
A Machine Learning Based Scheme for Dynamic
Spectrum Access

Anirudha Sahoo
Communications Technology Laboratory,

National Institute of Standards and Technology, Gaithersburg, Maryland, USA
anirudha.sahoo@nist.gov

Abstract—In this paper, we present a machine learning (ML)
based dynamic spectrum access (DSA) scheme which can be
used in a system in which the primary user (PU) spectrum
occupancy can be represented as a sequence of busy (on) and
idle (off) periods. We use real world data collected from Long
Term Evolution (LTE) systems at two locations for our study. We
experiment with different feed forward artificial neural network
(ANN) architectures to choose from for our DSA scheme. A
simple perceptron based ANN architecture was determined to
provide good performance. We compare performance of our ML
based DSA scheme with a traditional DSA scheme based on
analytical model that uses survival analysis. Our results show
that our ML based scheme outperforms the survival analysis
based scheme in terms of utilization of idle periods. In terms of
probability of interference to the PU, our scheme is better in some
configurations and slightly worse in some other configurations.

Index Terms—Dynamic spectrum access, spectrum sharing,
machine learning, artificial neural network.

I. INTRODUCTION

There is an acute scarcity of spectrum, especially below
6 GHz, due to static spectrum allocation policy. However,
the spectrum utilization in some of the bands is low [1].
Thus, there is scope for increasing spectrum utilization in
those bands through sharing. Hence, dynamic sprectrum access
(DSA) has been proposed as a way of sharing spectrum with
the incumbents to improve spectrum utilization. An incumbent
is usually referred to as primary user (PU) and the user that
shares the spectrum using DSA is referred to as secondary user
(SU). Although there are different DSA schemes, in this study
we focus on DSA based on opportunistic spectrum access
(OSA). In an OSA based DSA system, an SU opportunistically
transmits when the spectrum is idle due to inactivity of the
PU. But the SU should vacate the spectrum before the PU
reappears to avoid interfering with the PU. Since typically
there is no communication between PU and SU, the SU has to
predict when the PU might reappear, i.e., when the idle period
might end. Based on this prediction, the SU decides how long
it should transmit or if a request to transmit for a certain
duration be granted. Thus, the performance of such a DSA
system depends on how well the SU predicts the spectrum
occupancy.

Machine learning (ML) has been used for various kinds of
prediction problems, e.g., image recognition, natural language
processing. So, it is only natural that ML-based techniques are
used for DSA. Many DSA schemes have been designed based
on analytical models. But analytical models have limitations.

Normally, analytical models make certain assumptions to fit
the DSA scenario to the model. These assumptions may not
hold for certain datasets or for certain scenarios. Sometimes,
there may be interdependencies in the input parameters which
may not be adequately captured by the analytical models.
These limitations can lead to performance degradation of the
analytical models. ML based models, on the other hand, can
overcome these limitations by having appropriate architecture
to accommodate interdependencies of input parameters and by
having enough training data in different scenarios to produce
good results in many scenarios. Thus, in general, ML based
models, with appropriate architecture, input features and train-
ing dataset can produce better results in many different sce-
narios. Although we found some ML-bsed schemes for DSA
in the literature (see Section II), to the best of our knowledge,
a very simple feed forward artificial neural network (ANN)
based approach for DSA is missing. Hence, in this work, we
devise a DSA scheme using basic feed forward ANN which
can be used in a system in which spectrum occupancy of the
PUs can be represented as a sequence of busy (on) and idle
(off) periods. We used a Long Term Evolution (LTE) network
as the PU system and considered the spectrum (channels) used
in the uplink for DSA. For our study, we used real world LTE
uplink data collected at two locations and devised an ANN
based DSA scheme on a given channel of the LTE uplink. A
channel in LTE is the smallest allocable range of frequency
which is 180 kHz. We experimented with different input
features for the ANN and decided on the set of input features
that provided good performance. We also experimented with a
few different ANN architectures and found that performance
of a simple perceptron based ANN is comparable to that
of more complex deep neural network (DNN) architectures.
Hence, we chose a simple perceptron based ANN for our DSA
scheme. The results from our experiments show that our ANN
based scheme is able to utilize PU idle periods (whitespace)
quite well with low probability of interference to the PU. We
compared the performance of our ANN based scheme with
a traditional DSA scheme based on an analytical model. The
traditional DSA scheme, which is based on survival analysis,
was propsed in [2]. From the experimental results, we observed
that utilization of idle periods using our ANN based scheme
was always higher than the survival ananlysis based scheme in
all configrations. However, the probability of interference was
lower for some configurations and slightly higher for some



other configurations. Therefore, this study shows that it is
possible to design an effective DSA system using a simple
feed forward ANN.

