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The exact study of small systems can guide us toward relevant measures for extracting information
about many-body physics as we move to larger and more complex systems capable of quantum
information processing or quantum analog simulation. We use exact diagonalization to study many
electrons in short 1-D atom chains represented by long-range extended Hubbard-like models. We
introduce a novel measure, the Single-Particle Excitation Content (SPEC) of an eigenstate and
show that the dependence of SPEC on eigenstate number reveals the nature of the ground state
(ordered phases), and the onset and saturation of correlation between the electrons as Coulomb
interaction strength increases. We use this SPEC behavior to identify five regimes as interaction
is increased: a non-interacting single-particle regime, a regime of perturbative Coulomb interaction
in which the SPEC is a nearly universal function of eigenstate number, the onset and saturation
of correlation, a regime of fully correlated states in which hopping is a perturbation and SPEC is
a different universal function of state number, and the regime of no hopping. In particular, the
behavior of the SPEC shows that when electron-electron correlation plays a minor role, all of the
lowest energy eigenstates are made up primarily of single-particle excitations of the ground state,
and as the Coulomb interaction increases, the lowest energy eigenstates increasingly contain many-
particle excitations. In addition, the SPEC highlights a fundamental, distinct difference between a
non-interacting system and one with minute, very weak interactions. While SPEC is a quantity that
can be calculated for small exactly diagonalizable systems, it guides our intuition for larger systems,
suggesting the nature of excitations and their distribution in the spectrum. Thus, this function, like
correlation functions or order parameters, provides us with a window of intuition about the behavior
of a physical system.

∗ emily.townsend@nist.gov

I. INTRODUCTION

Quantum simulation of small physically realizable sys-
tems (e.g. chains of precision-placed atoms on surfaces
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or dopant atoms in silicon) provides an opportunity to
learn about many-body physics at larger scales. While
larger scale quantum simulators with fifty to hundreds
of atoms are becoming possible [1–3], the majority are
still much smaller [4–8], particularly in solid-state real-
izations. Studying these smaller systems theoretically
has the advantage that we can exactly diagonalize their
Hamiltonian, inspect the full spectrum of their eigen-
states, and learn what both the ground and the excited
states of that spectrum can reveal about the nature of
the system. Even for small systems we gain insight into
many-body behavior, both from a theoretical perspec-
tive and with an eye toward experimental realization of
quantum simulators for these systems. Hubbard model
realizations are becoming a common stepping stone on
the road to building universal quantum computers [9–
12], and are being developed in ultracold atom systems
in optical lattices [4] and solid state systems, such as gate-
defined quantum dots [5], and donor dots in semiconduc-
tors [6–8]. In this work we use exact diagonalization of
a small spinless electron system to find all of the many-
body eigenstates, which gives us access to a wide range
of exact quanties. We calculate the extent to which each
of the eigenstates consists entirely of single particle exci-
tations of the ground state of the system, which we refer
to as the single particle excitation content (SPEC) of an
eigenstate. Expanding our scope to all of the eigenstates
provides a significant new perspective beyond what can
be learned from examining only the ground state, in ad-
dition to confirming previously known ground-state be-
haviors in a new way. The SPEC of the excited states
makes visible a fundamental difference between an unper-
turbed Hamiltonian and one with a minute perturbation,
no matter how small. It also provides a division of the
parameter-space of our Hamiltonian into regimes which
we can identify as those with different ground state be-
haviors.

We work with a linear chain of atoms, half-filled with
spinless electrons, which we describe using a long-range
extended Hubbard model. By extended we mean that
unlike a typical Hubbard Hamiltonian which has only
on-site interactions between the electrons and a hopping
kinetic energy, we use a Coulombic (∼ 1/r with r the
distance between charges) interaction between electrons
and between electrons and the atomic cores. We vary
the ratio of Coulomb interaction strength, λee, to the
hopping, t, to examine the different regimes of behavior
that this model gives rise to. As the Coulomb interaction
is turned on it causes correlation between the electrons
and then eventually strong Wigner crystallization that
isolates electrons to individual sites of the lattice in an
every-other-site pattern [13].

The range of the electron-electron interaction, whether
short or long range, plays an important role in defining
the physics of interacting systems. Long-range interac-
tions allow the transfer of information and the spread of
entanglement to exceed the Lieb-Robinson bound [14],
which describes entanglement spread under only local in-

teractions, and also implies our ability to efficiently simu-
late a one-dimensional (1-D) system classically, e.g. using
density matrix renormalization group (DMRG) or matrix
product states [15]. In a 1-D system with only nearest-
neighbor hopping and interaction, information transfer
will be local, the system integrable, and the system will
not thermalize following a quench, whereas next nearest-
neighbor hopping and interactions break integrability,
leading to quantum chaotic behavior and thermalization
[16].

The strength of the interaction relative to the hop-
ping is a key parameter which defines the phases of
these sytems. One-dimensional fermion systems have
been studied extensively, e.g. [17–19], often with an em-
phasis on short-range interactions. When the fermions
experience long-range Coulomb repulsion, Schulz [20]
showed using bosonization that the ground state is a
Wigner crystal (WC)-like state for a continuous, infi-
nite 1-D region. The defining feature of this WC-like
state is quasi-long-range order (quasi-LRO) in which the
density-density correlation function shows an incipient
charge density wave that decays slower than a power-

law, ∼ e−
√
α ln x with α ∼ t/λee, so with a stronger inter-

action the quasi-LRO decays more slowlly. While Schulz
showed that this is the ground state at any strength of the
Coulomb interaction, once a finite lattice of atomic sites
is introduced there will be several different ground-state
phases as one tunes the strength of interaction [21–24].
Different authors disagree on how to name these phases,
but they broadly agree on many of their characteristics.
Here we briefly describe the previous work, but delay dis-
cussing these characteristics until the results section for
ease of comparison.

In 1978, Hubbard [25] considered a Hubbard model
with long-range but convex interactions and no hopping,
which allows analytical solution by considering how to
minimize the energy of placing me classical electrons
on Ns sites. He named this ground state a generalized
Wigner lattice. At half fiilling the doubly degenerate
ground states have electrons only on either odd or even
sites. This corresponds to the t = 0 limit that we will
discuss with our model.

