parameters are processed by a common code module. 

As a second example, based on the write-a-little-test-a-
little strategy, smaller modules are often tested before they 
are integrated. When we employ CT to module testing, we 
could create one input model for each module. These mod-
ules are not completely independent because they could use 
some common components. Inputs that are processed by a 
common component may appear as shared parameters in 
the input models created for different modules. Since these 
parameters are processed by the same common component, 
their interactions only need to be tested once. 

As a third example, Nguyen et al. present an approach 
that combines model-based testing (MBT) and combinatori-
al testing (CT) [14]. In their approach, a subject application 
is modeled as a Finite State Machine (FSM), where each 
transition is labeled with an event. An event represents a 
user action that may take one or more user inputs. To apply 
CT, a set of test paths is frst generated from the FSM to 
achieve certain coverage, e.g., all-edge coverage. Second, 
an input model is created for each test path where each 
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Fig. 1. An Example FSM 

event is modeled as a parameter. Representative user inputs 
are selected for each event as the possible values of the 
corresponding parameter. Third, a t-way test set is created 
for each of the input models, using post-optimization to 
remove redundant tests. This is a CT-MM problem, since 
the same event could appear in different test paths, and thus 
the corresponding parameter(s) would be shared among the 
input models created for the test paths. 

Figure 1 gives an example FSM [14]. This FSM models 
part of the payment process of a large open-source e-
commerce and banking web application called Cyclos. In 
the payment process, the user frst inputs the user name 
(e1) and the payment amount (e2). Next, the user schedules 
the payment process (e3), i.e., immediately pay or pay in the 
future. If the user chooses pay immediately, the user may type 
a description about this payment (e4). Otherwise, if the user 
chooses pay in the future, they need to choose the number 
of payments, which can be single or multiple (e5). Last, the 
user presses a button to submit or cancel this payment (e6). 
In the FSM, S0 represents the initial state and S6 represents 
the fnal state. Table 1 gives the action each event represents 
and the representative user inputs that each event takes. 

TABLE 1 
Event Information in the Example FSM 

Event Action Representative 
User Inputs 

e1 input user ame users in list; 
other users; 

e2 input payment amount 
too small; 

valid; 
too large; 

e3 select payment schedule immediately; 
future; 

e4 type payment description any string; 

e5 select payments in future single; 
multiple; 

e6 press button submit; 
cancel; 

To apply CT to this FSM, we frst generate two test 
paths, including path1 = (e1, e2, e3, e4, e6) and path2 = 
(e1, e2, e3, e5, e6). Then, we create one input model for each 
test path. Event ei is modeled as parameter pi. The rep-
resentative user inputs for ei are modeled as the possible 
values of pi. The model M1 for path1 consists of parameters 
p1, p2, p3, p4 and p6. The model M2 for path2 consists 
of parameters p1, p2, p3, p5 and p6. There are four shared 
parameters, i.e., p1, p2, p3 and p6, in the two input models. 

One straightforward approach to the CT-MM problem 
is to build a t-way test set for each input model using an 
existing t-way test generation algorithm. However, this ap-
proach would produce redundancy for shared parameters. 
That is, combinations of shared parameter values may be 
covered multiple times in multiple input models. 

The technical challenge of the CT-MM problem is how 
to avoid redundant coverage of shared parameter value 
combinations in multiple input models. 

One approach to addressing the above challenge is to 
apply post-optimization [14]. That is, we frst generate a t-
way test set for each input model, and remove the redun-
dant tests afterwards. A test is redundant, and thus can be 
removed, if all the value combinations covered by this test 
are also covered by other tests. 

In this paper, we propose a new approach that tries 
to avoid redundant tests in the frst place. Our approach 
extends an existing t-way test generation approach, namely 
In-Parameter-Order-General (IPOG) [15], for a single input 
model to multiple input models. We refer to this approach 
as IPOG-MM, where MM again stands for Multiple Models. 
The main idea of IPOG-MM is the following. If a com-
bination of some shared parameters appears in multiple 
input models, their value combinations, which we refer 
to as shared value combinations, could be covered in any 
of the test sets generated for these models. Our approach 
distinguishes shared value combinations from unique value 
combinations. We try to distribute these shared value com-
binations among multiple test sets in a way that minimizes 
the total number of tests. Specifcally, our approach uses 
a concept called capacity to estimate the number of shared 
value combinations a given test set could potentially cover. 

One might consider an alternative approach in which 
we create a super model that combines all the input models 
and then builds a single t-way test set for the super model. 
This approach would not work because each test in the 
resulting test set must be split into multiple test sets, one 
for each input model, so that they can be actually executed. 
This split of tests could make t-way coverage incomplete, 
because some combinations that are covered in the original 
test may no longer be covered in the split tests. 

We report an experimental evaluation in which we apply 
our approach to fve real-world applications. We compare 
our approach to the IPOG approach, i.e., using the IPOG 
approach to build a separate t-way test set for each input 
model. The results show that IPOG-MM removes a signif-
icant amount of redundant tests produced by the original 
IPOG approach. We also compare our approach to another 
approach, IPOG-PO, where we frst use IPOG to build 
a separate t-way test set for each input model and then 
perform post-optimization to remove the redundant tests. 
The experimental results show that IPOG-MM can produce 
fewer tests in most cases than IPOG-PO while remaining 
competitive in terms of test generation time. 

In summary, the major contributions of this paper are: 

1) To the best of our knowledge, our work is the 
frst to identify and formulate the CT-MM problem. 
The CT-MM problem is found in different domains, 
especially for large and/or complex applications. 

2) We propose a test generation approach, i.e., IPOG-
MM, for the CT-MM problem. IPOG-MM tries to 
minimizes the number of tests by avoiding redun-
dant coverage of shared value combinations. 

3) We report an experimental evaluation on the effec-
tiveness of the IPOG-MM approach. A prototype 
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TABLE 2 TABLE 3 
Input Models Pairwise Tests 

Parameter = {values} Input model = {parameters}
p1 = {a, b} M1 ={p1, p2, p3, p4, p5}
p2 = {c, d} M2 ={p1, p2, p3, p4, p6}
p3 = {e, f}
p4 = {g, h, i}
p5 = {j, k}
p6 = {n, m} 

tool, Stride, is built that implements the IPOG-MM 
approach. Stride is made available to the public1. 

The paper is organized as follows. Section 2 shows a 
motivating example. Section 3 defnes some basic concepts 
and the CT-MM problem. Section 4 introduces the existing 
IPOG approach. Section 5 presents the details of IPOG-
MM approach. Section 6 summarizes the implementation of 
the tool. Section 7 reports some experimental results that 
demonstrate the effectiveness of our approach. Section 8 
discusses the related work. Section 9 concludes the paper 
and discusses future work. 

2 MOTIVATING EXAMPLE 

In this section, we give an example to show that when di-
rectly applying an existing t-way test generation algorithm 
to the CT-MM problem, it could result in redundancy in the 
generated test sets. Furthermore, we show that though post-
optimization can remove redundant tests, it can not remove 
redundant coverage of some shared value combinations. 
As a result, post-optimization can result in more tests than 
necessary. 

Table 2 shows an SUT that has two input models, M1 

and M2. There are a total of six input parameters, p1, p2, 
p3, p4, p5, and p6. Parameters p1, p2, p3 and p4 are shared 
parameters, as they appear in both M1 and M2. Parameter 
p5 appears only in M1 and p6 only in M2. The values of each 
parameter are also shown in the Table 2. 

Table 3 shows a test suite with two 2-way test sets, T1 

and T2, for M1 and M2, respectively. Note that the two 
test sets are artifcially bloated for the illustration purpose. 
Specifcally, each test set has nine tests in Table 3. However, 
it requires only six tests in each test set to achieve 2-way 
coverage for M1 and M2, e.g., if we use an existing tool 
called ACTS [16]. Also note that the motivating example, 
including the two test sets in Table 3, comes from [14], where 
the post-optimization approach was originally proposed. 

We make two observations from Table 3. First, due to 
the existence of shared parameter combinations, there are 
shared value combinations in both test sets. For example, 
due to the fact that p1 and p2 form a shared parameter 
combination, all the value combinations of this parameter 
combination are covered in both T1 and T2. Second, cov-
ering the shared value combinations in both test sets pro-
duces redundant tests. For example, τ2 covers 10 value 
combinations, (b, c), (b, f), (b, i), (b, k), (c, f), (c, i), (c, k), 
(f, i), (f, k), and (i, k). As shown in Table 4, these value 
combinations are also covered by other tests. Removing τ2 

1. https://github.com/swjtu-railway/IPOG-MM 

T1 T2 
τ0: (a, c, e, i, j) τ9: (a, c, e, i, m) 
τ1: (a, c, e, g, j) τ10: (a, c, e, g, m) 
τ2: (b, c, f , i, k) τ11: (b, c, f , i, n) 
τ3: (a, d, e, i, k) τ12: (a, d, e, i, n) 
τ4: (a, d, f , g, k) τ13: (a, d, f , g, n) 
τ5: (b, c, e, h, k) τ14: (b, c, e, h, n) 
τ6: (b, c, e, g, k) τ15: (b, c, e, g, n) 
τ7: (a, c, e, h, k) τ16: (a, c, e, h, n) 
τ8: (b, d, f , h, j) τ17: (b, d, f , h, m) 

TABLE 4 
Coverage of the VCs Between τ2 And Other Tests 

VCs τ0 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ11 τ14 τ15 τ17 
(b, c) × × × × × 
(b, f ) × × × 
(b, i) × 
(b, k) × × 
(c, f ) × 
(c, i) × × × 
(c, k) × × × 
(f, i) × 
(f, k) × 
(i, k) × 

would make T1 by itself no longer a 2-way test set, as some 
pairs, e.g., (b, i), (c, f), (f, i) are not covered by other tests 
in T1. However, if we remove τ2, T1 and T2 together still 
achieve 2-way coverage as all the pairs covered by τ2 are 
also covered by some tests in T2. Thus, τ2 is a redundant 
test. This suggests that when applying an existing t-way 
test generation algorithm to each input model separately, 
the redundant tests can be generated due to combinations 
of shared parameters. 

Nguyen et al. [14] applied a post-optimization approach 
to reduce redundant tests. Similar to what we described 
above, they frst generate a test set for each input model 
separately. Then, they apply the post-optimization approach 
as follows. For each test, they check whether the test covers 
any value combination that is not covered by any other tests. 
If so, the test is kept. Otherwise, the test is removed. This 
process is repeated until no more test can be removed. Note 
that the fnal test set produced by the post-optimization 
approach depends on the order in which the tests are 
checked. 

After applying the post-optimization approach to the 
example, τ3, τ5, and τ7 are removed from T1, and τ13 and τ14 

are removed from T2. Though post-optimization removes 
redundant tests, there is still redundant coverage of shared 
value combinations among the two test sets. For example, 
after removing the redundant tests τ3, τ5, τ7, τ13 and τ14, 
(a, c) is still covered multiple times, i.e., by tests τ0, τ1, τ9, 
τ10, and τ16. Such redundant coverage causes the number of 
tests to be more than necessary. 

This example indicates that there are opportunities for 
further optimization for the CT-MM problem. In the rest 
of the paper, we present an approach that aims to avoid 
redundant tests from being generated in the frst place 
during test generation. 

https://github.com/swjtu-railway/IPOG-MM
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3 PRELIMINARIES 

This section introduces some basic concepts and defnes the 
CT-MM problem. Assume the existence of a domain D of 
values. 

Defnition 1. (Parameter) A parameter p is a set of values. 
Formally, p ⊆ D. 

A parameter combination P is a set of parameters. Let 
Π(P ) = p1 × p2... × pi... × p|P |, where pi ∈ P . We refer to 
π ∈ Π(P ) as a value combination of P . In the rest of the 
paper, we refer to parameter combination as PC and value 
combination as VC. 

Defnition 2. (Input Model) An input model M = (P, C) 
consists of a (non-empty) set P of input parameters and a set 
C of constraints, where each constraint c ∈ C is a function: 
Π(P ) → {true, false}. 