II. RELATED WORK

There have been quite a bit of work reported in the
literature on prediction of spectrum occupancy. A Partially
Observable Markov Decision Process (POMDP) to predict
spectrum occupancy has been proposed in [3]. The DSA
scheme proposed in [4] uses expected remaining off time
for prediction. Some schemes indirectly predict the spectrum
occupancy by limiting the transmission duration of SUs based
on some constraint. In [5], maximum bound on probability
of interference to PU is used as a constraint to compute the
duration of transmission of an SU. Spectrum occupancy is
modelled as an alternating renewal process in [6] and residual
idle time of the idle duration (in which SU request arrives)
is used to indirectly predict when the spectrum will be busy
again. Multiarm Bandit model has also been used in OSA
channel access [7], [8]. Pattern mining of occupancy data
has been used to predict channel idle period [9], [10]. DSA
algorithms based on survival analysis have been presented
in [2]. While [2] proposes channel access algorithms in time
domain only, the survival analysis based algorithms presented
in [11] are meant for DSA in time and frequency (or channel)
domains.

Machine learning (ML) based techniques have been shown
to be very effective with prediction in various fields (e.g.,
image recognition, natural language processing). It is no sur-
prise that researchers have used ML to design DSA schemes.
A Q-learning based algorithm to improve DSA performance
in terms of channel throughput has been proposed in [12].
Faganello et al. proposed improvements to Q-learning algo-
rithm to design three schemes for DSA in a dynamic industrial
cognitive radio network [13]. Deep Q-learning was proposed
as an ML approach by combining Q-learning and neural
networks [14]. Such an architecture is called deep Q-learning
network (DQN). In the DQN based algorithm proposed in [15],
an SU avoids heavy interference regions and selects efficient
frequency hopping pattern to dynamically access spectrum.
In [16], a deep recurrent neural network is used to learn the
time varying distribution of user traffic in a Land Mobile Radio
(LMR) network, which is then used to determine best spectrum
assignment and sharing strategies. In the graph neural network
based approach for DSA in femtocells proposed in [17], the
graph neural network maps the traffic load to a channel access
scheme. In this work, a multiagent reinforcement learning
framework is used for training and to predict channel quality.

III. PROBLEM FORMULATION

In an opportunistic dynamic spectrum access (DSA) system,
the spectrum occupancy by the PU can be represented as a
series of busy and idle periods. An SU accesses the spectrum
when it is idle and should finish transmission before the
spectrum is occupied by the PU, i.e., before the next busy
period starts. Since, it is not known exactly when the next
busy period will start, the SU has to rely on some kind of

prediction. Based on the accuracy of the prediction method,
sometimes the SU may not finish transmission before the next
busy period, which leads to interference with the PU. An
efficient opportunistic DSA system keeps this interference to
a low value.

Figure 1 shows an example scenario of opportunistic DSA.
An SU request to transmit arrives at time instant ’A’. If the
request is to transmit for duration τ1 and the prediction system
grants the request, then there will be no interference, i.e., the
transmission will be successful. In this case the prediction
system made the correct decision. On the other hand, if the
requrest is to transmit for duration τ2 and the prediction system
grants the request, then there will be interference. In this case,
the prediction system made a wrong decision; the correct
decision is to deny the request. Note that in the first case,
the prediction system could make a wrong decision and deny
the request for transmission of duration τ1, which would be a
lost opportunity.

ML has been used in prediction systems [18], [19], [20].
Supervised learning using ANN is a good candidate for
prediction. In such systems, an ANN is trained with a training
dataset. The training dataset contains ground truth about the
prediction for a set of inputs. For our problem, the training
dataset contains some inputs for which the prediction is correct
and some other inputs for which the prediction is wrong. Once
the ANN is trained, it is used for prediction with input data
which it has not seen before. However, for our application,
we need to decide what should be the input features for
the ANN. We also need to choose an ANN architecture
which provides good performance. We make these choices
by running experiments against different input featues and
different ANN architectures.

Fig. 1: Opportunistic DSA Example

IV. EVALUATION

Our goal is to design a prediction system based on ANN
that can facilitate opportunistic DSA for an SU. The ANN is
trained using a training dataset. The training dataset consists
of a set of inputs and the corresponding known output. In
our case, the output is binary indicating whether the the
SU request was granted or denied. Thus, our ANN based
prediction system is a supervised binary classification system.
Once the ANN is trained with the training dataset, when a
request to transmit for duration τ arrives at an SU, the SU
presents the input corresponding to the request to the ANN
and gets an output. An output of 0 implies denying the request,
whereas an output of 1 means the request is granted.