When hopping is included, numerical solutions are typ-
ically needed. In 2000 Capponi et al. [21] considered
spinless fermions with Coulomb repulsion on a lattice of
varying lengths with periodic boundary conditions us-
ing exact diagonalization. By considering the thermo-
dynamic limit of infinite chain length they investigated
whether the system would be insulating or metallic, and
looked at how their numerical results departed from an-
alytical predictions for a Luttinger liquid. More recently,
Li et al. [23] extended the work of Capponi by studying
larger lattices also with periodic boundary conditions,
with long-range interactions of varying power laws, in-
cluding a Coulombic 1/r, using density matrix renormal-
ization group, rather than exact diagonalization. Finally,
Ren et al. [24] used DMRG to study the phase diagram
of the XXZ model of an anisotropic spin chain (a static
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1-D lattice of spin-1/2 particles with long-range interac-
tions via Pauli spin matrices, also with periodic boundary
conditions). While their model should map to the inter-
acting fermion model of Capponi [21] and Li [23], they
do observe differences in the phase diagram, including
a region of intermediate strength Coulomb interaction
with the ground state in a phase that corresponds to
Luttinger liquid behavior in the fermion system, a phase
absent from Li [23] and Ren’s [24] studies of fermions
with long-range interactions.
In 2003, Valenzuela et al. [22] used a variational ansatz

wave function to describe a smooth crossover between
Hubbard’s generalized Wigner lattice behavior and a
state with weak charge density modulation as well as de-
localized charge. (For fillings smaller than 1/2 they also
obtain a phase similar to to Schultz’s with quasi-LRO.)
Their variational ansatz differs from the numerical ap-
proaches discussed so far, yielding only an approximation
for the ground state, but not any excited eigenstates.
This paper is organized as follows: Subsection IA

on the model and methods describes the details of the
Hamiltonian we study and defines both single-particle
excitations and what we mean by the “single particle
excitation content” of an eigenstate. In section II we
then describe the behavior of the SPEC and show how
SPEC allows us to identify five regimes of behavior for
different interaction strengths. These regimes are the
non-interacting case, the no hopping case, perturbative
regimes around each of these cases, and the intermediate
regime of onset and saturation of correlation. We finish
with a conclusion in section III.

A. Model and Methods

We consider linear chains consisting of Ns atoms at
fixed sites (indexed by i and j, at positions xi, xj with
unit spacing) with me spinless electrons moving from site
to site via a nearest-neighbor hopping, t. An electron on
site i interacts Coulombically with the other electrons
(Vee) and with the nuclei of each of the atoms (Vnuc).
Results presented here are for charge neutral systems, in
which each site has a nuclear charge of Z = me/Ns, so
the attractive interaction between an electron at xi and
each of the atoms (at positions xj) is

Vnuc(xi) =
∑

j

−λnucZ

(|xi − xj |+ ζnuc)
, (1)

while the repulsive interaction between electrons at xi

and xj consists of a direct Coulomb interaction reduced
by exchange which we assume affects only nearest neigh-
bor electrons:

Vee(xi, xj) =
λee(1− fexδ|i−j|,1)

(|xi − xj |+ ζee)
(2)

where λee and λnuc are scale factors accounting for the
strength of these interactions, including any dielectric

screening as well as the size of the lattice spacing. Vari-
ables ζee and ζnuc are cutoffs that account for the spread
of the electron orbital on a site. In all results presented
here ζee = ζnuc = 0.5, or half a lattice spacing. We as-
sume each site has a single accessible orbital, so with spin-
less electrons each site can accommodate only one elec-
tron. The fraction by which the nearest-neighbor elec-
tron interaction is reduced due to exchange is fex = 0.2
in the results presented here (but see Supplemental In-
formation [26] for results for other values of the exchange
fraction, as well as modifications of the range of the
Coulomb/nuclear interaction, filling factor and system
size).
The full Hamiltonian is then:

Ĥ =

Ns
∑

i=1



−t(ĉ†i ĉi+1 + ĉ†i+1ĉi) + Vnucn̂i +

i−1
∑

j=1

Veen̂in̂j





(3)
We express the Hamiltonian in a many-electron site basis
and solve for the many-electron eigenstates and energies
by direct diagonalization (LAPACK dsyev). For compar-
ison with theories of bulk materials, the value of the ratio
λee/t corresponds to the ratio of the Wigner-Seitz radius
(rs = L/2me,) to the Bohr radius ()a0 = ~

2/me2) (in
which L is the length of the system, me is the number
of electons, ~ is Planck’s constant and m and e are the
mass and charge of the electron). Thus small λee/t cor-
responds to the limit of high electron density and small
Wigner-Seitz radius, in which hopping is relatively more
important than the Coulomb interactions.

1. Single-particle excitations

For zero Coulomb interaction, the many-electron
eigenstates ΨN (x1, ..., xme

) (where N is the many-
electron eigenstate index and x1, ..., xme

are the position
coordinates for the me electrons) are each a single deter-
minant of me single-electron eigenstates (non-interacting
modes) that are the solutions of the same system with one
electron, φn(x) (where n labels the single-particle eigen-
states that make up the Nth many-electron eigenstate
and x is the position coordinate for a single electron):

〈x1, ..., xn|Ψλee=0

N 〉 = 1√
me!

∣

∣

∣

∣

∣

∣

∣

φn1
(x1) · · · φnme

(x1)
...

...
φn1

(xme
) · · · φnme

(xme
).

∣

∣

∣

∣

∣

∣

∣

(4)
When the Coulomb interaction is turned on, the

many-electron eigenstates are superpositions of many de-
terminants with increasing departure from the single-
determinant behavior as the interaction strength in-
creases.
The single-particle excitation of the many-electron

ground state that takes a single particle from site j to
site i can be written as

c†icj |ΨGS〉, i 6= j
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where c†i (ci) is an operator that creates (destroys) a par-
ticle at site i. The set of all single-particle excitations is
defined by the above states for all values of i and j. The
full set can be equivalently defined by the states:

a†man|ΨGS〉,m 6= n

where a†m (am) instead creates (destroys) an electron in
the non-interacting single-electron state φm. Similarly,
a two-particle excitation of the ground state consists of
a†ma†napaq|ΨGS〉,m 6= n 6= p 6= q (or a similar construc-
tion with site creation and destruction operators).
A many-body excited state can be characterized by the

number of one-, two-, three-, ... particle excitations that
make it up. We show in this paper that the single-particle
excitation content of the many-body excited states plays
an important role, providing a new way to characterize
the effects of Coulomb interactions on the many-body
states. We focus on the extent to which different many-
electron eigenstates consist of single-particle excitations
of the interacting ground state. For this purpose we de-
fine an orthonormal basis |ui〉 that spans the full set of
all single-particle excitations, and a projection operator,
P̂SPE =

∑

i |ui〉〈ui|, that projects onto that subspace.
Computationally we find the spanning orthonormal ba-
sis by Gram-Schmidt decomposition: For each particu-
lar vector representing an excitation of the ground state,

c†i cj|ΨGS〉, we create a basis vector |ui′〉 by normalizing
the vector that consists of the components of the excita-
tion vector that are orthogonal to the ground state and
to all previous basis vectors |ui′′〉(i′′ < i′). (In the non-
interacting case single-particle excitations will be eigen-
states of the Hamiltonian and will already be orthogonal,
but this is not true when interactions are present.) Be-
cause some of those components may be small, the nor-
malization of the orthogonalized basis state has the effect
of magnifying the components that are kept to make a
new orthonormal basis state. We apply a cutoff, only in-
cluding a new orthonormal basis state if the sum of the
magnitudes of all of the components to be kept to make
the new orthogonal basis state is, before normalization,
greater than ǫG-S. As we will discuss later, the choice of
cutoff can affect our estimate of single-particle excitation
content when interactions are weak and the interacting
ground state includes many small single-electron excita-
tions of the non-interacting ground state. Correct choice
of cutoff is thus a regularization of the theory needed to
get physically meaningful results: The cutoff needs to be
chosen to exclude numerical error in the non-interacting
and no-hopping cases, however the most inclusive cutoff
is the most accurate in other cases. If a more exclusive
cutoff were used, the order that the single-particle exci-
tations are included in the Gram-Schmidt process could
affect (slightly) the SPEC, however with an inclusive cut-
off the answer is order independent. The size of the single
particle excitation basis, |ui〉, is me(Ns−me) for a nonin-
teracting system (or a system with no hopping) when the
ground state consists of exactly me fully-occupied modes
(sites) and Ns − me completely unoccupied ones and is

