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Abstract. This note presents two attacks against COMET, a second-
round candidate in the NIST lightweight cryptography standardization 
process. The first attack uses a long message to detect the use of weak 
keys, whereas the second attack focuses on the resistance of COMET 
against slide attacks. These attacks do not invalidate the security claims 
of the designers. 
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1 Introduction 

COMET (COunter Mode Encryption with authentication Tag), designed by 
Gueron et al. [1], is one of the second-round candidates in the NIST lightweight 
cryptography standardization process. COMET mode is parametrized by n, 
where n ∈ {64, 128} is the block size of the underlying block cipher. Both 
COMET-64 and COMET-128 have key size k = 128, and COMET-128 is the 
primary variant of the candidate. 

The main difference between COMET-64 and COMET-128 is the initialization 
process. The initial state of COMET can be viewed as an (n+k)-bit string Y0||Z0. 
Given the nonce N , the key K, and the underlying block cipher E, the initial 
state is defined as 
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• Y0 = K and Z0 = EK (N), for COMET-128, and 
• Y0 = EK (0) and Z0 = K ⊕ pad(N), for COMET-64, where pad(N) is N 
followed by a zero byte; the nonce N has k − 8 bits for COMET-64. 

The Z state consists of the k-bit subkey and is updated using a specific function 
ϕ, which is invertible and linear. The subkey has the form (L, R) where L and R 
each have k/2 bits. The update function ϕ does not affect the R part: ϕ(L, R) 
has the form (. . . , R). 

The COMET specification reports various attacks taking time 2k for k-bit 
brute-force key search; or data 2n for n-bit forgery; or time-data product 2n+k 

for various other attacks; or time-data product 2n/2+k for an attack using forward 
and backward queries to the block cipher. Khairallah [2] reports an attack that 
uses 2k/2 short known plaintexts, 2k/2 short forgery attempts, and time 2k/2 . 

In this note, we present two observations on COMET-64. Section 2 describes 
an attack that uses one chosen plaintext of length 2n/2 to detect whether a guess 
is correct for k/2 key bits. This leads to key recovery at cost 2n/2 with probability 
2−k/2 . This attack does not need any forgery attempts. Section 3 describes an 
attack that uses 2k/4+n/2 short chosen plaintexts, plus 2k/2 offline computations, 
for key recovery. This attack also does not need any forgery attempts. If k = 128 
and n = 64 and data is limited to 250 bytes then the success probability is about 
2−38 . Attacking 238 users would amplify the probability to about 1 but requires 
250 bytes of data per user. Note that the cost summaries ignore lower-order 
factors. 

We presented our observations to the COMET designers in January 2020. 
They concurred with our analysis. Although the observations do not invalidate 
the security claims of the designers, to avoid the attack strategy the designers 
proposed a tweak to the key update function [3]. 

2 Colliding ciphertexts 

Khairallah [2] defined a class of subkeys of the form Z = (0k/2, R) as weak. 
These subkeys are fixed points for the update function ϕ. Other subkeys have 
large period under ϕ. Khairallah also suggested a strategy to recognize a weak 
subkey using one short known plaintext and one forgery attempt. 

In this section, we avoid forgeries and instead recognize weak subkeys using a 
long plaintext. Specifically, we encrypt a B-block message (0n , 0n , . . . , 0n), where 
n is the block size of the underlying block cipher. Normally one would expect 
the B ciphertext blocks to be distinct with probability (1 − 2−n)B(B−1)/2 . This 
appears to be approximately correct if the initial subkey before message blocks is 
not weak. However, if the initial subkey is weak, then the ciphertext blocks are 
on a cycle of a permutation and are thus much more likely to be distinct. Note 
that the last block is encrypted differently but this makes negligible difference 
in the probabilities since there is only one such block. 

We use this as a distinguisher between a weak initial subkey and non-weak 
initial subkeys. We take B somewhat larger than 2n/2 so that (1−1/2n)B(B−1)/2 

= 235is close to 0: e.g., if n = 64 and B then (1 − 1/2n)B(B−1)/2 < 2−46 . 



3 Observations on COMET 

The above distinguisher applies to both COMET-64 and COMET-128. We 
now focus in particular on COMET-64. In this mode, the initial subkey be-
fore message blocks (here we assume for simplicity that the associated data is 
empty) is K ⊕ pad(N) ⊕ c, where K is the COMET key, N is a nonce, and c is 
00||ctrlpt||0k−5 as given in the COMET specification. 

First, we guess the first k/2 bits of the secret key K. This guess, denoted G, is 
correct with probability 2−k/2 . We then take any N such that pad(N) ⊕ c starts 
with G. Then K ⊕ pad(N) ⊕ c results in a subkey that starts with 0k/2 , i.e., 
the initial subkey is weak. We then apply the distinguisher above, encrypting 
a B-block message (0n , 0n , . . . , 0n) and checking whether the output blocks are 
distinct. Of course, if B is large enough for this to be a reliable distinguisher, 
then we can afford to follow up by guessing the other key bits. 

Compared to brute-forcing all 2k/2 keys that start with G, this attack costs 
only about 2n/2 , which is better if n is much smaller than k, depending on the 
cost ratio between online queries and local computation. 