Let M = (P, C) be a model. A VC of P is also referred to 
as a test of M , or simply a test when M is implied. We will 
use τ to represent a test. A constraint c maps τ to a boolean 
value. A test τ is said to be valid if c(τ ) = true. Otherwise, 
τ is said to be invalid. 

Defnition 3. (SUT) A System Under Test (SUT) M con-
sists of a non-empty set of input models, M1,M2, ..., Mm, 
where Mi = (Pi, Ci), for 1 ≤ i ≤ m. Formally, M = 
{M1,M2, ..., Mm}. 

In the rest of the paper, we are concern with a single 
SUT and denote this SUT using M = {M1,M2, ..., Mm}. 
We use P to denote the set of all the parameters in M. ThatS S S 
is, P = P1 P2 ... Pm. 

Let p be a parameter. Let M|p = {Mi|p ∈ Pi, 1 ≤ i ≤ 
m}. That is, M|p includes all the models in which p appears. 
Let P be a PC. Let M|P = {Mi|P ⊆ Pi, 1 ≤ i ≤ m}. That 
is, M|P includes all the models in which P appears. 

Defnition 4. (Shared Parameter) An input parameter p ∈ 
P is a shared parameter, if p appears in more than one input 
model of M. Formally, p is shared if and only if |M|p| > 1. 

A parameter p ∈ P is said to be a unique parameter if it is 
not a shared parameter. 

Defnition 5. (Shared PC) A PC P is a shared PC, if more 
than one input model contains P . Formally, P is shared if 
and only if |M |P | > 1. 

A PC P ⊆ P is said to be a unique PC if only one input 
model contain P . It is possible that a PC is unique whereas 
every parameter in the PC is shared. 

Further, a VC π of a shared PC is said to be a shared VC. 
Otherwise, π is a unique VC. 

In the context of the CT-MM problem, we only consider 
interactions between parameters that appear altogether in 
at least one input model. In practice, parameters in different 
input models could interact due to poor modeling. Such 
interactions are not considered in our approach. If it is 
important to cover such interactions, an input model should 
be created that contain these parameters. 

Defnition 6. (Cover) A VC π is covered by a test τ , if 
π ⊆ τ . 

A VC π is covered by a test set T if there exists a test 
τ ∈ T such that π is covered by τ . A VC π is said to be valid 
if there exists a valid test τ such that π is covered by τ . 

Defnition 7. (T -way Test Suite) A t-way test suite T for 
M is a set of test sets Ti, where 1 ≤ i ≤ m, one for each 
model Mi such that for every VC π of every t-way PC, there 
exists at least one test set Ti that covers π. 

In the rest of the paper, we will use the term ‘test set’ 
to refer to a test set for a single input model and ‘test 
suite’ to refer to a test set for the entire SUT consisting of 
multiple input models. A test suite typically consists of a set 
of individual test sets, one for each input model in the SUT. 

Defnition 8. (The CT-MM Problem) The CT-MM problem 
is to fnd a t-way test suite T for M, such that the total 
number of tests in T is minimum. 

It is important to note that other metrics, e.g. the length 
of the test paths, the test execution cost at runtime, could be 
used to defne the CT-MM problem. 

We note that CT is a black-box approach. In CT, each test 
represents one external input to the system under test and 
is executed from an initial state to a fnal state. Furthermore, 
the system is typically reset to initial state between two test 
executions. Thus, these tests can be executed independently 
in terms that the execution of one test does not enable or 
disable the execution of another test, nor does it affect the 
outcome of another test. 

4 THE IPOG ALGORITHM 

As mentioned earlier, IPOG-MM is built on top of the IPOG 
approach. In this section, we give an overview of the IPOG 
approach [17]. We also discuss several issues with directly 
applying IPOG to multiple input models. 

4.1 Overview 

Assume that a system consists of a set P of parameters. 
The IPOG approach takes three major steps to generate a 
t-way test set T , including test set initialization, horizontal 
extension and vertical extension. First, IPOG initializes a test 
set T that satisfes t-way coverage for the frst t parameters. 
This is simply an enumeration of all the t-way combinations 
for the frst t parameters. Next IPOG extends T to build a 
t-way test set for the frst (t + 1) parameters by covering 
all the t-way combinations, i.e., all the t-way combinations 
that involve the new parameter and (t − 1) parameters of 
the frst t parameters. IPOG continues the extension for the 
frst (t + 2) parameters, the frst (t + 3) parameters, and 
so on until it builds a t-way test set for all the parameters. 
The extension to cover a new parameter is performed in the 
following two steps: 

• Horizontal extension: IPOG extends each existing test 
in T by adding one value for the new parameter. 

• Vertical extension: IPOG adds new tests to T , if need-
ed. 

Algorithm 1 shows the IPOG test generation approach. 

4.2 Example 

We use an example to explain the main idea of horizontal 
extension and vertical extension. Assume that an input 
model has three parameters, p1, p2, p3, where p1 = {11, 12}, 
p2 = {21, 22} and p3 = {31, 32, 33}. In order to build a 2-
way test set for this model, IPOG frst initializes a 2-way test 
set T for the frst two parameters (Algorithm 1, line 2), as 
shown in Figure 2a. 
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Algorithm 1: The IPOG Approach 
Input: The input model M , strength t 
Output: A t-way test set T for M 

1 T ← ∅; 
2 initialize T with VCs of the frst t parameters of M ; 
3 for (int i = t + 1; i ≤ n; i ++) do 
4 let Π be the set of VCs involving pi and (t − 1) 

covered parameters; 
5 // horizontal extension to cover pi; 
6 for (each test τ = (v1, v2, ...., vi−1) in T ) do 
7 choose a value vi of pi, and extend τ into τ 0 = 

(v1, v2, ...., vi−1, vi), such that τ 0 covers 
the most VCs in Π ; 

8 remove from Π the VCs covered by τ 0; 

9 // vertical extension to cover pi; 
10 for (each VC π ∈ Π ) do 
11 if (π has not been covered by an existing test) then 
12 change an existing test, if possible, or other-

wise add a new test to cover π; 

13 remove π from Π; 

14 return T ; 

Second, IPOG extends T to cover p3. There are in 
total 12 VCs that involve p3 and thus need to be cov-
ered: (11, 31), (11, 32), (11, 33), (12, 31), (12, 32), (12, 33), 
(21, 31), (21, 32), (21, 33), (22, 31), (22, 32) and (22, 33). 

During horizontal extension (Algorithm 1, line 6 - 8), 
for each of the existing four tests, IPOG chooses a value 
of p3 and adds it into the test to cover as many new VCs as 
possible. For example, assume that the tests τ1 = (11, 21) and 
τ2 = (11, 22) have been extended to τ1 = (11, 21, 31) and τ2 

= (11, 22, 32), respectively. Now, IPOG extends the test τ3 = 
(12, 21). If we extend τ3 into (12, 21, 31), the new test would 
only cover one new VC, i.e., (12, 31), because (21, 31) has 
already been covered by τ1. Thus, IPOG extends τ3 to τ3 = 
(12, 21, 33) to cover two new VCs, i.e., (12, 33) and (21, 33). 
Figure 2b shows the test set after horizontal extension. 

After horizontal extension, four VCs remaining uncov-
ered, (11, 33), (12, 32), (21, 32) and (22, 33). IPOG performs 
vertical extension to cover them (Algorithm 1, line 10 - 13). 
To cover (11, 33), IPOG creates a new test τ5 = (11, ∗, 33) in 
T . Note that ∗ here represents a don’t care value of p2, which 
is a value that can be changed later to other values while 
preserving the coverage. For example, in order to cover 
(22, 33), IPOG can directly change the test τ5 = (11, ∗, 33) 
into τ5 = (11, 22, 33), i.e., without adding any new test. 
Figure 2c shows T after vertical extension. At this point, 
all the 12 VCs involving p3 are covered, and T is a complete 
2-way test set for all the three parameters, p1, p2 and p3. 

4.3 Issues with Applying IPOG to the CT-MM Problem 

The IPOG algorithm is designed to build a t-way test set 
for a single input model. There are several issues to be 
addressed if we directly apply IPOG to the CT-MM problem. 

First, since shared VCs exist in multiple input models, 
we may face the following two problems. 

Fig. 2. An illustration of the IPOG Approach 

• Redundancy during initialization. IPOG builds an ex-
haustive t-way test set for the frst t parameters. 
If the frst t parameters are shared across multiple 
input models, their combinations would be covered 
multiple times, one for each model. 

• Redundancy during horizontal and vertical extension. 
IPOG tries to cover all the t-way VCs for each model 
during horizontal and vertical extension. This means 
that shared VCs, if exist, would be covered multiple 
times, one for each model. 

One may consider making a simple improvement on 
the original IPOG approach to avoid redundant coverage 
on shared VCs, by tracking coverage of shared VCs across 
multiple models. When a shared VC is covered for one 
model, we mark it as covered and do not cover the VC 
again for other models. This approach, however, does not 
distinguish between unique and shared VCs, which may 
produce more tests than necessary as discussed below: 

• During horizontal extension, IPOG extends each ex-
isting test to cover as many uncovered VCs as possi-
ble. No distinction is made on whether such VCs are 
unique or shared. This may cause more shared VCs 
to be covered than unique VCs. Thus, more unique 
VCs would have to be covered by vertical extension, 
which could produce more tests than necessary. Note 
that shared VCs could be covered in other test sets, 
while unique VCs must be covered in the current test 
set. 

• During vertical extension, IPOG covers all the re-
maining VCs, i.e., VCs that have not been covered. 
The remaining VCs may include both unique and 
shared VCs. Again, while unique VCs must be cov-
ered in the current test set, shared VCs do not have 
to. In particular, shared VCs could be covered during 
horizontal extension of the later test sets, without 
adding any new test. 

The IPOG-MM approach is developed to address above 
issues, as detailed in the following section. 

5 THE IPOG-MM APPROACH 

In this section, we present a new approach, IPOG-MM, 
for generating tests on multiple input models. Algorithm 2 
shows the major steps of IPOG-MM. Similar to IPOG, IPOG-
MM adopts the one-parameter-at-a-time framework. Howev-
er, unlike IPOG, IPOG-MM makes a distinction between 
shared and unique PCs and VCs. 

As shown in Algorithm 2, IPOG-MM consists of three 
major steps: 1) creating an initial test suite (line 3); 2) 
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Algorithm 2: The IPOG-MM Framework 
Input: A set M of input models, strength t 
Output: A test suite T that satisfes t-way coverage 

for M 
1 let P be the union of all input parameters in M; 
2 sort the parameters in P with a non-ascending order 

by the domain size of each parameter; 
3 build an initial test suite T for M; 
4 // test sets extension 
5 for (each parameter p ∈ P) do 
6 if (p is a unique parameter) then 
7 // cover a unique parameter 
8 extend the only test set involving p to cover p; 
9 else 

10 // cover a shared parameter 
11 extend the multiple test sets involving p to 

cover p; 

12 return T ; 

extending a single test set to cover a unique parameter 
(line 8); 3) extending multiple test sets to cover a shared 
parameter (line 11). 

To cover a unique parameter p, we use the same strat-
egy as IPOG. That is, we perform horizontal and vertical 
extension to extend the only test set involving p to cover p 
(Algorithm 1, line 6-13). 

The rest of this section is organized as follows. Section 5.1 
discusses the initialization process. Section 5.2 discusses 
how to cover a shared parameter in IPOG-MM, Section 5.3 
analyzes the complexity of IPOG-MM. Section 5.4 discusses 
constraints handling. Section 5.5 provides some miscella-
neous considerations. 

Note that in Section 5.1 and 5.2, we assume that the input 
models do not have constraints. We discuss how to deal with 
constraints in Section 5.4. Also, we assume that no input 
model is a sub-model of another model. A sub-model is an 
input model whose parameters are all contained in another 
input model (which is referred to as a super-model). We 
discuss how to deal with sub-models, and some other issues 
in Section 5.5. 

Also note that in this section, we use a running example 
to explain the major steps of IPOG-MM. Assume t = 2. 
Table 5 shows the input models of the example. 