N2
s − 1 for an interacting system with hopping when the

ground state consists of modes or sites that are occupied
with non-unity, non-zero probability. There are N2

s com-

binations of c†icj , but the ground state itself is not part
of the single-particle excitation basis.
The single-particle excitation content (SPEC) of a par-

ticular many-electron eigenstate, |ΨN〉, is then

〈ΨN |P̂SPE |ΨN 〉 =
∣

∣

∣

∣

∣

∑

i

〈ΨN |ui〉
∣

∣

∣

∣

∣

2

. (5)

The SPEC is thus the probability that an eigenstate can
be found in the single-particle excitation subspace, or al-
ternatively, the extent to which it can be defined entirely
as a linear combination of single-particle excitations of
the ground state. To simplify the display of the informa-
tion contained in the plots of single-particle excitation
content, we can also plot a rolling partial sum of the
SPEC over the N lowest many-body eigenstates:

N
∑

N ′=1

∣

∣

∣

∣

∣

∑

i

〈ΨN ′ |ui〉
∣

∣

∣

∣

∣

2

. (6)

The single-particle excitation content is independent of
which set of single-particle excitations we use, those from
the site basis or the mode basis.
Because any linear combination of single-particle exci-

tations will live entirely in this single-particle excitation
subspace, the remaining subspace consists of correlated
particle excitations in which two or more particles are

moved coherently. The excitation c†i cjc
†
kcl|ΨGS〉 is dis-

tinct from the excitation (c†i cj + c†kcl)|ΨGS〉, the latter
being entirely a single-particle excitation.
The single-particle excitation content is distinct from

but related to the quasiparticle weight. The relationship
between the two is considered in the Supplemental Infor-
mation [26] to this paper and references therin [27, 28].

II. SPEC: IDENTIFYING FIVE REGIMES OF

INTERACTION EFFECTS

In the following, we will show that the SPEC can be
used to characterize the effects of the electron-electron
interaction. We will show that there are five regimes
of behavior identified by the very different functional
form of SPEC as a function of eigenstate number in each
regime. As we vary the ratio of the electron-electron
(and electron-nuclear) interactions to the hopping in the
Hamiltonian for linear atomic chains, we use the behavior
of the SPEC to identify two integrable cases (λee/t = 0
and t/λee = 0) and three regimes in between, as sug-
gested by the dashed lines in the plot (Fig. 1) of the
variation of the excitation energy for excited states with
λee/t. (Figure 1 shows the difference in energy from the
ground state on a log scale for all the excited states of
6 electrons on a chain of 12 atoms when the exchange
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FIG. 1. Excitation energies (log scale) for all many-body
eigenstates of 6 electrons on a chain of 12 atoms, exchange
fraction of 0.2. The horizontal axis is the ratio of the Coulomb
interaction to the hopping on a logarithmic scale. Vertical
dotted lines indicate regions of different behavior discussed in
the text.

reduction is 0.2. The horizontal axis is the ratio of the
Coulomb interaction to hopping on a log scale. Through-
out the main paper we show plots for the half-filled 12
atom chain. However results are similar for other size
chains, see Supplemental Information [26].) In region 1,
the excitation energies depend only weakly on the in-
teraction strength. In region 2, the excitation energies
exhibit significant increase with increasing interaction as
well as significant crossings and mixings of levels. In
region 3, the excitation energies scale linearly with the
strength of the interaction as the hopping becomes much
smaller than the interaction: correlation saturates be-
cause movement of the electrons is suppressed. In addi-
tion, the ground state is becoming degenerate. We will
discuss the non-interacting regime (subesection IIA), the
no-hopping regime (II B), and then regimes 1 (II C), 3
(IID), and 2 (II E) in turn.

A. Non-interacting regime, λee/t = 0

When there are no Coulomb interactions between elec-
trons, the ground state consists of a single Slater deter-
minant of the me lowest single-particle states of a finite
1-D chain. Each excited state consists of a Slater de-
terminant of single-particle states in which one or more
of the me lowest single-particle states is replaced by a
higher energy single-particle state. Thus each excited
state consists entirely of either a single- or a multiple-
particle excitation of the ground state. This is seen in
Figure 2a which shows the SPEC of the excited states of
the non-interacting system of 6 electrons on a chain of
12 atoms. The eigenstates that are single-particle exci-
tations (states 1-11, 13-19, etc) have a SPEC of one and
all other states have zero SPEC. The partial sum of the
SPEC of the N lowest eigenstates, shown as the black
curve in figures 3a and b rises to me ∗ (Ns −me) in the

lower part of the spectrum of many-body eigenstates and
then remains constant, indicating that all of the possible
single-particle excitations are used up by the low-energy
many-body states. This free-fermion regime can be de-
scribed by a Luttinger liquid [29], whereas the inclusion
of long-range interactions induces departures from Lut-
tinger behavior [21]. Likewise, the SPEC for λee/t = 0
with me∗(Ns−me) excitations is distinct from the SPEC
for small λee/t, even in the limit of very small λee/t be-
cause there are always N2

s − 1 single-particle excitations
when interactions are included.

B. No hopping regime, t/λee = 0

When there is no hopping between sites, each eigen-
state consists of a Slater determinant of single-particle
states that are localized to sites. As discussed by Hub-
bard [25], the ground state is a Wigner crystal (“gen-
eralized Wigner lattice”), the exact details of which are
determined by the exchange fraction, fex, the number
of sites and the filling. For six electrons on 12 atoms
with fex = 0.3 the ground state has electrons on sites
2,3,6,7,10 and 11, which we refer to as a paired Wigner
crystal. When fex = 0.2 (or any value less than 0.22) the
ground state is degenerate, with one state having elec-
trons on sites 2,3,5,7,9, and 11, and the other on sites
2,4,6,8,10, and 11. Sites 1 and 12 are not occupied in the
ground state because the nuclear attraction pulls elec-
trons toward the center of the chain. The states which
are single particle excitations (of just one of the degen-
erate ground states) are shown in Figure 2b. The partial
sum of the the SPEC (the black curve in figures 3c and
d) again shows that there are only me ∗ (Ns−me) single-
particle excitations, though they are no longer confined
to the lowest part of the spectrum, since moving multiple
electrons at the same time is often a lower energy exci-
tation. Again, SPEC clearly shows that this regime is
distinct from the large λee/t limit where, for interacting
electrons, there are N2

s − 1 single-particle excitations, no
matter how strong the interaction.