3 Slide attacks 

The observation presented in this section does not rely on the weak subkeys, and 
it would continue to apply even if keys were narrowed or nonce insertion were 
tweaked to avoid the weak subkeys. 

Let M be the 10-block message (0n , . . . , 0n). First, we choose q distinct nonces 
N1, . . . , Nq that agree after the first k/2 bits. For simplicity we assume that the 
rest of the nonce bits are chosen randomly. It might be better to take nonces in 
linear subspaces with as small intersection as possible. 

Then, we encrypt M under each nonce using the secret key K. From each 
ciphertext (C0, C1, . . . , C9) we extract seven 3-block subsequences: (C0, C1, C2), 
(C1, C2, C3), and so on through (C6, C7, C8). We skip (C7, C8, C9) since the last 
block of ciphertext is generated differently. We also ignore the tag attached to 
the ciphertext. 

Next, we sort these 7q subsequences and look for collisions of the following 
forms: 

• “slide distance 1”: (C0, C1, C2) = (C1 
0 , C2 

0 , C3 
0 ); 

• “slide distance 2”: (C0, C1, C2) = (C2 
0 , C3 

0 , C4 
0 ); 

. .• . 
• “slide distance 6”: (C0, C1, C2) = (C6 

0 , C7 
0 , C8 

0 ). 

We have not analyzed whether 3 is the right choice of length of subsequence 
here. 

One would expect that, for each choice of (C0, C1, C2, . . .) and each choice of 
(C0 
0 , C1 

0 , C2 
0 , . . .), the equation (C0, C1, C2) = (C1 

0 , C2 
0 , C3 

0 ) is satisfied with prob-
2ability 1/23n , and thus total probability ≤q2/23n across all q pairs of queries. 

However, the slid-subkeys scenario described below produces these collisions. 
We follow the COMET notation: subkey Zj+1 is used to encrypt an internal 

state producing a new state Xj+1, which is in turn used to encrypt message 
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block Mj (again assuming empty associated data) into ciphertext block Cj . The 
slide-distance-1-subkey scenario is, by definition, that Z1 = Z2 

0 and X1 = X2 
0 . 

This scenario produces the following effects. First, C0 = C1 
0 . Furthermore, 

because all of our message blocks are identical and there is no other COMET 
state such as a counter, the next subkeys and states will satisfy Z2 = Z 0 and3 
X2 = X3 

0 , producing C1 = C2 
0 . This situation persists until just before the last 

block of ciphertext, and in particular gives us (C0, C1, C2) = (C1 
0 , C2 

0 , C3 
0 ). Similar 

comments apply to other slide distances. 
To understand the probability that Z1 = Z2 

0 , write Z1 = K ⊕pad(N)⊕c as in 
the previous section, and write Z 0 = K ⊕ pad(N 0) ⊕ c, where N and N 0 are the1 
nonces for these messages. The next subkey Z2 

0 is ϕ(Z1 
0 ) = ϕ(K) ⊕ ϕ(pad(N 0)) ⊕ 

ϕ(c). Hence Z1 = Z2 
0 if and only if K ⊕ pad(N)⊕ c = ϕ(K) ⊕ ϕ(pad(N 0)) ⊕ϕ(c). 

Recall that ϕ preserves the second half of its input: i.e., ϕ(K) matches K on 
the last k/2 bits, ϕ(pad(N 0)) matches pad(N 0) on the last k/2 bits, and ϕ(c) 
matches c on the last k/2 bits. Also pad(N 0) matches pad(N) on the last k/2 bits 
by our choices of nonces. Hence the last k/2 bits of K ⊕pad(N)⊕c automatically 
match the last k/2 bits of ϕ(K) ⊕ ϕ(pad(N 0)) ⊕ ϕ(c). 

On the first k/2 bits, our choices of N and N 0 are random, so 

K ⊕ pad(N) ⊕ c = ϕ(K) ⊕ ϕ(pad(N 0)) ⊕ ϕ(c) 

with probability 2−k/2 . This does not imply that the probabilities are indepen-
dent, but we heuristically assume that they are approximately independent. 

We also heuristically assume that X1 = X 0 with probability 2−n , indepen-2 
dently of the condition Z1 = Z2 

0 . In other words, we are in the slid-distance-1-
subkey scenario with probability approximately 2−k/2−n . 

There are q2 of these collision opportunities, another q2 for slide distance 2, 
etc., for a total probability approximately 1 − (1 − 2−k/2−n)6q 2 

. For small q the 
2 

attack probability is approximately 
2k/ 
6q 
2+n . The attack probability approaches 1 

as q approaches the scale of 2k/4+n/2 . 
In the attack, if we see a collision (C0, C1, C2) = (C1 

0 , C2 
0 , C3 

0 ), then we as-
sume that we are in the slid-distance-1-subkey scenario, solve the equation 
K ⊕ pad(N) ⊕ c = ϕ(K) ⊕ ϕ(pad(N 0)) ⊕ ϕ(c) for the first k/2 bits of K, and 
brute-force the remaining bits. Similar comments apply to the other slide dis-
tances. 
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