TABLE 5 
Input Models of the Running Example 

Parameter = {values} Input model = {parameters}
p1 = {11, 12, 13, 14} M1 = {p1, p2, p3, p4}
p2 = {21, 22, 23} M2 = {p1, p2, p3, p5}
p3 = {31, 32, 33} M3 = {p3, p4, p5}
p4 = {41, 42} M4 = {p4, p5, p6}
p5 = {51}
p6 = {61} 

5.1 Initialization 

For a given model M , IPOG-MM initializes the test set 
using unique VCs. That is, the initial test set for M does 

not include shared VCs that also exist in other models. To 
minimize the number of tests, IPOG-MM selects a unique 
PC that has the largest number of VCs. This is similar 
to IPOG, where the parameters are sorted according to a 
non-ascending order of their domain sizes [18]. Doing so is 
likely to reduce the number of tests. Algorithm 3 shows the 
initialization process. 

Algorithm 3: Initialize A Test Suite for M 

Input: A set M of input models, strength t 
Output: An initial test suite T of test sets 

1 let T be an empty test suite; 
2 for (each input model M ∈M) do 
3 let T be an empty test set; 
4 if (there exists a unique PC in M ) then 
5 let P be a unique PC that has the most VCs; 
6 add into T each VC π ∈ Π(P ) as a test; 
7 mark the parameters of P as covered; 

8 T ← T ∪ {T }; 

9 return T ; 

Note that there may be no unique PCs in an input model 
M . In this case, the initial test set for M will be empty. 

Consider the running example. For M1, the VCs of the 
PC (p1, p4) is chosen to create an initial a test set T1 for M1. 
This is because the PC (p1, p4) is unique and has the largest 
number of VCs, i.e., 4 × 2 = 8. Based on this strategy, we 
initialize a test set for each input model. Table 6 shows the 
test suite after initialization. 

TABLE 6 
The Initial Test Suite for the Running Example 

T1 : {p1, p4}
(11, 41) (11, 42) (13, 41) (13, 42) 
(12, 41) (12, 42) (14, 41) (14, 42) 

T2 : {p1, p5}
(11, 51) (12, 51) (13, 51) (14, 51) 

T3 : {p3, p4, p5}
∅ 

T4 : {p4, p6}
(41, 61) (42, 61) 

5.2 Covering a Shared Parameter 

In this section, we present an algorithm, i.e., Algorithm 4 
that is used to cover a shared parameter (Algorithm 2, line 
11). 

Algorithm 4 consists of two phases. In Phase 1, we 
extend the test sets to cover all the unique VCs and as many 
shared VCs as possible involving the shared parameter 
(Algorithm 4, line 3-9). We explain the details of Phase 1 
in Section 5.2.1, including the notion of capacity. In Phase 
2, we further extend the test sets to cover all the remaining 
shared VCs (Algorithm 4, line 11). We explain the details of 
Phase 2 in Section 5.2.2. 
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Algorithm 4: Cover a Shared Parameter 
Input: A t-way test suite T , a shared parameter p, 

strength t 
Output: A t-way test suite that extends T to cover p 

1 //Phase 1: cover all unique VCs and most shared VCs 
2 let T | be the set of non-empty test sets in T that in-p 

volves p, but does not cover p; 
3 while (T | is not empty) do p 
4 // Phase 1-1: select a test set 
5 compute the capacity(T , p) of each T ∈ T | ;p 
6 select a test set T that has the maximum capacity; 
7 // Phase 1-2: extend the selected test set 
8 extend T to cover p; 
9 remove T from T | ;p 

10 // Phase 2: cover the remaining shared VCs 
11 extend multiple test sets in T to cover the remaining 

shared VCs; 
12 return T ; 

5.2.1 Phase 1: Cover all the Unique VCs 

In Phase 1, we frst identify test sets that are not empty, 
involve p, but do not cover p (Algorithm 4, line 2). A test set 
T is not extended in Phase 1 in the following two cases: 1) 
T is empty. This is possible if the model has no unique PCs. 
The horizontal extension of the IPOG framework requires an 
existing test when we try to cover a new parameter; 2) the 
shared parameter p to be covered has already been covered 
by T . This is possible because p could be covered by a test 
set during initialization. 

Phase 1-1: Selecting a Test Set. When we extend a test 
set to cover a new parameter p, we need to cover all the VCs 
of the PCs that involve p and (t − 1) covered parameters. 
We aim to select a test set that is likely to cover the most 
uncovered VCs. 

Assume that we have initialized a test set T for the frst 
t parameters. When extending T to cover a new next para-
meter, it is diffcult to calculate the number of uncovered 
VCs that T can cover. We introduce a notion, called capacity, 
to estimate this number. 

To compute the capacity of T , we frst introduce the 
concept of matching pair. Let P be a PC introduced by the 
new parameter p. Since IPOG-MM covers one parameter at 
a time, P consists of (t − 1) parameters that have already 
been covered by T , in addition to p. Let π be a VC of P 
that has not been covered yet. Let τ be a test in T . π and τ 
are a matching pair if the (t − 1) parameters have the same 
values in τ and π. Match(T , P ) denotes the total number of 
matching pairs between the tests in T and the VCs in P . 

Note that a test (or VC) could form a matching pair 
with multiple VCs (or tests). However, when we count the 
number of matching pairs, each test (or VC) can only be 
used to form one matching pair. 

The capacity with respect to a parameter p represents the 
number of VCs involving p that could potentially be covered 
by T . We compute capacity(T, p) by adding the number of 
matching pairs of all the PCs that involve p. Specifcally, the 
capacity is computed using Equation (1), where m represents 
the number of shared PCs that are involved in p and (t − 1) 

Fig. 3. Possible matching pairs between T1 and (p1, p2) 

parameters covered by T . 

mX 
capacity(T, p) = (Match(T, Pi)) (1) 

i=1 

We select a test set with the highest capacity as the test 
set to extend next. Note that the capacity of each test set is 
computed dynamically, since uncovered VCs may change 
after a test set is extended. Also note that capacity is an 
approximation of the number of VCs that T could actually 
cover, since we simply add all the number of matching pairs 
without considering possible conficts between different PCs. 
The term confict means that the shared parameter p that is 
being covered takes different values in the matched VCs. 

We use the running example to illustrate how to compute 
matching pairs and capacity. Let P be the set of all input 
parameters. After sorting, P = {p1, p2, p4, p5, p3, p6, p7}. 
As shown in Table 6, p1 has been covered in both test sets T1 

and T2 during initialization. We skip p1 and cover the next 
parameter p2. 

First, we identify two test sets, T1 and T2, that satisfy two 
conditions (Algorithm 4, line 2):1) these test sets involve p2; 
2) these test sets have not covered p2. Second, we compute 
the capacities of T1 and T2. Adding p2 into the test sets 
introduces one new shared PC, i.e., (p1, p2). Table 7 shows 
the VCs of this PC. All of the 12 VCs of (p1, p2) have not 
been covered yet. Figure 3 shows the possible matching 
pairs between T1 and (p1, p2). 

The only overlapping parameter between T1 and (p1, p2) 
is p1. Note that p1 has four values, i.e., 11, 12, 13, and 14. For 
the value 11, although there are three shared VCs with 11 in 
(p1, p2), there are only two tests in T1 with 11. Thus, there 
are only two matching pairs for value 11. Similarly, there are 
two matching pairs for each of the other values, i.e., 12, 13, 
and 14. Therefore, Match(T1, (p1, p2)) = 2 + 2 + 2 + 2 = 8, 
capacity(T1, p2) = 8. Similarly, we get Match(T2, (p1, p2)) = 
1+ 1+1+1 = 4 and capacity(T2, p2) = 4. Since capacity(T1, 
p2) > capacity(T2, p2), we select T1 to extend frst. 

Phase 1-2: Extending the Selected Test Set. The general 
strategy is to cover all the unique VCs and as many shared 
VCs as possible. A new test could be added to cover 
a unique VC if the VC could not be otherwise covered. 
However, we never add a new test to cover a shared VC 
in this step. This strategy essentially gives higher priority to 
unique VCs than shared VCs. This is because unique VCs 
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can only be covered in the current test set, whereas shared 
VCs can be covered in other test sets. IPOG-MM does not 
construct new tests to cover the shared VCs in this phase, 
because other test sets may be able to cover them. 

IPOG-MM makes two modifcations on the original I-
POG approach: 

• During horizontal extension, when adding a new 
value of the new parameter p into existing test, 
IPOG-MM chooses a new value of p to cover as many 
unique VCs as possible. If two or more values of p 
can cover the same number of unique VCs, IPOG-
MM chooses a value that can cover more shared VCs; 

• During vertical extension, IPOG-MM only tries to 
cover all the remaining unique VCs. Shared VCs are 
only covered as side effects. That is, when we try to 
cover the unique VCs, some shared VCs would be 
covered without additional effort. 

Consider the running example. We now extend T1 to 
cover p2. There are two newly introduced PCs, (p4, p2) and 
(p1, p2). Table 7 the VCs of these two PCs. Since (p4, p2) is 
a unique PC, all its VCs are unique VCs. Since (p1, p2) is a 
shared PC, all its VCs are shared VCs. 

TABLE 7 
Combinations Introduced by p2 in the Running Example 

(p4, p2) (p1, p2) 
(41, 21) (11, 21) (13, 21) 
(41, 22) (11, 22) (13, 22) 
(41, 23) (11, 23) (13, 23) 
(42, 21) (12, 21) (14, 21) 
(42, 22) (12, 22) (14, 22) 
(42, 23) (12, 23) (14, 23) 

Next, we extend each test in T1. Recall that T1 has eight 
tests as shown in Table 6. First, we extend τ1 = (11, 41). 
If we add the value 21 to τ1, τ1 becomes (11, 41, 21). The 
new test covers one unique VC (41, 21) and one shared VC 
(11, 21). If we add 22 to τ1, the new test would also cover 
one unique VC (41, 22), and one shared VC (11, 22). We 
would cover one unique VC (41, 23) and also one shared 
VC (11, 23) if we add 23 to τ1. Thus, we can choose any of 
the three values, 21, 22 or 23 for τ1. Assume that we choose 
21 for τ1. We remove the VCs covered by τ1. 

Second, we extend τ2 = (11, 42). Similarly, we add 22 
into τ2. The new test covers one unique VC, (41, 22), and 
one shared VC, (11, 22). Then, we remove (41, 22), and 
(11, 22). We continue to do this for other tests. 

After extending the test sets, all the unique VCs are 
covered. Table 8 shows T1 and T2 after covering p2. 

TABLE 8 
The Test Sets Involving p2 after Phase 1 Extension 

T1 : {p1, p4, p2}
(11, 41, 21) (11, 42, 22) (13, 41, 22) (13, 42, 23) 
(12, 41, 23) (12, 42, 21) (14, 41, 21) (14, 42, 22) 

T2 : {p1, p5, p2}
(11, 51, 23) (12, 51, 22) (13, 51, 21) (14, 51, 23) 

Note that in this example, we do not have to do the ver-
tical extension after covering p2. But there will be remaining 

shared VCs after covering the next parameter p3. We discuss 
how to cover the remaining shared VCs in Section 5.2.2. 

5.2.2 Phase 2: Cover Remaining Shared VCs 

In Phase 1, we have covered all the unique VCs, but not 
necessarily all the shared VCs. In Phase 2, we cover all the 
remaining shared VCs, if exist, either by updating existing 
tests (i.e., replacing don’t care values), or by constructing 
new tests. 

Algorithm 5 shows the details of Phase 2. The goal of the 
algorithm is to minimize the number of tests that are added 
to cover the remaining (shared) VCs. This is similar to the 
goal of the vertical extension in the original IPOG approach. 
The difference is that we need to minimize the number of 
tests that could be added to multiple test sets, instead of a 
single test set. 