C. Weak interaction, λee/t ≤ 1

In the small interaction regime, the ground state is
perturbed from the non-interacting ground state we dis-
cussed above. This can be seen in figure 4, which shows
the ground state expectation value of the single par-
ticle excitation operator a†man for Coulomb interaction
strength of zero and t. The diagonal elements show the
occupancy of the non-interacting single particle modes
(one or nearly one for modes one through six and zero or
nearly zero for six through twelve for both cases). When
the diagonal elements alone are plotted (see Supplemen-
tal Information [26]) the mode occupancy is seen to be
similar to a Fermi function, with the non-interacting case
a perfect step function, and the interactions smearing the
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FIG. 2. Single Particle Excitation Content for eigenstates
of a 12 atom chain with six electrons, |

∑

i
〈ΨN |ui〉|

2, for a)
λee = 0, t = 1 (no states above 100 have any single-particle
content), b) t = 0, λee = 0.5 and c) λee = t = 1. There are
(

12

6

)

= 924 eigenstates for this system. The red line indicates
the relative excitation energy of each eigenstate.

Fermi sea similar to a finite temperature. The values of
off-diagonal elements are zero for the non-interacting case
and increase with the Coulomb strength as the ground
state becomes dressed by the interaction.

The particular single-particle excitations of the ground
state begin to mix together in linear combinations in this
regime. This can be seen in figure 5 which shows the pro-
jection of the 12 lowest excited states onto each of the
possible single particle excitations (in the single-particle
mode basis) of the ground state for λee = t. The figure
shows that the lowest energy eigenstates consist of lin-
ear combinations of multiple single-particle excitations.
In this regime the low-energy excitations are plasmonic
[30]. The first excited state is made mostly from the one
way to shift one electron from the highest occupied single-
particle state to the first unoccupied single particle state.
The next two excitations are determined mostly by the
two ways that one electron can be excited with a change
in single-particle index of two. These first three excita-
tions correspond to the fundamental plasmon mode, the
plasmon mode with two nodes and the doubly excited
fundamental plasmon mode [30]. Excitations with larger
changes in single-particle index correspond to higher or-
der plasmon modes and other multiply excited plasmonic
excitations.

In the weak interaction regime the SPEC is sensitive
to ǫG-S, the cutoff used to decide whether a particular
single-particle excitation of the ground state has enough
new orthogonal components to be included in the sin-
gle particle excitations basis. More basis states are in-
cluded, capturing more of the SPEC, if a smaller cutoff
is used. Genuine but small perturbations in the ground
state may be excluded or not depending on that cut-off,

FIG. 3. Rolling sum of the Single Particle Excitation Content
for eigenstates of a 12 atom chain with six electrons, for the
perturbative regimes near the non-interacting state (upper
two panels) and near the Wigner state (lower two panels).
The right two panels have a more inclusive cutoff (ǫG-S =
10−18) while the left two panels have a more exclusive cutoff
(ǫG-S = 10−7). With an inclusive cutoff, SPEC curves are
universal for a wide range of interaction strengths (curves
overlap for many values).

FIG. 4. The expectation value of the single-particle excitation
operator in mode space (projection of the ground state onto
the single-particle excitations of the ground state in the wave-
function basis), 〈ΨGS|a

†
man|ΨGS〉, for: a) no interaction and

b) a Coulomb interaction equal to the hopping. Note the color
scale differs between a and b.

influencing the total number of single-particle excitations
of the ground state that appear (saturation value of the
curve). In this perturbative regime, the ground state
consists of an unperturbed ground state mixed with the
unperturbed excited states, making more single-particle
excitations of the ground state possible. (This is because
single-particle modes are no longer completely filled or
completely empty.) However the larger the interaction,
the greater the mixing and the less likely that any par-
ticular single-particle excitation of the ground state will
be excluded by the cutoff. It is the inclusive cutoff that
captures the true SPEC in these cases. Nonetheless, the
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behavior at other cut-off values give us insight into the
meaning of the SPEC and why its sum over all states is
discontinuous between the non-interacting and interact-
ing cases.

Figures 3a and 3b show the rolling sum of the SPEC
for small interactions with an exclusive (large ǫG-S) cutoff
and an inclusive (small ǫG-S) cutoff, respectively. For a
non-zero Coulomb interaction up to and including λee = t
the behavior of the SPEC is remarkably similar for all in-
teraction strengths, provided the inclusive cutoff is used.
SPEC is nearly a smooth function of eigenstate num-
ber (and of energy), with nearly all the non-zero SPEC
occuring in the bottom quarter of the spectrum of eigen-
states as shown in figure 2c for λee = t. When a small
enough cutoff is used, the rolling sums for 0 < λee/t ≤ 1
fall on the same quasi universal curve which saturates
at me ∗ (Ns −me). This shows that there are distinctly
different behaviors between the non-interacting case and
any case with interaction, no matter how small. For any
value of a perturbing Coulomb interaction (no matter
how small, and up to λee = t) the perturbation mixes
excited states into the ground state, and single parti-
cle excitation content is present in many more of the
excited eigenstates. This discrete jump in the satura-
tion value of the sum over SPEC points to the existence
of small but well-defined excitations that come into ex-
istence in the presence of even the weakest interaction.
This is consistent with the observation of Schulz [20] that
the Wigner crystal (in continuous 1-D systems) occurs
for any Coulomb interaction strength, and highlights the
fundamental difference between weak interaction and no
interactions.

As can be seen in figure 6 the ground state of the
system in this regime still only has minute departures
from the non-interacting limit: the overlap between the
full ground state and the product state of the lowest six
modes is nearly one. Yet those departures already have
the defining character of the interacting ground state.

Previous authors identify this regime as a “metallic
Wigner crystal” [21, 23] or a “weakly pinned small-
amplitude charge density wave” [22]. Their focus is
largely on whether the system is metallic in the thermo-
dynamic limit, and by this measure their weakly interact-
ing regime continues all the way to λee/t = 4 or 5, where
there is a crossover rather than a sharp transition. As we
will see below, there is also something of a crossover in
the behavior of the SPEC at that value. Characteristics
ascribed to this phase include: metallic or quasi-metallic
(extrapolation to long chains gives a disappearing charge
gap and high charge stiffness), a charge density modula-
tion that is small compared to the delocalized charge and
disappears in the long chain limit, and having strong de-
partures from Luttinger liquid behavior that grow with
λee/t.

FIG. 5. Coulomb strength of λee = t. The projection of
the lowest 12 states onto each single-particle excitation of the
ground state in the s.p. mode basis, 〈ΨN |a†

man|ΨGS〉, with
removal mode n on the horizontal axes and creation mode,
m on the vertical axes. The off-diagonal lines are plasmonic
behavior: collective excitations in which many electrons all
have the same momentum shift.

D. Very strong interaction, λee/t ≥ 100

The region with the highest Coulomb interaction
strengths is analagous to the small interaction case. How-
ever, now the occupation of particular sites in the chain
is the applicable basis rather than the non-interacting
single-particle modes being the relevant unperturbed ba-
sis. With an inclusive cut-off, the SPEC curves are all
the same, up to the slight change in the order of a few
of the levels. The SPEC curves for this region are shown
in figures 3c and 3d. The single-particle excitations are
no longer confined to the low energy part of the spec-
trum due to strong correlations induced by the extreme
Coulomb interaction strength. Both the universal na-
ture of the SPEC curve and the linear scaling of the
energy levels with interaction strength seen in figure 1
point to the fact that the correlation is fully saturated:
there is little reordering or mixing of levels as the in-
teraction strength is varied. The Wigner crystal found
at the extreme limit of no hopping is essentially present
throughout this region.

We have defined the boundaries for the perturbative
regions based on the dependence of the SPEC on the
cut-off. However figure 6 shows the probability of find-
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FIG. 6. Probability of measuring the interacting ground state
in the ground states of the two limits t = 0 and λee = 0.

ing the ground state in the Wigner crystal of the t = 0
limit or the Slater determinant of the λee = 0 limit, as a
function of the strength of the Coulomb interaction. The
vertical lines indicating the perturbative regions from the
SPEC analysis align with the regions of significant prob-
ability of finding the ground state in one of the limiting
unperturbed ground states.

Previous authors refer to this regime as an “insulating
charge-density wave” [21, 23] or a “generalized Wigner
Lattice” [22]. It is characterized by a thermodynami-
cally significant charge density modulation and an insu-
lating character (identified by a finite structure factor
divided by chain length and a finite charge gap in long-
chain extrapolation). As mentioned in the previous sec-
tion, these authors identify this regime with λee/t > 4 or
5. However the charge density modulation is fully satu-
rated for λee/t ≥ 100. The next section will discuss the
crossover regime between the regimes of weak and very
strong interaction and the use of the charge-density-wave
and bond-order-wave order parameters as measures for
these regimes.

E. Intermediate interaction: Onset and Saturation

of Correlation, 1 < λee/t < 100

In between the two perturbative regions is the region
of increasing correlation. Correlation due to Coulomb
repulsion causes the many-body eigenstates to cross and
mix, and the ground state of the system is fundamen-
tally changed. The single-particle excitation content is
no longer sensitive to the cutoff used, giving the same re-
sults for a very wide range of values of ǫG−S. The SPEC
curves transition gradually between the quasiuniversal
curves for the two perturbative regimes, as seen in figure
7. However, as noted previously, the crossover assigned
to λee/t = 5 by [21–23] is visible in the SPEC curves as
a transition from a mostly smooth curve in which single-
particle excitations primarily make up low-energy eigen-

states to a curve with discontinuities in which the single-
particle excitations are not confined to the low-energy
part of the spectrum.
That this is the region in which correlation sets in can

be seen in figures 8 and 9. We use two measures of corre-
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FIG. 7. Rolling Sum of Single Particle Excitation Content
for eigenstates of a 12 atom chain with six electrons, for non-
perturbative region.

lation: the first, used by Gambetta et al. [31] and Wang
et al. [32], is the probability density of finding two elec-
trons separated by a distance j:

P (j) =
∑

i

〈ΨGS|c†i c
†
i+jci+jci + c†ic

†
i−jci−jci|ΨGS〉. (7)

We see in figure 8 that the departure from a linear de-
crease with distance grows in the intermediate region of
Coulomb interaction (λee/t = 1 − 100) and saturates at
the upper limit of the region (λee/t = 100), with evidence
of every-other site occupation.
The second measure is the charge-density wave order

parameter, defined by:

OCD =

Ns−1
∑

∆i=1

(−1)∆i

(Ns −∆i)

Ns−∆i
∑

i=1

〈ΨGS |c†i cic
†
i+∆ici+∆i|ΨGS〉.

(8)
As can be seen in figure 9, the charge density wave order
parameter maintains a constant value in the strong cor-
relation regime, but does not grow uniformly throughout
the regime of onset and saturation of correlation.
This crossover region also sees the development and

disappearance of bond-order oscillations. A bond order
wave is a state of broken symmetry in which the expec-
tation value of the kinetic energy operator alternates be-
tween every two nearest neighbor sites. Its order param-
eter is defined by
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OBO =

Ns−1
∑

∆i=1

(−1)∆i

(Ns −∆i)

Ns−∆i−1
∑

i=1

〈ΨGS |(c†ici+1 + c†i+1ci)(c
†
i+∆ici+∆i+1 + c†i+∆i+1ci+∆i)|ΨGS〉. (9)

This order parameter measures the asymmetry of the
bond strengths for odd and even bonds (odd bonds be-
ing those between the first and second site, the third and
fourth, et cetera). A bond order wave phase is defined
as the existence of this order parameter in the infinite-
chain length limit, which we do not evaluate here. (Finite
Luttinger liquid systems exhibit bond-order oscillations
that are not thermodynamically significant [33].) Dis-
cussions of the bond-order wave phase may be found in
references [33–35]. The Supplemental Information [26]
and references therein [36–42] discuss our choice of order
parameter.
One way to interpret the bond-order wave in a finite

chain is as a charge-density wave which is shifted to lie be-
tween the sites. With this interpretation, figure 9 shows
the growth of charge-density order with increasing inter-
action strength. Figure 7 shows that for smaller interac-
tion strength (approximately λee/t ≤ 4) all low-energy
excited states are primarily single-particle excitations,
and higher energy states are primarily multiple-particle
correlated excitations. This reflects the low correlation
seen in the order parameter (figure 9) and probability of
separation (figure 8). The rolling sum of the SPEC is
a smooth function of eigenstate number, implying that
multiple particle excitations are being mixed into all
states smoothly as a result of interactions. As the interac-
tion becomes stronger, lower energy states gain multiple-
particle excitation content, and higher energy states gain
single-particle excitation content, as correlations develop.
For the strongest interactions, neighboring excited states
with nearly the same energy can have much different
single-particle excitation content, and many more states
in the low part of the spectrum have nearly zero SPEC
(because moving two or more electrons simultaneously
is both lower in energy once they are correlated and is
very close to being an exact eigenstate of the system once
Wigner crystallization has set in). Thus the previously
smooth curve of the rolling sum of the SPEC becomes
rough as the SPEC of two consecutive eigenstates take
very differing values.

III. CONCLUSION

We have considered small finite systems of interact-
ing electrons with an eye toward what they can reveal
about extended many-body physics. As quantum ana-
log simulation in small systems develops experimentally,
we expect that experiment coupled with such numerical
analysis will enable a clearer understanding of large-scale
phenomena and greater design capability. Understand-
ing the nature of excited states is crucial for designing
active systems, which will necessarily leave their ground

0 2 4 6 8 10 12

separation distance, j

0

0.05

0.1

0.15

0.2

0.25

P
(j
)

0

0.1

1

10

100

10000

1000000

ee
/t

FIG. 8. Probability density of finding two electrons sepa-
rated by a distance j for ground state of six electrons on a 12
atom chain, varying the Coulomb interaction, λee, measured
in units of the hopping, t. After reference [31].
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FIG. 9. Bond order wave (BOW) and charge-density wave
(CDW) order-parameters of the ground state as a function of
Coulomb interaction strength.

state.