Algorithm 5: Cover Remaining Shared VCs 
Input: A set Π of the remaining shared VCs, a shared 

parameter p, an existing test suite T , strength t 
Output: An extension of T that covers all the VCs in 

Π 
1 let T | be a subset of test sets in T that involve p;p 
2 // reuse existing tests to cover shared VCs 
3 for (each VC π ∈ Π) do 
4 change an existing test τ ∈ T | into τ 0 to cover π,p 

if possible; 
5 remove from Π the VCs that are covered by τ 0; 

6 // construct new tests to cover shared VCs 
7 while (Π is not empty) do 

let τ be an empty test; 
for (each test set T ∈ T | ) do p 

create a test τ 0 such that if added to T , it would 
cover the most VCs in Π; 

if (τ 0 covers more VCs than τ ) then 
τ ← τ 0; 

add τ to the corresponding test set as a new test; 
remove from Π the VCs covered by τ ; 

In Algorithm 5, the test suite T of test sets is obtained 
after Phase 1. When extending T to cover remaining VCs, 
we frst try to cover as many VCs as possible without 
adding a new test, i.e., by changing some dont care values 
in the existing tests. Then, we cover the remaining VCs 
by constructing new tests. For each test set that involves 
p, we create a test that would cover the most remaining 
VCs if added to the test set. Among all the tests created, 
one for each test set, we choose one that could cover the 
most remaining VCs. We add the chosen test to extend the 
corresponding test set and remove the VCs covered this 
chosen test. This process is repeated until all the remaining 
VCs are covered. 

In order to create a test τ 0 that would cover the most 
remaining VCs if added to a test set T , we create a set of 
candidate tests from which we choose one that covers the 
most remaining VCs. First, we check if there exists a PC P 
that have the most remaining VCs. If P does not exist, T 

8 

9 

10 

11 

12 

13 

14 

15 return T ; 
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already covers all the VCs for the parameters involved in 
T . Thus no candidate test is built for T . Second, we create 
a candidate test τ from each remaining VC of P , such that 
in τ , all the parameters involved in the VC take the same 
values as in the VC and the other parameters take don’t 
care values. Third, we extend each candidate test τ of T 
by adding a remaining shared VC π ∈ Π into τ , such that 
1) τ is compatible with π; and 2) this addition covers the 
most remaining shared VCs. Note that c is compatible with 
a VC π if any parameter that exists in τ and π take the same 
value in them. We continue to select VCs to extend τ , until 
no further extension could be made, which happens when 
there exists no more dont care values or no compatible VCs 
can be selected from Π. 

Let’s continue with the running example. Table 9 shows 
T1 and T2 after covering p3 in Phase 1. 

TABLE 9 
The Test Sets Involving p3 after Phase 1 Extension 

T1 : {p1, p4, p2, p3}
(11, 41, 21, 31) (11, 42, 22, 32) (13, 41, 22, 32) (13, 42, 23, 33) 
(12, 41, 23, 33) (12, 42, 21, 31) (14, 41, 21, 32) (14, 42, 22, 33) 

T2 : {p1, p5, p2, p3}
(11, 51, 23, 31) (12, 51, 22, 32) (13, 51, 21, 33) (14, 51, 23, 31) 

The following Table 10 shows the remaining shared VCs 
after Phase 1. 

TABLE 10 
Remaining Shared VCs Involving p3 

From: (p1, p3) From: (p2, p3) 
(11, 33) (22, 31) 
(13, 31) (23, 32) 

Since there are no don’t care values in existing tests for 
reusing, we build new tests to cover the VCs in Π. Figure 4 
shows the major steps for constructing a new test for T1 

(Algorithm 5, line 10 - 12). 
At step 1, we initialize a set of candidate tests. The PCs 

(p1, p3) and (p2, p3) are both involved in T1. They have the 
same number of remaining VCs Thus, for T1, we could use 
the VCs of either PC to initialize candidate tests. Without 
loss of generality, we use the VCs of (p1, p3) to initialize the 
candidate tests τ11 and τ12. 

At step 2, we extend the candidate tests. We use the VCs 
of (p2, p3) for the extension based on the greedy strategy. 
For τ11, since there are no VCs could be used to extend, we 
assign don’t care values to the parameters p2 and p4, respec-
tively. For τ12, since it is compatible with the remaining VC 
(22, 31), we assign the value 22 to p2 and don’t care values 
to p4. 

At step 3, we choose a candidate test that can cover 
the most remaining VCs. The candidate test τ12 is chosen 
because it covers more remaining VCs than τ11, i.e., (13, 31), 
(22, 31). 

A test could be similarly constructed for T2 to cover 
the most remaining VCs. In this example, τ12 is selected 
and added into T1 as a new test. After this extension, the 
remaining VCs (13, 31) and (22, 31) are covered and thus 
being removed from Π. We continue the above steps until 

all the remaining VCs in Π are covered. Table 11 shows the 
fnal test suite that achieves 2-way coverage for the running 
example. 

TABLE 11 
The Final Test Suite for the Running Example 

T1 : {p1, p4, p2, p3}
(11, 41, 21, 31) (11, 42, 22, 32) (13, 41, 22, 32) (13, 42, 23, 33) 
(12, 41, 23, 33) (12, 42, 21, 31) (14, 41, 21, 32) (14, 42, 22, 33) 
(13, ∗, 22, 31) (11, ∗, ∗, 33) (∗, ∗, 23, 32) 

T2 : {p1, p5, p2, p3}
(11, 51, 23, 31) (12, 51, 22, 32) (13, 51, 21, 33) (14, 51, 23, 31) 

T3 : {p3, p4, p5}
∅ 

T4 : {p4, p6, p5}
(41, 61, 51) (42, 61, 51) 

5.3 Complexity Analysis 

In this section, we assume that the strength is t. Also assume 
that there are n input models, at most k parameters in one 
input model, and at most d values for one parameter. 

5.3.1 Space complexity 

The space complexity is dominated by the number of VCs 
involving a new parameter when extending a test set to 
cover the new parameter p. There are at most C(k − 1, t − 1) 
PCs when extending a test set. Each PC contains O(dt) VCs. 
Thus, the space complexity for the VCs is O(dt × kt−1). 

5.3.2 Time complexity for test set selection 

To select the next test set for extension, the time complexity 
is dominated by computing the capacity for each test set 
when covering a new parameter. IPOG-MM computes the 
capacity of each test set by adding all the matching pairs 
between the tests and the shared VCs. Instead of direct-
ly computing matching pairs by matching the tests with 
shared VCs, we count the number of times that a distinct 
value combination occurs in the tests and the shared VCs. 
We compute the number of matching pairs by adding the 
minimum number of times that each distinct value combi-
nation occurs in the tests or the shared VCs. 

According to [17], each time when covering a new para-
meter, there will be at most O(dt × logk) tests in a test set. 
And there will be at most O(dt) shared VCs for a given PC. 
Using the bitmap data structure [15], it takes us O(1) time to 
check occurrence times that a distinct combination occur in a 
test and a VC. Thus, it takes O(dt × logk) to check matching 
pairs between the tests and the VCs of a shared PC. Since 
there are at most O(kt−1) newly introduced shared PCs each 
time, to compute capacity for a test set, the time complexity 
is O(dt × logk × kt−1). 

5.3.3 Time complexity for test set extension 

The time complexity is dominated by choosing the values 
of a new parameter p for the tests to cover the newly 
introduced VCs. Since we use a bitmap structure to store 
the VCs, which takes O(1) time to check whether τ could 
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Fig. 4. Main steps of Phase 2 

cover a newly introduced VC [15]. For a total of O(kt−1) 
newly introduced PCs, it takes O(kt−1) to choose a value of 
p and determine the number of VCs that a test can cover. To 
try each of the d values of p, it takes O(d × kt−1) to choose 
which value can cover the most number of VCs. Consider 
that in a test set, the number of tests is O(logk × dt), 
the time complexity for extending a test set to cover p is 
O(dt+1 × logk × kt−1). 

In summary, for n test sets, the time complexity of IPOG-
MM is O(n × dt+1 × logk × kt−1) 

5.4 Constraint Handling 
Constraint handling can be added to IPOG-MM as follows. 
First, during initialization (Algorithm 3, line 5), we choose 
a unique PC that has the most valid VCs for initialization. 
Second, in Phase 1-1, when selecting a test set (Algorithm 4, 
line 5), we frst remove the invalid VCs with respect to each 
input model. That is, we only try to cover VCs that are valid, 
i.e., that satisfy all the constraints. Since the constraints in 
different input models may be different, the same VC may 
be valid in one input model but invalid in a different model. 
A VC is considered shared between two input models only 
if it is valid in both input models. Third, when generating 
the tests to cover a unique parameter (Algorithm 2, line 
8) or a shared parameter (modifed horizontal and vertical 
extension), we check and ensure that the tests are valid. 
Fourth, in Phase 2, we check and ensure that the tests 
(Algorithm 5, lines 4 and 10) are valid. 

5.5 Discussion 
5.5.1 Single input model 
When there is a single input model, IPOG-MM is naturally 
reduced to IPOG. This is because all the parameters of the 
single input model are treated as unique parameters. 

5.5.2 Input model pre-processing 

Input models can be pre-processed to improve effciency of 
test generation. Let M1 and M2 be two input models. If both 
models have no constraints, M1 is a sub-model of M2, or M2 

is a super-model of M1, if all the parameters of M1 are also 
parameters of M2. In this case, M1 could be removed. This 
removal does not affect test coverage. 

If M1 or M2 or both have constraints, M1 is a sub-
model of M2, or M2 is a super-model of M1, if whether the 
constraints in M1 are stronger than the constraints in M2. 
In other words, every valid VC in M1 is also a valid VC in 
M2. In this case, we could remove M1. Otherwise, we must 
keep M1. A constraint solver could be used to determine 

whether the constraints of M1 are stronger than those of 
M2. Alternatively, we could just keep both models as long 
as they contain constraints. In this case, our approach might 
produce more tests. 

Also, some input models may have less than t param-
eters while the total number of parameters of the SUT is 
greater or equal to t. In this case, we could simply enumer-
ate all possible combinations for these input models. And 
during the later test generation, we do not generate tests for 
such input models anymore. 

5.5.3 Empty test sets 

We suggest that a complete test to be added into a test 
set which remains empty after test generation. Recall that 
during initialization, if an input model M does not have any 
unique VCs, we create an empty test set for M . This test set 
may remain empty after test generation, as all the VCs for 
M are shared VCs and could be covered in other models. 
This does not affect t-way coverage. However, in some real-
world applications, one may desire to have at least one test 
in each test set. For example, in [14], a test set is created 
for each path. No test in a test set means the corresponding 
path would not be executed, which may compromise the 
path coverage. 

5.5.4 Model Evolution 

As discussed in [19], input models could be changed due to 
model corrections and software changes such as bug fxes 
and enhancements. When this happens, the test sets must 
be updated in order to maintain t-way coverage. It is often 
desired to reuse as many existing tests as possible so that 
the time and effort spent on the existing tests could be 
saved [20]. 

We consider the following types of model changes and 
their impact on the existing test sets: 

• Adding a new input model: The new model may or may 
not include shared parameters. In either case, we 
need to generate a test set for the new model to cover 
the VCs that are unique to this model. All the existing 
test sets could be reused. Note that when the new 
model includes shared PCs, the test set generated for 
the new model could cover some shared VCs. Thus, 
the existing test sets could potentially be reduced. 

• Removing an existing input model: When we remove 
a model that does not include any shared PCs, we 
could simply remove the corresponding test set. The 
other test sets could be reused. However, when we 
remove a model that includes shared PCs, some 
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Fig. 5. Overview of the Stride tool 

shared VCs (of these PCs) may be covered only in 
the test set for this model. In this case, the existing 
test sets must be updated to cover these shared VCs. 

• Modifying an existing input model: An existing mod-
el could be modifed in different ways, including 
adding and/or removing parameters, parameter val-
ues, and/or constraints. Let M be the model being 
modifed. Let T be the existing test set for M . T must 
be updated to cover all the unique VCs in M , e.g., 
introduced by adding a new parameter or parameter 
value. In addition, if a test is removed due to some 
parameter value being removed from M , T must be 
updated to cover shared VCs that are covered only 
in this test. This could help minimize changes to, and 
thus maximize the reuse of, the other test sets. Note 
that it is possible that a shared VC π was originally 
covered in T , but could no longer be covered in T 
due to a constraint change. In this case, some other 
test sets must be updated to cover π 

6 STRIDE: A PROTOTYPE TOOL 

We have built a prototype tool, called Stride, that imple-
ments the IPOG-MM approach. Stride also implements two 
other approaches, IPOG and IPOG-PO, which are needed 
for our experimental evaluation, as explained in Section 7. 
The tool, with its source code, is made publicly available 
on GitHub2. In this section, we discuss the major design 
decisions of the tool and our effort to verify the tool imple-
mentation. 