Using the single-particle excitation content of the ex-
cited states of a many-electron Hamiltonian we have iden-
tified five regimes in the parameter space of the Hamil-
tonian. This identification is largely consistent with and
supplements previous analyses of the ground-state phase
space of this system. This is in part because the possible
single-particle excitations out of an interacting ground
state reflect the nature of that ground state. We observe
unique signatures in the SPEC of the eigenstate spec-
trum which allow us to identify the non-interacting and
no-hopping regimes, perturbative regimes around each
of those, and a broad crossover region between them, in
which correlation grows and saturates. As shown in the
Supplemental Information [26], these signatures persist
upon varying the range of interactions, the filling (num-
ber of electrons), the exchange fraction and the size of
the chain. This suggests that the behavior might be sim-
ilar for other systems, for example in higher dimensional
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geometries or other forms of Hamiltonian.
When the rolling sum of the SPEC of the excited states

has a universal curve as a function of eigenstate number
and is sensitive to the cutoff for including minute quanti-
ties of a single-particle excitation in the vector space, the
Hamiltonian is in a perturbative regime near a limit with
a separable ground state (one that can be written as a
Slater determinant of single-particle states). As strongly
correlated behavior reorders and redefines the eigenstates
the curve of SPEC varies as well.
Small systems provide the opportunity for exact anal-

ysis of the entire spectra, finding all of the excitations
of the systems. We have shown how this analysis pro-
vides new ways to define the different regimes of the
many-body interactions and correlations, clearly iden-
tifying distinct differences that arise when interactions
are turned on or hopping is turned off and the quasi-
universal behavior that arises in the perturbative regimes
of weak interaction or weak hopping. Exact analysis of
small systems and determination of the full spectrum of
excitations also provides an opportunity to develop a full
analysis of the dynamics of these systems.
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Emily Townsend,1, ∗ Tomáš Neuman,2 Alex Debrecht,1, 3 Javier Aizpurua,4, 5 and Garnett Bryant1

1Nanoscale Device Characterization Division and Joint Quantum Institute,
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423,

USA; and University of Maryland, College Park, Maryland 20742, USA
2Institut de Physique et Chimie des Matériaux de Strasbourg,
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I. INTRODUCTION

In section II we discuss the relationship between single-particle excitation content and quasiparticle weight. We
also show the evolution of the ground state expectation value of the single-particle mode occupation with changing
interaction strength. The occupation as a function of mode number looks like a zero-temperature Fermi function for
non-interacting electrons, and for small interactions takes on a character similar to a finite-temperature Fermi fuction.
Section III discusses our choice of definition of the order parameters for charge-density and bond-order waves. Finally,
section IV shows that the behavior of the rolling sum of the single-particle excitation content (SPEC) has broadly the
same behavior for systems with varying size, filling, exchange fraction, and truncated range of Coulomb interaction.

II. QUASIPARTICLE WEIGHT AND GROUND STATE MODE OCCUPANCY

Figure 1 shows the expectation value of the occupation, 〈ΨGS|a†mam|ΨGS〉, of each of the single-particle modes, m,
in the interacting ground state for varying strengths of interaction, λee/t. This is the same as the diagonal elements
of the ground-state expectation value of the single-particle excitations shown in Figure 4 of the main paper. For small
values of interaction (λee/t < 2), this looks like a Fermi function, with interaction strength playing a role similar to
temperature, but as correlations become important there is a significant departure from fermionic behavior.
The size of the discontinuity at the Fermi level (between m = 6 and m = 7) is sometimes referred to as the

“quasiparticle weight” or “wavefunction renormalization”, and illustrates the extent to which a quasiparticle picture
is sufficient to describe the low-energy behavior of the system of interacting electrons1,2. This quasiparticle weight,
Zm is related to the probability that a bare electron added to the system with a given momentum near the Fermi
momentum will overlap with a quasiparticle added to the system with the same momentum. If this quasiparticle weight
is less than one, it means that creating a single quasiparticle creates not just a bare particle but also many-particle
correlations, i.e.

ã†m =
√

Zma†m +
∑

n+p−q=m

α(m,n, p, q)a†na
†
paq + ... (1)

where ã† creates a quasiparticle, a† creates a bare particle, m,n, p and q are mode numbers (or momenta in an
infinite/unbounded system) and α is a coefficient. Figure 1 shows that these quasiparticles are a good description
up to around λee = 2t, as for these values the quasiparticle weight is nearly 1. For larger values of interaction, the
discontinuity is significantly reduced.
This idea is reminiscent of our distinction between single-particle excitations and many-particle excitations. However

the quasiparticle weight described above quantifies the overlap of introducing a new bare electron into the ground
state with introducing a new quasiparticle into the ground state. Since we are investigating a system with a fixed
number of electrons, we would prefer to define a quasiparticle weight that describes a charge-neutral excitation in a
similar way. In our non-interacting system the ground state consists of the first ne single-particle states being filled
and the remaining single-particle states being unfilled. The low-energy excitations consist of promoting one electron

from a filled state, n, to an empty state, n+∆k, so that |ΨN 〉0 = a†n+∆kan|ΨGS〉0 (where the 0 superscript reminds us
this is the non-interacting limit and N labels the eigenstate number). One can think of this as imparting a momentum

http://arxiv.org/submit/3783499/pdf
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FIG. 1: The occupation of single-particle modes, m, in the many-body ground state, 〈ΨGS|a
†
mam|ΨGS〉, varying the interaction

strength (λee/t), for a chain of twelve atoms and six electrons. The height of the discontinuity at the Fermi-surface is Zm.
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FIG. 2: Spectral weight of charge-neutral excitations of momentum ∆k, as defined by equation 2, for λee = t in a chain of
twelve atoms and six electrons. The quantity as we have defined it is only defined at the (excitation) energies of the eigenstates.
These energies are marked with blue ticks along the top axis.

kick of ∆k to the electron. There are multiple ways to impart any particular momentum kick to the system, i.e. the
different starting values of n. (For example, we can move an electron from mode 6 to 8 or from 5 to 7.) We can define
the spectral weight of a charge-neutral (constant electron number) excitation as the probability that an excited state
of the interacting system overlaps with any bare “kick” of a particular momentum given to the interacting ground
state:

A(∆k,EN ) =
∑

n

|〈ΨN |a†n+∆kan|ΨGS〉|2 (2)

Figure 2 shows this spectral weight for various values of the kick, ∆k for the chain of twelve atoms and six electrons
for λee = t. The horizontal axis, EN (the excitation energy of eigenstate ΨN), includes only the low energy part of
the spectrum as higher energy states have virtually no probability of being a single-particle excitation. Like figure
5 from the main paper, figure 2 illustrates that in the presence of a moderate interaction the low-energy excitations
correspond well to these charge neutral momentum kicks.
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FIG. 3: Evolution of charge-neutral spectral function, SPEC (blue bars) and QPC (red bars) for λee/t = 0, 0.1, 1, and 10 in a
chain of twelve atoms with six electrons. For zero interaction (top plot) red and blue bars are identical.

We have no problem identifying from figure 2 the momentum kick, ∆k that most contributes to each energy
eigenstate of the interacting system. We could thus call the spectral function at that kick the “quasiparticle content”
of that eigenstate.
Figure 3 shows how the spectral function, SPEC and QPC evolve for different Coulomb values. Figure 4 shows a

rolling sum for the QPC,
∑N

n=1
QPC(Ψn), similar to the rolling sums for SPEC from the main paper. SPEC and

QPC are identical for the non-interacting system. However as the Coulomb interaction increases, the SPEC grows,
while the QPC is diminished as the quasiparticles we envisioned become a less accurate description of the system.
There are three differences between the QPC and the SPEC. First, the quasiparticle content we have just defined

relies on us identifying the particular physics of the problem. We must identify the modes and what we mean by a
momentum kick in order to define what we expect the excitations to be like. We defined it in terms of a “momentum
kick” or a change in mode quantum number that is meaningful in the non-interacting picture, but becomes increasingly
meaningless as correlations become dominant. The single particle excitation content contains every possible single-
particle excitation, not merely those we expect to be relevant based on the non-interacting version of the problem.
It does not look for excitations with a particular mode shift. As a result, in the SPEC we see parallel behavior in
the two opposite regimes of the Wigner crystal perturbed by hopping and the single-particle system perturbed by
Coulomb interactions.
Second, the QPC contains only excitations from a lower single-particle mode to a higher single-particle mode,

whereas SPEC contains every possible transition, whether it is an excitation to a higher mode or a lower one. (And
this distinction is not meaningful far away from the non-interacting picture: single particle mode number occupation
is not what accounts for the difference in energy between different eigenstates.)
Finally, and most significantly, the QPC has not gone through the Gram-Schmidt orthogonalization. The SPEC
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FIG. 4: Rolling partial sum of QPC for varying Coulomb strengths, for a chain of twelve atoms and six electrons. Its maximum
of 36 occurs in the non-interacting limit. The SPEC also has a maximum of 36 in the non-interacting limit.

identifies the extent to which a given eigenstate fits in the space spanning all single-particle excitations from the
ground state. The QPC identifies the extent to which a given eigenstate can be identified with a particular set of
single-particle excitations from the interacting ground state. An excitation from the ground state that is only minutely
possible (because the starting mode is nearly empty or the final mode is nearly full) still fully counts toward the single-
particle excitation subspace. To appreciate the impact of the Gram-Schmidt orthogonalization we can consider the
difference between the SPEC and the QPC for the N = 12 eigenstate. Figure 5 is similar to Figure 5 of the main
paper. It shows the projection of various eigenstates onto every possible single-particle mode change of the ground
state: 〈ΨN |a†man|ΨGS〉. The index m is on the vertical axis of each subplot, and n is on the horizontal axis. The left
panel is for the non-interacting system, and the right panel is for λee = 0.1t. As can be seen in figure 5 when there
is no Coulomb interaction, state N = 12 is not a single-particle excitation. And when the Coulomb interaction is
λee = 0.1t we can see that the projection of state twelve onto every individual single-particle excitation of the ground
state (〈Ψ12|a†man|ΨGS〉) is miniscule. As a result, this state does not consist of a single-electron promotion of any
∆k, and its quasiparticle content is near zero. However the interacting ground state has been altered by this still
small Coulomb interaction. And the space spanned by all possible single-particle excitations of the ground state now
encompasses nearly all of state 12. This says as much about the interacting ground state as it says about state 12.
There are some very small amplitude excitations of the ground state that become amplified when we ask “what is the
space spanned by all single-particle excitations of the ground state, and how well does state 12 fit in that space?”
The quasiparticle content tells us whether we can renormalize the interaction and use a single-particle-like descrip-

tion of our system. The single-particle excitation content shows us the impact of the interactions on the many-body
ground and excited states.
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FIG. 5: Projections of excited states onto single-particle excitations: 〈ΨN |a†
man|ΨGS〉 for λee = 0 (left) and 0.1t (right), for a

chain of twelve atoms and six electrons. The SPEC and QPC of state N = 12 are zero for λee = 0. However for λee = 0.1 the
QPC is near zero, while the SPEC is close to one due to the Gram-Schmidt orthogonalization.
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FIG. 6: Simplest OPs for bond order wave (multiplied by -1) and charge-density wave in the ground state as a function of
Coulomb interaction strength for a chain of 12 atoms with six electrons.

III. ORDER PARAMETERS

A bond-order wave has bonds between sites in the chain which alternate in strength: e.g. a strong bond between
site i and i+1 when i is even, and weak when i is odd. As such, the most straightforward way to measure its presence
is to add up the strength of the bonds for even i, and subtract the strength of all the bonds with odd i. This is a
common definition of the order parameter of the bond order wave4–8 :

OBOW =
1

(Ns − 1)

Ns−1
∑

i=1

(−1)i〈ΨGS |(c†ici+1 + c†i+1ci|ΨGS〉 (3)

and similarly for the charge density wave in which the number of particles alternates between sites:

OCDW =
1

(Ns)

Ns
∑

i=1

(−1)i〈ΨGS |c†i ci|ΨGS〉 (4)

(We have adapted all order parameter definitions for short chains by dividing not by the length of the chain, but
by the actual number of terms in each sum.) These order parameters look for order in the expectation value of the

operators for the bond strength, Bi = c†ici+1+c†i+1ci and the number operator, ni = c†ici, respectively. Figure 6 shows
these order parameters for our system as a function of the strength of the Coulomb interaction, λee/t. As discussed in
the main paper, for the large interaction region where correlation is strong and Wigner crystalization is occuring the
ground state of the system is doubly degenerate. When every other site is occupied in a Wigner crystal, the odd or
even sites can be occupied. For very large values of interaction (λee/t > 5×104) our code sometimes chooses a ground
state with odd sites occupied and a first excited state with even sites occupied, and other times reverses their order.
So the sign of the CDW simple order parameter (equation 4) varies from one run to the next in this region. However
for the region 100 < λee/t < 5 × 104 the two lowest states are symmetric and antisymmetric linear combinations of
odd sites occupied and even sites occupied. As a result, the expectation value of the occupancy of each site is equal
in these states, and no charge density wave order is exhibited by the order parameter in equation 4 and figure 6.
However in quantum systems there is also the possibility that there exist correlations not captured directly in these

expectation values. As such, there are several other quantities that describe the order of a system. Sengupta et al.
also look for bond order by plotting the correlation function of the bond strength (kinetic energy) as a function of
distance between bonds9, and observing every-other site oscillations in ∆i. However in Sengupta’s definition they have
subtracted off the product of the individual bond strengths. The correlation function 〈nini+∆i〉 is sometimes referred
to as the disconnected correlation and contains both classical and quantum correlations, whereas the difference between
it and the product 〈ni〉〈ni+∆i〉 is referred to as the connected correlation and represents only quantum correlations
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due to entanglement between site i and i+∆i10. CConn = CDis − CClassical.