6.1 Major Components 
The Stride tool is written in Java. It takes as input a data fle 
that contains a group of input models and a test strength. 
The output is a data fle that contains a test suite that 
satisfes t-way coverage for the group of input models. 

Figure 5 gives an overview of Stride. 
There are fve major components, including Input Model 

Manager, Test Generation Engine, Combination Manager, 
Test Set Manager, and Constraint Handler. The major re-
sponsibilities of these components are shown below: 

• Input Model Manager: This component is responsi-
ble for managing input models. In particular, it is 
responsible for parsing the input model fles, pre-
processing the input models, and performing query 
operations, e.g., retrieving the models that contain a 
shared PC. 

2. https://github.com/swjtu-railway/IPOG-MM 

• Test Generation Engine: This component implements 
the core algorithms of the three test generation ap-
proaches, including IPOG, IPOG-PO, and IPOG-MM. 
The three approaches share common data structures 
and functions such as covering the unique VC-
s. IPOG-PO implements the post-optimization ap-
proach, which was originally proposed and imple-
mented in the M[agi]C tool [21]. However, we found 
some faults in the implementation as confrmed by 
its developer. 

• Combination Manager: This component is responsi-
ble for managing different types of combinations, 
including both shared/unique PCs and VCs. This 
component employs advanced data structures which 
are similar to [15], so that combinations can be gen-
erated, updated, and searched effciently. 

• Test Set Manager: This component is responsible for 
managing and outputting test sets, including adding 
new tests, updating existing tests, and performing 
query operations, e.g., checking whether a VC is 
covered by a test, retrieving the value of a given 
parameter, and others. 

• Constraint Handler: This component is responsible 
for handling constraints. In particular, it performs 
two types of validity checks. One is to check the 
validity of a combination, and the other is to check 
the validity of a test. We used the constraint handler 
from our earlier work [22]. Currently, the tool only 
supports constraints that are written as forbidden 
tuples. 

In addition, Stride includes a component that generates 
random constraints. This component is only used for the 
purpose of evaluation, and is thus not needed during pro-
duction use. 

6.2 Tool Verifcation 
Several steps have been taken to ensure the correctness 
of the tool. At the unit level, we have created JUnit3 test 
cases to help test key functions, such as fnding shared 
combinations, computing capacity, and test set extension, 
including horizontal and vertical extension. At the system 
level, we have created small input models, run the tool and 
manually checked that the output tests are as expected. 

We have also implemented an assistive analysis tool 
to automatically check the validity and coverage of the 
resulted tests. The inputs of the tool include the set of 
input models, strength t, and the generated test suite. The 
output of the tool includes the validity and coverage of 
the generated test sets. In particular, if the test suite fails 
to achieve the expected coverage, the tool will produce a 
warning message and report the remaining uncovered VCs. 
This tool has been integrated inside the Stride after the 
verifcation and is also publicly available. 

7 EXPERIMENTS 

Our experiments are designed to evaluate the effectiveness 
and effciency of IPOG-MM in comparison with the follow-
ing two approaches: 

3. https://junit.org/junit4/ 

https://junit.org/junit4
https://github.com/swjtu-railway/IPOG-MM
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1) IPOG: This is the baseline approach upon which 
IPOG-MM is built upon. IPOG does not made any 
effort to avoid redundant tests that may be generat-
ed in multiple test sets. 

2) IPOG-PO: This is a competition approach to IPOG-
MM. IPOG-PO also builds upon IPOG, but it uses 
post-optimization to avoid redundant coverage of 
shared VCs. 

We note that the Nguyen et al [14] used post-
optimization to avoid redundant tests in multiple test 
sets, and provided a 2-way test generation tool called 
M[agi]C [21]. However, the M[agi]C tool does not pro-
duce correct results due to some implementation issues4. 
This is the reason why we had to re-implement the post-
optimization approach with IPOG. 

7.1 Research Questions 

Our experiments are designed to ask the following three 
research questions: 

RQ1: How does IPOG-MM compare to IPOG? 
IPOG-MM builds on top of IPOG by considering how 

to avoid redundant coverage of shared VCs. This question 
helps to evaluate the impact of this consideration on the test 
generation process. 

RQ2: How does IPOG-MM compare to IPOG-PO? 
IPOG-MM tries to avoid redundant coverage of shared 

VCs during test generation, whereas IPOG-PO tries to do 
so in a post-mortem manner, i.e. after test generation. This 
question is designed to compare the effectiveness and eff-
ciency of these two approaches. 

RQ3: How does the amount of shared VCs affect the 
effectiveness of IPOG-MM? 

IPOG-MM is centered on the idea of how to avoid re-
dundant coverage of shared VCs. This question is designed 
to evaluate the impact of shared VCs on the effectiveness of 
IPOG-MM. 

7.2 Subjects 

In the experiments, we used the following applications as 
our experimental subjects: 

1) NotePad: an Android application for editing text 
and taking notes. 

2) OpenManager: a free and open source app for fle 
management. 

3) iosched: a scheduling application for Google I/O 
developer conference. 

4) k9mail: an Android application for email manage-
ment on smartphones. 

5) cyclos, a Java web application for banking. Because 
it is a large system, only the payment part is mod-
eled. 

We selected these applications because they were used to 
evaluate the post-optimization approach in [14]. Use of the 

4. The implementation of the post-optimization of the public avail-
able version of M[agi]C is not correct, and it cannot satisfy pair-wise 
coverage after the post-optimization. This has been confrmed by the 
original developers. 

same applications allows us to make a direct comparison be-
tween IPOG-MM and the post-optimization approach. Also, 
the FSM models of these subjects were given in [14]. This 
helps to remove one major variable that could potentially 
impact the comparison. 

Table 12 shows the size of each FSM model in terms of 
number of states (States #) and transitions (Transitions #), as 
given in [14]. 

TABLE 12 
Sizes of FSM Subjects 

Subjects NotePad iosched cyclos k9mail Open-
Manager 

States # 10 17 27 19 19 
Transitions # 20 58 52 53 60 

7.3 Input Models 
We create both unconstrained and constrained input mod-
els. The purpose of generating constrained/unconstrained 
input models is to evaluate the impact of constraints on 
the effectiveness of our approach. Many practical applica-
tions have constraints in their input models [13]. Constraint 
handling is thus considered to be an important feature for 
practical applications of CT. 

7.3.1 Input models for unconstrained experiments 

A total of ten groups of unconstrained input models are 
created for the experiments. Each group consists of multiple 
input models. Table 13 gives some statistics of these input 
model groups. Note that we have removed sub-models in 
each model group. 

TABLE 13 
Statistics of Input Model Groups 

Model 
Group 

Total # of 
Parameters 

Total # of 
Input Models 

# of Parameters 
in Each Model 

max min average 
G1 20 14 4 2 2.6 
G2 55 43 5 2 2.6 
G3 42 23 9 1 6.2 
G4 47 33 4 1 2.7 
G5 59 42 3 1 2.3 
G6 42 103 14 1 10.1 
G7 28 52 5 2 4.4 
G8 42 167 12 1 10.7 
G9 42 128 14 1 9.6 
G10 52 48 14 2 8.3 

Note that the ten groups of input models are from the 
test paths of the subject FSM models. For each subject, we 
frst use the M[agi]C tool to generate a set of test paths from 
its FSM model, and then construct a group of input models, 
one for each test path. The M[agi]C tool provides a number 
of algorithms that could be used to generate test paths from 
an FSM, among which four algorithms are applicable to 
the FSMs in our experiments. The test paths generated by 
each of the four algorithms achieve all-edge coverage. In 
our experiments, we tried every algorithm that could be 
applied. If more than one algorithm can be applied to an 
FSM, then multiple groups of input models are created for 
the FSM, one for each algorithm. 
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Table 14 shows the ten input model groups created for 
our subjects. If a path generation algorithm can be applied 
to a FSM, the name of the input model group is shown in Ta-
ble 14; otherwise, the corresponding cell is empty. Note that 
since the test paths are different, for i, j = 1, 2, ..., 10, i =6 j, 
the input model group Gi 6= Gj , even if they are generated 
based on the same FSM. 

TABLE 14 
Input Model Groups 

Algorithm NotePad iosched cyclos k9mail Open-
Manager 

breadth-frst G1 G2 G3 G4 G5 
breadth-frst 

with loop 
(global) 

G6 

breadth-frst 
with loop 

(local) 
G7 G8 

uniform 
coverage G9 G10 

7.3.2 Input models for constrained experiments 

For each unconstrained input model group (or simply each 
unconstrained group), we randomly generate fve sets of 
forbidden tuples. The forbidden tuples are used to simu-
late constraints that may exist in real-world applications. 
We create a constrained input model group (or simply a 
constrained group) by combining an unconstrained group 
and each of the forbidden tuple sets created for the group. 
Thus, there are a total of 10 × 5 = 50 groups of constrained 
input models. 

To distinguish the fve constrained groups for an un-
constrained group, in the rest of the paper, we name the 
constrained groups as CG1, CG2, CG3, CG4, and CG5, 
respectively. 

Constraints are often expressed as forbidden tuples, al-
lowed tuples, or logical expressions [12]. Constraints could 
be identifed from requirements [23], derived from UML 
diagrams [24], or learned using machine learning tech-
niques [25]. Our experiments adopt random constraints for 
evaluation for two reasons. First, in the literature, we could 
not fnd subject applications that provide multiple input 
models with constraints. For example, in [14], the subject 
applications do not have constrained input models. Second, 
random constraints have been commonly used in several 
studies that evaluate the impact of constraints on CT, such 
as [26]. 

A random constraint generator is implemented to gener-
ate random constraints. The constraint generator allows the 
user to control the following options: 

1) The input models involved in forbidden tuples. We 
randomly choose from one to ten input models to 
be involved in forbidden tuples. If the total number 
of input models is less than ten, then we randomly 
specify from one to the total input models to be 
involved in forbidden tuples. 

2) Number of forbidden tuples in an input model. In 
our experiments, we randomly create from one to 
ten forbidden tuples in an input model. 

3) Size of a forbidden tuple. In our experiments, we 
choose a random size between 2 and k to construct 
the forbidden tuples, where k is the total number of 
parameters in the input model. 

4) Parameters involved in a forbidden tuple. We ran-
domly select the parameters with two or more val-
ues from the input model. 

5) Parameter values in a forbidden tuple. For each 
selected parameter, we randomly choose a value 
from its value domain. 

Table 15 gives the information of the randomly generat-
ed forbidden tuples, in terms of number of forbidden tuples 
and size of forbidden tuple for each model group. 

TABLE 15 
Forbidden Tuples in Constrained Groups 

Model 
Group 

# of Tuples in a 
Constrained Group 

Size of Tuples in a 
Constrained Group 

max min average max min average 
G1 5 3 3.0 2 2 2.0 
G2 11 1 4.4 2 2 2.0 
G3 21 4 9.6 5 2 2.4 
G4 7 1 4.0 2 2 2.0 
G5 3 1 2.0 2 2 2.0 
G6 38 15 28.2 5 2 2.8 
G7 9 3 5.2 2 2 2.0 
G8 21 1 9.2 5 2 2.6 
G9 19 1 11.2 4 2 2.2 
G10 10 3 6.8 2 2 2.0 

7.4 Metrics 
We measure the effectiveness and effciency of the three 
approaches, i.e., IPOG, IPOG-PO, IPOG-MM, in terms of 
number of generated tests and the amount of time taken 
for test generation. In addition, for RQ1, in order to make 
explicit the comparison between IPOG-MM and IPOG, we 
compute the following test reduction ratio: 

(IP OG tests # − IP OG–MM tests #)
reduction ratio = × 100% 

IP OG tests # 
(2) 

For RQ2, in order to make explicit the comparison 
between IPOG-MM and IPOG-PO, we also compute the 
following test reduction ratio: 

(IP OG–P O tests # − IP OG–MM tests #)
reduction ratio = × 100% 

IP OG–P O tests # 
(3) 

For all RQs, the shared VC ratio for each unconstrained 
or constrained group is computed as follows: 

# of valid shared V Cs 
Shared V C Ratio = × 100% 

# of valid V Cs 
(4) 

In constrained experiments, a shared VC may be valid 
in some input models, and invalid in other input models. In 
Equation (4), we count a shared VC only if it is valid in more 
than one input model. To evaluate the impact of shared VC 
ratio, we perform Spearman Rank Correlations to measure 
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the degree of correlation between the shared VC ratio and 
the test reduction ratio by IPOG-MM. 

We note that the shared VC ratio is a variable that 
depends on the input models. 

7.5 Procedure 

There are a total of 10 groups of unconstrained input models 
and 50 groups of constrained input models. For each input 
model group, we use the three approaches, i.e., IPOG, IPOG-
PO, and IPOG-MM to create test suites for test strength 
t = 2 to 6. Thus, we have conducted a total of 10 × 5 = 50 
unconstrained experiments and a total of 50 × 5 = 250 
constrained experiments. For each experiment, we record 
the number of tests and also measure the amount of time 
used to run the experiments. 

All the experimental subjects, input models and results 
are available on GitHub5. All the experiments are carried 
out on the platform with Intel Core i5 CPU (3.20 GHz×2) 
and 8GB Memory. 

7.6 Results for RQ1 

In this section, we present both unconstrained and con-
strained experimental results for RQ1. We also provide some 
additional discussion on the results. 

7.6.1 Unconstrained Experiments 

Table 16 shows the detailed results of unconstrained exper-
iments. 

Among the 50 unconstrained experiments, there are 25 
experiments where IPOG-MM generates fewer tests than 
IPOG. IPOG-MM achieves the highest test reduction rate 
of 94.82% for G8 with t = 2. 

For the other 25 experiments, IPOG-MM generated the 
same number of tests as IPOG. We have investigated the 
possible reasons. One reason is that in some experiments, 
there are no shared VCs between input models. This means 
that all the VCs are unique VCs. There is no opportunity for 
optimization as there is no redundant coverage of shared 
VCs. Thus, IPOG-MM generates the same number of tests 
as IPOG. A second reason is that in some experiments, there 
are only a small number of shared VCs. These shared VCs 
are all covered as side effect when we try to cover unique 
VCs. That is, no additional tests are generated to cover 
shared VCs. Thus, avoiding redundant coverage of shared 
VCs does not help generate fewer tests. 

We observe that in some experiments, as strength t in-
creases, the number of tests generated by IPOG remains the 
same, whereas the number of tests generated by IPOG-MM 
increases. For example, this happens when t increases from 
5 to 6 for G6. The reason is that in each input model of G6, 
at most fve parameters have multiple values, while other 
parameters are single-value parameters. When t increases 
from 5 to 6, the total number of VCs to be covered in 
each input model remains the same. Thus, IPOG generates 
the same number of tests. However, IPOG-MM considers 
shared VCs across multiple input models. As t increases 
from 5 to 6, the number of shared VCs decreases. This means 

5. https://github.com/swjtu-railway/IPOG-MM 

that there are fewer opportunities for optimization. Thus, 
IPOG-MM generates more tests. 

Table 17 shows the average number of tests and reduc-
tion ratio for each strength for the unconstrained experi-
ments where one or more shared VCs exist between input 
models. 

TABLE 17 
IPOG vs IPOG-MM (Unconstrained): Test Generation Results by 

Strength 

Strength IPOG IPOG-MM Reduction Ratio 
2 479.90 72.40 84.91% 
3 1181.25 200.50 83.23% 
4 2893.67 598.50 79.32% 
5 5296.00 1673.20 68.41% 
6 5296.00 3141.00 40.69% 

We observe that the reduction ratio decreases as the test 
strength increases. This can be explained by the fact that the 
shared VC ratio decreases as the test strength increases, and 
thus there are fewer chances to do optimization. In general, 
the bigger a VC, the more parameters it involves, the less 
chance it is shared between different models. 

In terms of generation time, we focus on the experiments 
where at least one approach spent more than one second. 
There are 12 such unconstrained experiments. 

Table 18 shows the detailed results for these 12 un-
constrained experiments. IPOG-MM is slower than IPOG 
because IPOG-MM has to perform additional computations 
to avoid redundant coverage of shared VCs. 

TABLE 18 
IPOG vs IPOG-MM (Unconstrained): Test Generation Time 

Group Strength IPOG IPOG-MM 

G6 

3 0.45s 2.17s 
4 1.13s 10.42s 
5 3.92s 20.53s 
6 4.65s 29.46s 

G8 

3 0.59s 3.18s 
4 0.92s 16.80s 
5 3.40s 43.27s 
6 4.89s 73.99s 

G9 

3 0.26s 1.15s 
4 0.40s 4.40s 
5 0.63s 8.95s 
6 0.87s 9.17s 

Average 1.84s 18.62s 

7.6.2 Constrained Experiments 

Among the 250 constrained experiments, we focus on 170 
such experiments where the shared VC ratio is greater than 
0, which provides opportunity for optimization. 

Table 19 shows the average results of the 170 experi-
ments, including average shared VC ratios, average number 
of tests, and average reduction ratios. For each input model 
group, the results are averaged over fve random forbidden 
tuple groups. The detailed results for individual random 
forbidden tuple groups are available on our Github. 

The results in Table 19 show that IPOG-MM performs 
better than IPOG in most experiments. Specifcally, the 
detailed results (available on our Github) show that IPOG-
MM can generate fewer tests than IPOG in 125 out of the 

https://github.com/swjtu-railway/IPOG-MM
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TABLE 16 
IPOG vs IPOG-MM (Unconstrained): Detailed Tests Generation Results 

Group Strength Shared 
VC Ratio IPOG IPOG 

-MM 
Reduction 

Ratio Group Strength Shared 
VC Ratio IPOG IPOG 

-MM 
Reduction 

Ratio 

G1 

2 10.64% 31 23 25.81% 

G6 

2 93.83% 1213 105 91.34% 
3 0.00% 35 35 0.00% 3 90.01% 2905 324 88.85% 
4 0.00% 35 35 0.00% 4 85.65% 6199 949 84.69% 
5 0.00% 35 35 0.00% 5 79.62% 11383 2403 78.89% 
6 0.00% 35 35 0.00% 6 71.27% 11383 4693 58.77% 

G2 

2 14.75% 193 85 55.96% 

G7 

2 48.00% 98 59 40.82% 
3 5.86% 193 193 0.00% 3 43.23% 98 74 24.49% 
4 0.00% 193 193 0.00% 4 28.95% 98 98 0.00% 
5 0.00% 193 193 0.00% 5 0.00% 98 98 0.00% 
6 0.00% 193 193 0.00% 6 0.00% 98 98 0.00% 

G3 

2 42.86% 182 85 53.30% 

G8 

2 96.22% 1836 95 94.83% 
3 41.31% 370 206 44.32% 3 89.37% 4072 313 92.31% 
4 38.58% 736 460 37.50% 4 79.89% 7918 1033 86.95% 
5 33.61% 1312 880 32.93% 5 69.03% 10798 2846 73.64% 
6 26.64% 1312 1312 0.00% 6 57.54% 10798 6732 37.66% 

G4 

2 13.68% 55 55 0.00% 

G9 

2 87.07% 1010 95 90.59% 
3 6.94% 55 55 0.00% 3 78.03% 1630 315 80.67% 
4 0.00% 55 55 0.00% 4 66.24% 2284 924 59.54% 
5 0.00% 55 55 0.00% 5 52.80% 2860 2110 26.22% 
6 0.00% 55 55 0.00% 6 38.95% 2860 2841 0.66% 

G5 

2 0.59% 54 54 0.00% 

G10 

2 56.58% 127 68 46.45% 
3 0.00% 54 54 0.00% 3 31.56% 127 124 2.36% 
4 0.00% 54 54 0.00% 4 14.09% 127 127 0.00% 
5 0.00% 54 54 0.00% 5 5.02% 127 127 0.00% 
6 0.00% 54 54 0.00% 6 1.46% 127 127 0.00% 

170 experiments. In particular, IPOG-MM can achieve the 
highest reduction ratio of 94.83% for model group G8 with 
test strength equal to 2 for forbidden tuple group CG3. 

Similar to the unconstrained results in Table 17, in some 
experiments, when t increases, e.g., for G6 from t = 5 to 
t = 6, IPOG generates the same number of tests whereas 
IPOG-MM generates more tests. 

Table 20 shows the average number of tests and reduc-
tion ratio for each strength for the 170 constrained experi-
ments. Similar to the unconstrained results in Table 17, the 
reduction ratio decreases as the test strength increases. This 
is also due to the same reason, i.e., the number of shared 
VCs decreases as the test strength increases. 

Note that for constrained experiments on strength t = 5 
and t = 6, IPOG still generates the same number of tests 
on average. Again, this is because at most 5 parameters 
have more than one value in an input model. Thus, the total 
number of VCs to be covered remains the same when t is 
increased from 5 to 6. Note that the same forbidden tuples 
are used to perform the experiments with different strengths 
for the same model group. 

In terms of generation time, we focus on the experiments 
where IPOG and/or IPOG-MM spent more than one second. 
There are 60 such experiments. To save space, we do not 
present the detailed results for all of the 60 experiments, 
which are available on our Github. As an example, Table 21 
shows the results for the model group G6 with test strength 
equal to 5. 

We observe that the average times, in Table 21, i.e., 3.82s 
for IPOG and 20.73s for IPOG-MM, are similar to those in 
Table 18 for the same experiment, i.e., 3.92s for IPOG and 
20.53s for IPOG-MM. Thus, the overhead ratio between un-
constrained and constrained experiments is close. However, 
there are signifcant variations for individual experiments. 
In particular, the overhead ratio of individual (constrained) 

experiments varies from 4.45 to 8.90. 

7.6.3 Discussion 

Table 22 shows an overall comparison between IPOG and 
IPOG-MM. Recall that there are a total of 300 experiments, 
including both unconstrained and constrained experiments. 
We focus on the results of 204 (out of 300) experiments 
where there is one or more shared VCs between input 
models. Note that IPOG-MM = IPOG indicates that IPOG-
MM and IPOG generated the same number of tests, and 
IPOG-MM < IPOG indicates that IPOG-MM generated 
fewer tests than IPOG. 

For the 204 experiments, There are a total of 54 exper-
iments where IPOG-MM generated the same number of 
tests as IPOG (26.47%). There are a total of 150 experiments 
(73.53%) where IPOG-MM generated fewer tests. 

For RQ1, we make the following conclusion: 

In most cases, IPOG-MM can generate fewer tests than 
IPOG, with a test reduction ratio up to 94.83%, when there 
exist shared VCs between multiple input models. IPOG-MM 
takes more time than IPOG, but all the experiments take no 
more than 90 seconds. 