CConn
BOW (∆i) =

1

(Ns −∆i− 1)

Ns−∆i−1
∑

i=1

〈ΨGS|(c†i ci+1 + c†i+1ci)(c
†
i+∆ici+∆i+1 + c†i+∆i+1

ci+∆i)|ΨGS〉

− 〈ΨGS |(c†i ci+1 + c†i+1ci)|ΨGS〉〈ΨGS|(c†i+∆ici+∆i+1 + c†i+∆i+1ci+∆i)|ΨGS〉, (5)

The disconnected correlation functions for BOW and CDW are:

CBOW (∆i) =
1

(Ns −∆i− 1)

Ns−∆i−1
∑

i=1

〈ΨGS |(c†i ci+1 + c†i+1ci)(c
†
i+∆ici+∆i+1 + c†i+∆i+1

ci+∆i)|ΨGS〉 (6)

CCDW (∆i) =
1

(Ns −∆i)

Ns−∆i
∑

i=1

〈ΨGS |c†i cic
†
i+∆ici+∆i|ΨGS〉, (7)

and are shown for a select number of interaction values in figure 7. A clear every-other site behavior is seen for
smaller separations for the values of interaction strength in which there is significant order of the relevant type (BOW
or CDW). The exception is for longer range correlations of occupancy. In our charge neutral system the electron-
nuclear interaction grows proportionally to the electron-electron interaction strength. For the larger values of Coulomb
interaction strength where the CDW order occurs, the nuclear interaction draws the electrons toward the center of the
chain, meaning there are effectively only ten sites available for six electrons (in low energy states such as the ground
state). This induces a defect in the preferred order of alternate site occupancy, both on the ten sites, as well as on
the two end sites. Also apparent in figure 7 is a decay in the strength of the occupancy correlation with distance, but
no decay in the bond-strength correlation.
The Fourier transform of these correlation functions gives the static structure factors9,11,12. The disconnected or

total static structure factors for a bond order wave and charge density wave for wavenumber q are given by:

SBOW (q) =
1

(Ns − 1)

Ns−1
∑

∆i=1

eiq∆i 1

(Ns −∆i− 1)

Ns−∆i−1
∑

i=1

〈ΨGS |(c†ici+1 + c†i+1ci)(c
†
i+∆ici+∆i+1 + c†i+∆i+1ci+∆i)|ΨGS〉

(8)
and

SCDW (q) =
1

Ns

Ns
∑

∆i=1

eiq∆i 1

(Ns −∆i)

Ns−∆i
∑

i=1

〈ΨGS |c†i cic
†
i+∆ici+∆i|ΨGS〉. (9)

Since we are most interested in detecting order similar to a Wigner crystal, with modulation at every other site, the
q = π term is most relevant, giving the staggered structure factor, from which an order parameter may be defined9,12

as mBOW =
√

SBOW (π). (Shao12 states that this relationship between the structure factor and the order parameter
applies in the L → ∞ extrapolation.) However because the staggered structure factors can be negative, we choose to
plot them rather than their square root, m, in figure 8, which shows both the total or disconnected staggered structure
factor, as well as the staggered structure factors for the product of expectation values (classical) and the difference
between these two, the connected static structure factor (due to entanglement between sites), for each type of order.
Figure 8 shows that the charge density order is present for all strong interactions, λee/t > 100, and has some onset
at the intermediate values. The CDW order is classically present, (SClassical

CDW , purple x’s) for the largest interaction
strengths (the classical no-hopping limit would have electrons living completely on every other single site), while for
slightly lower values the full density-density correlation function (STotal

CDW , red x’s) needs to be used to identify the
order. (The dip around λee/t = 15 occurs because the ends of the chain start becoming depopulated at this point as
the electron-nuclear interaction gives the ends of the chain a higher potential energy, as seen in figure 7.) The bond
order, on the other hand, is apparent even in the expectation value of the bond strength (SClassical

BOW , yellow circles),
and the higher order correlation function (SConnected

BOW , green circles) contributes only a little to the total disconnected
structure factor (STotal

BOW , blue circles).
Because we are interested in the total amount of order in the different regions of interaction strength, the dis-

connected static structure factors are those that we choose to plot as an order parameter in the main body of this
paper.
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FIG. 7: Disconnected correlation functions for bond strength and site occupation in the ground state as a function of distance,
for a chain of twelve atoms and six electrons.
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FIG. 8: Staggered structure factors for BOW and CDW in the ground state as a function of interaction strength. CTotal =
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regime, and the point in the strongly interacting regime where the doubly degenerate ground states returned by the eigensolver
transition to a different linear combination.
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IV. VARYING PARAMETERS

We have also looked at the behavior of the rolling sum of the single-particle excitation content for chains of atoms
for different chain lengths, exchange fraction, range of Coulomb interaction and filling. Figures 9 and 10 show the
rolling sum of the SPEC for 6 electrons in a twelve atom chain when the exchange fraction reducing the nearest
neighbor interaction is 0 and 0.3, respectively. While the change in the exchange fraction can change the pattern of
the ordered behavior in the strongly interacting limit (including the degeneracy of the ground state: doubly degenerate
for exchange less than ≈ 0.224, single above), and change the values of interaction strength that define boundaries
between the different regions, the behavior of the SPEC is basically unchanged from that described in the main body
of the paper.
Figure 11 shows the rolling sum of the SPEC for eight electrons in a sixteen atom chain and ten in a twenty atom

chain. (The latter shows only the results for the 200 lowest eigenstates, however even with only the low energy portion
of the spectrum visible, the behavior in the twenty atom chain is similar to the twelve and sixteen atom chains, with
a weak interaction regime when λee/t ≤ 1, and onset and saturation of correlation for 2 < λee/t ≤ 100.)
In the extended Hubbard model studied in the main paper the Coulomb interaction between electrons fall off as

1/r, allowing interactions that span the full length of the chain. Figure 12 compares the rolling sum of the SPEC in
this case (range =12) to the case where there is only nearest neighbor electron repulsion (range =1). Without the
long-range of the interaction, a Wigner crystal will not form, nonetheless the onset and saturation of correlation is
still visible. For other ranges of the interaction there are variations in the ground and excited states, some of which
are discussed in13.
The results are also not strongly dependent on the chains being half filled. Figure 13 shows the rolling sum of the

SPEC for a twelve atom chain with three, four, five, seven, eight, and nine electrons.
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FIG. 9: Rolling sum of SPEC for 6 electrons in a 12 atom chain without any nearest neighbor exchange reduction (fex = 0).
Plots show different regimes of Coulomb interaction strength, with plots in the left column having a more exclusive cutoff
(ǫG−S = 10−7) and plots in the right column, a more inclusive one (ǫG−S = 10−18), as in the main text. Bottom plot shows
the excitation energy of the eigenstates as a function of interaction strength (both in units of hopping) on a log-log scale.
The crossover points between strong, intermediate and weak interactions, indicated by vertical lines on the energy plot, have
changed, but the behavior of the SPEC distinguishing those regions remains similar to that described in the main text.
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FIG. 10: Rolling sum of SPEC for 6 electrons in a 12 atom chain with an exchange fraction of fex = 0.3. Plots show different
regimes of Coulomb interaction strength, with plots in the left column having a more exclusive cutoff (ǫG−S = 10−7) and plots
in the right column, a more inclusive one (ǫG−S = 10−18), as in the main text. Bottom plot shows the excitation energy of the
eigenstates as a function of interaction strength (both in units of hopping) on a log-log scale. The crossover points between
strong, intermediate and weak interactions, indicated by vertical lines on the energy plot, have changed as well as the ground
state degeneracy, but the behavior of the SPEC distinguishing those regions remains similar to that described in the main text.
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FIG. 11: Rolling sum of SPEC for 8 electrons in a 16 atom chain (left) and 10 electrons in a 20 atom chain (right), with
inclusive cutoffs
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