7.7 Results for RQ2 

In this section, we present both unconstrained and con-
strained experimental results for RQ2. We also provide some 
additional discussion on the results. We only focus on the 
204 out of the total 300 experiments where the shared VC 
ratio is greater than 0, which means both IPOG-MM and 
IPOG-PO have opportunities for optimization. 
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TABLE 19 
IPOG vs IPOG-MM (Constrained): Tests Generation Results 

(Note: The results are average results among fve random forbidden 
tuples for each model group) 

Model 
Group Strength Shared 

VC Ratio IPOG IPOG 
-MM 

Reduction 
Ratio 

G1 2 10.92% 29.2 22.4 23.25% 

G2 
2 14.85% 188.6 84.8 55.01% 
3 5.95% 188.6 188.6 0.00% 

G3 

2 43.19% 176 81.8 53.52% 
3 41.64% 363.6 199.2 45.22% 
4 39.12% 723.6 451.2 37.62% 
5 33.84% 1279.4 870.6 31.87% 
6 26.86% 1279.4 1279.4 0.00% 

G4 
2 14.37% 51 51 0.00% 
3 7.69% 51 51 0.00% 

G5 2 6.26% 52 52 0.00% 

G6 

2 93.83% 1207.6 105 91.31% 
3 90.03% 2890 319.6 88.94% 
4 85.68% 6177.8 938.8 84.80% 
5 79.65% 11241.6 2410.8 78.55% 
6 71.31% 11241.6 4803.6 57.26% 

G7 

2 48.90% 92.8 56.2 39.43% 
3 43.99% 92.8 72.2 22.17% 
4 29.69% 92.8 92.8 0.00% 

G8 

2 96.00% 1832 95 94.81% 
3 89.37% 4065.6 312.8 92.31% 
4 79.89% 7906 1034.8 86.91% 
5 69.04% 10768.6 2852.8 73.51% 
6 57.56% 10768.6 6705.4 37.73% 

G9 

2 87.10% 1002.4 94.8 90.54% 
3 78.05% 1619.4 314.6 80.57% 
4 66.26% 2263.8 922.8 59.24% 
5 52.84% 2839.8 2096.6 26.17% 
6 39.01% 2839.8 2821.2 0.65% 

G10 

2 56.76% 120.4 66.6 44.67% 
3 31.96% 120.4 117.8 2.16% 
4 14.40% 120.4 120.4 0.00% 
5 5.15% 120.4 120.4 0.00% 
6 1.49% 120.4 120.4 0.00% 

TABLE 20 
IPOG vs IPOG-MM (Constrained): Test Generation Results by Strength 

Strength IPOG IPOG-MM Reduction Ratio 
2 475.20 70.96 85.07% 
3 1173.93 196.98 83.22% 
4 2475.33 593.47 76.02% 
5 5249.96 1670.24 68.19% 
6 5249.96 3146.00 40.08% 

TABLE 21 
IPOG vs IPOG-MM (Constrained): Test Generation Time for G6 with 

t = 5 

Approach Constrained Group. 

CG1 CG2 CG3 CG4 CG5 
aver-
age 

IPOG 4.54s 4.11s 4.11s 2.49s 3.85s 3.82s 
IPOG-MM 23.00s 29.35s 18.30s 22.15s 20.84s 20.73s 
overhead 

ratio1 5.06 4.71 4.45 8.90 5.41 5.43 

1. overhead ratio = (time cost of IPOG-MM) / (time cost of IPOG) 

7.7.1 Unconstrained Experiments 

There are 34 (out of 50) unconstrained experiments where 
the shared VC ratio is greater than 0. Table 23 shows the 
detailed results for these experiments. 

There are 20 experiments where IPOG-MM generates 
fewer tests than IPOG-PO. IPOG-MM achieves the highest 

TABLE 22 
Overall Comparison between IPOG and IPOG-MM 

Strength Unconstrained Constrained 
IPOG-MM IPOG-MM 
=IPOG <IPOG 

IPOG-MM IPOG-MM 
=IPOG <IPOG 

2 2 8 10 40 
3 2 6 10 30 
4 2 4 10 20 
5 1 4 5 20 
6 2 3 10 15 

Sum. 9 25 45 125 
Total # of Experiments: 204 

test reduction ratio of 42.87% for G8 with t = 4. 
There are 13 experiments where IPOG-MM generates 

the same number of tests as IPOG-PO. There is only one 
unconstrained experiment, G7 with t = 2, where IPOG-
MM generates more tests than IPOG-PO. In this experiment, 
IPOG-PO generates 57 tests in the experiment while IPOG-
MM generated 59 tests. 

Table 24 shows the average number of tests and the 
reduction ratio for each strength. IPOG-MM generates fewer 
tests than IPOG-PO for each strength, but the reduction ratio 
does not show a consistent relationship with test strength. 
This is because both IPOG-PO and IPOG-MM are heuristic 
approaches. The reduction ratio depends on the number 
of shared VCs and also other factors, e.g., some heuristic 
decisions made by the two approaches. 

TABLE 24 
IPOG-PO vs IPOG-MM (Unconstrained): Test Generation Results by 

Strength 

Strength IPOG-PO IPOG-MM Reduction Ratio 
2 82.70 72.40 12.45% 
3 269.50 200.50 25.60% 
4 855.17 598.50 30.01% 
5 2236.80 1673.20 25.20% 
6 3424.60 3141.00 8.28% 

In terms of generation time, we focus on the experiments 
where IPOG-PO and/or IPOG-MM spent more than one 
second. There are 12 such experiments. Table 25 shows the 
detailed results of these experiments. As Table 25 shows, 
IPOG-MM is slower than IPOG-PO in most of these experi-
ments, but on average, the difference is small. 

TABLE 25 
IPOG-PO vs IPOG-MM (Unconstrained): Test Generation Time 

Group Strength IPOG-PO IPOG-MM 

G6 

3 1.23s 2.17s 
4 7.96s 10.42s 
5 36.60s 20.53s 
6 46.73s 29.46s 

G8 

3 1.53s 3.18s 
4 8.03s 16.80s 
5 22.55s 43.27s 
6 37.04s 73.99s 

G9 

3 0.54s 1.15s 
4 1.16s 4.40s 
5 2.16s 8.95s 
6 2.68s 9.17s 

Average 14.02s 18.62s 
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TABLE 23 
IPOG-PO vs IPOG-MM (Unconstrained): Detailed Tests Generation Results 

Group Strength Shared 
VC Ratio 

IPOG 
-PO 

IPOG 
-MM 

Reduction 
Ratio Group Strength Shared 

VC Ratio 
IPOG 
-PO 

IPOG 
-MM 

Reduction 
Ratio 

G1 2 10.64% 23 23 0.00% 
G7 

3 43.23% 75 74 1.33% 

G2 
2 14.75% 107 85 20.56% 4 28.95% 98 98 0.00% 
3 5.86% 193 193 0.00% 

G8 

2 96.22% 118 95 19.49% 

G3 

2 42.86% 93 85 8.60% 3 89.37% 544 313 42.46% 
3 41.31% 222 206 7.20% 4 79.89% 1808 1033 42.87% 
4 38.58% 460 460 0.00% 5 69.03% 4125 2846 31.01% 
5 33.61% 880 880 0.00% 6 57.54% 7022 6732 4.13% 
6 26.64% 1312 1312 0.00% 

G9 

2 87.07% 118 95 19.49% 

G4 
2 13.68% 55 55 0.00% 3 78.03% 422 315 25.35% 
3 6.94% 55 55 0.00% 4 66.24% 1055 924 12.41% 

G5 2 0.59% 54 54 0.00% 5 52.80% 2165 2110 2.54% 

G6 

2 93.83% 132 105 20.45% 6 38.95% 2842 2841 0.04% 
3 90.01% 521 324 37.81% 

G10 

2 56.58% 70 68 2.86% 
4 85.65% 1583 949 40.05% 3 31.56% 124 124 0.00% 
5 79.62% 3887 2403 38.18% 4 14.09% 127 127 0.00% 
6 71.27% 5820 4693 19.36% 5 5.02% 127 127 0.00% 

G7 2 48.00% 57 59 -3.51% 6 1.46% 127 127 0.00% 

7.7.2 Constrained Experiments 

Table 26 gives the average results of the 170 constrained 
experiments, where the shared VC ratio is greater than 0. 

TABLE 26 
IPOG-PO vs IPOG-MM (Constrained): Test Generation Results 

(Note: The results are average results among fve random forbidden 
tuples for each model group) 

Model 
Group Strength Shared 

VC Ratio 
IPOG 
-PO 

IPOG 
-MM 

Reduction 
Ratio 

G1 2 10.92% 22.4 22.4 0.00% 

G2 
2 14.85% 106.4 84.8 20.30% 
3 5.95% 188.6 188.6 0.00% 

G3 

2 43.19% 90.2 81.8 9.30% 
3 41.64% 216.4 199.2 7.95% 
4 39.12% 454.2 451.2 0.61% 
5 33.84% 865.2 870.6 -0.62% 
6 26.86% 1279.4 1279.4 0.00% 

G4 
2 14.37% 51 51 0.00% 
3 7.69% 51 51 0.00% 

G5 2 6.26% 52 52 0.00% 

G6 

2 93.83% 130 105 19.22% 
3 90.03% 498 319.6 35.79% 
4 85.68% 1495.8 938.8 37.14% 
5 79.65% 3802.8 2410.8 36.58% 
6 71.31% 5705.8 4803.6 15.77% 

G7 

2 48.90% 55.6 56.2 -1.08% 
3 43.99% 72.4 72.2 0.27% 
4 29.69% 92.8 92.8 0.00% 

G8 

2 96.00% 118 95 19.49% 
3 89.37% 542 312.8 42.29% 
4 79.89% 1805.8 1034.8 42.70% 
5 69.04% 4115.6 2852.8 30.68% 
6 57.56% 6998.6 6705.4 4.19% 

G9 

2 87.10% 117.4 94.8 19.25% 
3 78.05% 420.4 314.6 25.17% 
4 66.26% 1045.8 922.8 11.76% 
5 52.84% 2149 2096.6 2.44% 
6 39.01% 2821.8 2821.2 0.02% 

G10 

2 56.76% 67.2 66.6 0.84% 
3 31.96% 117.6 117.8 -0.17% 
4 14.40% 120.4 120.4 0.00% 
5 5.15% 120.4 120.4 0.00% 
6 1.49% 120.4 120.4 0.00% 

On average, IPOG-MM can generate fewer tests than 
IPOG-PO. The detailed results (available on our Github) 
shows IPOG-MM generates fewer tests than IPOG-PO in 93 

out of the 170 experiments. Specifcally, IPOG-MM achieves 
the highest reduction ratio of 42.86% for constrained group 
CG1 of model group G8 with t = 4. 

IPOG-MM generates more tests than IPOG-PO in 9 out 
of the 170 constrained experiments. Both IPOG-MM and 
IPOG-PO are heuristic approaches. Thus, it is possible for 
IPOG-MM to generate more tests than IPOG-PO. For ex-
ample, in the experiment of G3 (constrained group CG4, 
t = 5), IPOG-MM generates 27 more tests than IPOG-PO. 
In general, we fnd that in the experiments where IPOG-
MM generates more tests than IPOG-PO, the number of 
shared VCs for some PCs is often signifcantly larger than 
the number of unique VCs for any PC. In IPOG-MM, unique 
VCs are covered in Phase 1, whereas shared VCs are covered 
in Phase 2. Thus, more VCs need to be covered in Phase 2 
in these experiments. Unlike Phase 1, which includes both 
horizontal and vertical extension, Phase 2 only includes ver-
tical extension. Recall that horizontal extension could cover 
VCs without adding any new test. As a result, compared to 
Phase 1, Phase 2 typically has to generate more tests to cover 
the same set of VCs. This explains why IPOG-MM generates 
more tests in these experiments. In contrast, IPOG-PO does 
not distinguish between unique and shared VCs. Both types 
of VCs are covered in the same way during test generation. 

Table 27 shows the average number of tests and reduc-
tion ratio for each strength for the 170 constrained exper-
iments. Similar to unconstrained experiments, the average 
reduction ratio does not show a consistent relationship with 
test strength. This is again due to the fact that both IPOG-PO 
and IPOG-MM are heuristic approaches. 

TABLE 27 
IPOG-PO vs IPOG-MM (Constrained): Test Generation Results by 

Strength 

Strength IPOG-PO IPOG-MM Reduction Ratio 
2 81.02 70.96 12.42% 
3 263.30 196.98 25.19% 
4 835.80 593.47 28.99% 
5 2210.60 1670.24 24.44% 
6 3385.20 3146.00 7.07% 

In terms of generation time, we focus on the experiments 
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where IPOG-PO and/or IPOG-MM spent more than one 
second. There are 60 such experiments. To save space, we do 
not present the detailed results for all of the 60 experiments, 
which are available on our Github. 

We note that for these 60 experiments, the average times 
taken by IPOG-PO is 12.91s, and the average times taken by 
IPOG-MM is 18.12s. 

7.7.3 Discussion 

Table 28 shows an overall comparison between IPOG-PO 
and IPOG-MM. We focus on the 204 (out of 300) experi-
ments where there is one or more shared VC during test 
generation. Note that MM < PO indicates IPOG-MM gen-
erates fewer test than IPOG-PO. MM = PO indicates IPOG-
MM generates fewer test than IPOG-PO. And MM > PO 
indicates IPOG-MM generates more tests than IPOG-PO. 

TABLE 28 
Overall Comparison between IPOG-PO and IPOG-MM 

Strength Unconstrained Constrained 
MM < MM = MM > 

PO PO PO 
MM < MM = MM > 

PO PO PO 
2 6 3 1 28 17 5 
3 5 3 0 21 18 1 
4 3 3 0 16 12 2 
5 3 2 0 15 9 1 
6 3 2 0 13 12 0 

Sum. 20 13 1 93 68 9 
Total # of Experiments: 204 

For the total of 204 experiments, there are a total of 
113 experiments where IPOG-MM generates fewer tests 
than IPOG-PO (55.39%). There are a total of ten experi-
ments where IPOG-MM generates more tests than IPOG-
PO (4.90%). There are a total of 81 experiments where 
IPOG-MM generates the same number of tests as IPOG-PO 
(39.71%). 

For RQ2, we make the following conclusion: 

In most cases, IPOG-MM can generate fewer tests than 
IPOG-PO with a test reduction ratio up to 42.87%, when 
there exist shared VCs between multiple input models. 
IPOG-MM takes more time than IPOG-PO, but all the 
experiments also take no more than 90 seconds. 

7.8 Results for RQ3 
To systematically discuss the impact of shared VCs, we 
propose two hypotheses for the correlation between shared 
VC ratio and the test reduction ratio of IPOG-MM over 
IPOG. 

• Null hypothesis (H0): There is no correlation be-
tween the shared VC ratio and the test reduction 
ratio. That is, the shared VC ratio does not affect the 
test reduction ratio. 

• Alternative hypothesis (H1): As the shared VC ratio 
increases, IPOG-MM achieves a higher test reduction 
ratio. 

To determine the rejection and acceptance of the hy-
potheses, we use the Spearman’s rank correlation coeffcien-
t [27] [28] to calculate the correlation between the shared 

VC ratio and the reduction ratio. Note that Spearman’s 
rank correlation coeffcient is a robust and non-parametric 
correlation test method for discovering the strength of a link 
between two sets of data [29]. 

Table 29 shows the calculation results by strength. Note 
that the p-value is computed in MATLAB [30] using the 
permutation testing method [31] instead of t-testing, since 
there is no evidence that shows our data satisfes Student’s 
t-distribution. 

TABLE 29 
Spearman’s Rank Correlation for the Experiments 

Strength Unconstrained Constrained 
ρ p-value ρ p-value 

2 0.87 < 0.05 0.87 < 0.05 
3 0.95 < 0.05 0.94 < 0.05 
4 0.93 < 0.05 0.91 < 0.05 
5 0.90 0.08 0.88 < 0.05 
6 0.98 < 0.05 0.93 < 0.05 

As Table 29 shows, the correlation coeffcient ρ is always 
larger than 0.85 and reaches at most 0.98. This indicates 
there is a strong and positive correlation between the shared 
VC Ratio and the reduction ratio. The p-value is less than 
0.05 in most cases, which provides a strong evidence that 
the correlation holds with a high possibility instead of by 
chance [32]. 

Thus, for RQ3, we reject the null hypothesis (H0), and 
accept the alternative hypothesis (H1). We make the follow-
ing conclusion: 

There exists a high positive correlation between shared 
VC ratio tends and the test reduction ratio achieved by 
IPOG-MM. This suggests that IPOG-MM can be more 
effective when the shared VC ratio is high. 

7.9 Threats to Validity 
One threat to external validity is that the subjects used in 
our experiments may not be representative. The subjects we 
used are of different sizes and represent different application 
domains. Further, the subjects are also used in other studies 
e.g., [14] and [33]. In the constrained test generation part, we 
used a tool to randomly generate constraints for the input 
models. It is important to note that the results do not depend 
on the actual implementation of the SUTs, only the input 
models that were constructed based on the test paths and 
constraints. 

There is also a threat that the implementation of IPOG, 
IPOG-PO and IPOG-MM may not be correct. We carefully 
examined the results to ensure the correctness. For small 
subjects, such as Notepad, we have manually checked the 
generated test suite covers all valid VCs and satisfy con-
straints. For large subjects, such as cyclos, we implemented 
a tool to automatically check the coverage and validity of 
the tests. 

8 RELATED WORK 

In this section we review existing work on CT, including 
both CT for single input model (Section 8.1) and CT for 
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multiple input models (Section 8.2). We also briefy review 
existing work on test set reduction (Section 8.3), which is 
related to our work as it also tries to avoid redundancy in a 
test set. 

8.1 CT for Single Input Model 

A large body of work has been reported on t-way test gen-
eration for a single input model [2] [12] [13]. Mathematical 
approaches, e.g., [34] [35] [36], could construct optimal t-
way test sets, but they often impose restrictions on an input 
model and typically do not support constraints, limiting 
their applications in practice. 

Computational approaches can be classifed into greedy 
approaches and search-based approaches. Many greedy 
approaches e.g., AETG [3] [26] [37] [38], TCG [39], DDA 
[40] [41], PICT [42], FoCuS [43], the MDD (Multivalued 
Decision Diagram) based approach [44], adopt a one-test-at-
a-time framework, where each test is constructed to cover as 
many uncovered VCs as possible. Other greedy approaches, 
including IPOG [17] and its variations [18] [45] [46] [47], 
adopt a one-parameter-at-a-time framework, where t-way test 
set is built to cover the frst t parameters, and then is 
repeatedly extended to cover the remaining parameters, one 
at a time. 

Search-based approaches, e.g. [48] [49] [50] [51] [52] [53], 
typically start with a randomly construct test set and then 
use some search strategies to fnd a t-way test set that is as 
small as possible. 

More recently approaches are reported that convert the 
problem of t-way test set generation to a constraint satisfac-
tion problem and then use a constraint solver to generate 
tests [54] [55] [56]. These approaches could leverage the 
power of existing constraint solvers and handle constraints 
naturally. 

Our work differs from the above work in that we focus 
on t-way test generation for multiple input models. In 
principle, the general idea of our approach, i.e., trying to 
avoid redundant coverage of shared VCs across multiple 
input models, could be applied to these single-model test 
generation approaches to extend them for multi-model test 
generation. 

IPOG-MM is built on the top of IPOG. However, there 
are major differences between the two. IPOG-MM addresses 
multiple input models with shared parameters. During ini-
tialization, IPOG-MM creates initial test sets with the VCs 
of unique PCs instead of the VCs of frst t parameters. 
During test sets extension, IPOG-MM distinguishes shared 
parameters and unique parameters. As a result, it extends 
each test set differently. 

IPOG-MM uses the notion of capacity to estimate the 
number of VCs a test set could potentially cover, which is 
used to choose which test set to extend. Bryce et. al [40] [41] 
used in their DDA algorithms the concepts of factor density 
and level density to estimate the number of VCs a parameter 
value could potentially cover in a test, which are used to 
determine which parameter value to use. 

While the notion of capacity is similar to the two density 
notions, they are computed very differently and are used for 
different purposes. 

8.2 CT for Multiple Input Models 

Anna et al. [57] described a method for combinatorial test 
generation for multiple input models. Their input models 
are required to have a sequential relationship, i.e., the output 
of the previous model is used as the input of the next model. 
Kampel et al. [58] presented a test generation approach for 
hierarchical models. There are two levels of input models. 
Each lower-level model is considered to be an abstract 
parameter in the upper-level model. During test generation, 
they frst generate a t-way test set for each input model at 
the lower level. Next, they generate an abstract t-way test set 
at the upper level, where each test of a lower level model 
is considered as an abstract value of the corresponding 
abstract parameter at the upper level. A structure called 
nested covering array is used to represent the fnal test set. 
In contrast, our work does not assume a sequential or hier-
archical relationship between input models. Instead, input 
models in our work are in a peer-to-peer relation. Also, no 
nesting relationship exists between test sets. 

Two approaches have been reported on applying CT to 
systems that are modeled as FSMs. Nguyen et al. [14] frst 
select test paths from an FSM, and then construct an input 
model from each of the selected test paths. A pairwise test 
set is constructed for each input model. A post-optimization 
approach is used to remove redundant tests that may exist 
in multiple test sets. In contrast, IPOG-MM tries to avoid 
generating redundant tests in the frst place. 

Chang et al. [10] reported an empirical study where they 
constructed multiple input models from the FSMs of a track 
circuit receiver used in high-speed rail systems, and then 
generated pairwise test sets for these input models. This 
study did not remove redundant tests, but it provided the 
original motivation for the CT-MM problem. 

8.3 Test Set Reduction 

The problem of test set reduction has been studied exten-
sively in the literature, especially in the context of regression 
testing [59]. 

Test set reduction is typically performed with respect to 
a set of test requirements. A test requirement is an entity 
that must be covered, e.g. statement, branch, or interaction. 
The reduced test set is a subset of the original test set that 
covers the same set of test requirements. Most approaches, 
e.g. [60] [61] [62], adopt a greedy framework to construct 
the reduced test set. Each time when they add a test into 
the reduced test set, they try to select a test that covers 
the most uncovered test requirements. Some heuristics are 
developed to optimize the framework, e.g., by covering test 
requirements that are more diffcult to cover frst. 

Post-optimization [14] can be considered as a test set 
reduction approach. Instead of trying to add tests into the 
reduced test set, it tries to remove redundant tests one at a 
time. A test is redundant if it could be removed while still 
preserving the same coverage, i.e., covering the same set of 
test requirements as the original test set. 

Test set reduction is in principal a post-mortem ap-
proach. That is, redundant tests are removed after they 
come into existence. In contrast, IPOG-MM tries to prevent 
redundant tests from being generated in the frst place. 
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9 CONCLUSIONS AND FUTURE WORK 

Existing research on CT has mainly considered a single 
input model. In this paper, we formulated the CT-MM 
problem, i.e. CT for multiple input models, for the frst time. 
We developed a test generation approach, i.e., IPOG-MM, 
to address the CT-MM problem. IPOG-MM distinguishes 
unique VCs from shared VCs, and tries to minimize the 
number of tests by avoiding redundant coverage of shared 
VCs. Our experimental results show that IPOG-MM can 
signifcantly reduce the number of tests in comparison with 
two other approaches, i.e., IPOG and IPOG-PO. 

The key insight behind existing work on CT for single 
input model is that many faults in practical applications 
are caused by interactions between a small number of fac-
tors [2]. We believe that this insight also applies when there 
exist multiple input models. Similar to existing approaches 
to CT for single input model, IPOG-MM constructs a t-way 
test suite for multiple input models to cover every t-way 
interaction at least once. Thus, it is reasonable to believe that 
tests generated by IPOG-MM would be effective for fault 
detection. This has been demonstrated by the experimental 
results in [14]. As part of our future work, we plan to 
conduct a thorough evaluation of the fault detection effec-
tiveness of the tests generated by IPOG-MM. In particular, 
we plan to evaluate the impact of avoiding redundant tests 
on the numbers and types of fault that could be detected in 
different types of application. 

There are several additional directions for future work. 
First, IPOG-MM currently assumes the same test strength 
for all the input models. We plan to support different test 
strengths for different input models. Second, our algorithm 
currently minimizes the total number of tests. We plan to 
investigate other optimization goals, e.g., the total length of 
tests, or the total cost of test execution. The length of a test 
could be defned as the length of a test path in an FSM or 
in the source code. The cost of a test could be defned as 
the time or other resources taken to execute a test. Third, we 
currently use randomly generated constraints to evaluate 
the impact of constraints on the performance of IPOG-MM. 
We plan to investigate the characteristics of constraints that 
occur in real-world applications and use these characteris-
tics to improve our random constraint generator. We also 
plan to use real-world constraints, in addition to random 
constraints, to evaluate the impact of constraints. Finally, 
we plan to develop algorithms to support model evolution. 
These algorithms aim to reuse existing test sets as many as 
possible, i.e., without building them from scratch, when one 
or more input models are changed due to model correction 
and/or updates. 
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