Fig. 2: Illustration of Some Input Features

A. Input Feature Selection

Selecting approporiate input features for an ANN is very
important for its performance. In our case, given that the SU
request arrives during an idle period, we know the current life
of the idle period at the time of the request arrival. Current life
of an idle period is the duration from the beginning of the idle
period to the current time. Note that if we knew the remaining
life of the idle period (the duration from current time until the
end of the idle period), then we could deterministically decide
whether to grant or deny the request which would eliminate
the need for a prediction system. Hence, remaining life cannot
be an input to the ANN. Figure 2 illustrates current life and
remaining life of an idle period. Current life is undoubtedly
an important feature for our ANN. Previous idle periods may
also have correlation with the current idle period. Hence, we
chose few previous idle periods as input features. Through
experiments we found that ten previous idle periods is a good
number. Lastly, the duration of SU request (τ) is also an
important parameter for prediction, So, we chose current life
of idle period, previous ten idle periods and the duration of
SU request as our input features for the ANN. Thus, there
were twelve nodes in the input layer.

B. Feature Scaling

We noticed that the values of the input features were quite
varied, i.e., while some were small in value, others were very
large. Hence, the values of input features were normalized to
a value between 1 and 100.

C. Data Collection

For our experiements, we collected real world LTE data at
two locations.

First set of data was collected indoors inside one of the labs
at the National Institute of Standards and Technology (NIST).
An Ettus Universal Sofware Radio Peripheral (USRP) 1 run-
ning USRP hardware driver (UHD) version 003.009.001 was
fitted with a small 10.78 cm rubber duck antenna. Using
GNU Radio version 3.7.9rc1, complex-valued I/Q samples
were collected every 80 ns with a sampling rate of 12.5
MHz in the Band 17 with a 10 MHz uplink (UL) LTE band
at center frequency 709 MHz. In every 50 µs period, 625
consecutive I/Q samples were collected and power spectrum
over that period was computed. Average power spectra over 20

1The identification of any commercial product or trade name does not
imply endorsement or recommendation by the National Institute of Standards
and Technology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

consecutive periods (equal to 1 ms) were then computed. 56
point power spectrum for each 1 ms period was then generated
by binning the coefficients. Each power spectrum coefficient
was rounded to the nearest integer and represented as an 8
bit integer. Each of these coefficients represents power (in
dB) over a 180 kHz frequency range. 50 LTE channels in a
10 MHz UL are represented by the middle 50 coefficients.
These power values were then converted to binary on or
off (0 or 1) by applying a noise threshold to each of the
50 channels. The noise threshold was determined as follows.
Samples were collected for a one hour period from the USRP
after connecting a matched-load terminator to the receiver
port. The noise threshold was determined to be the level at
which 1 % of the sample values were above the threshold.
This corresponded to probability of false alarm (PFA) of 1 %
[21]. We collected the data on two week days at the same
time of the day. The idea is to use one dataset as training data
and the other as test data. The first dataset was collected on a
Monday from 3 PM to 4 PM local time, whereas the second
dataset was collected on the nextday (Tuesday) from 3 PM to
4 PM. These timings were chosen assuming that there would
be high LTE traffic during those times.

The second dataset was collected in the Philadelphia
metropolitan area near University of Pennsylvania (we will
refer to this as UPENN data). We requested the administrator
of the CityScape spectrum [22] to collect LTE uplink spectrum
data. LTE uplink data was collected on a weekday at 1:17
PM local time for an hour. Additional processing of the I/Q
samples was carried out to bring the data to the same format
as the data collected at NIST. Finally, the CityScape datasets
was converted to binary occupancy sequences using the noise
threshold recommended by the CityScape administrator. The
noise threshold at the CityScape site was determined by
measuring the power level when no UE was believed to be
communicating. The one hour worth of data is split into two
equal parts of half an hour each. One part was used as training
data whereas the other was used as test data.

D. Generation of Training and Testing Dataset

Given the spectrum occupancy data, the training dataset was
created as follows. SU requests were simulated to arrive with a
Poisson distribution, i.e., the interarrival times of the requests
were exponentially distributed with a given mean arrival rate.
Experiments were repeated with different mean arrival rate.
For a given SU request, the requested transmission time was
uniform randomly chosen between 1 ms and 10 ms. Since the
arrival time of the SU request was known, current life of the
idle period was computed and then the remaining life (see
Figure 2) of the current idle period was computed. The last ten
idle periods, current life of this idle period and the SU request
duration form an input set. If this remaining idle duration was
greater than the SU’s requested transmission time, then the
transmission was successful and the output label for this input
set was set to 1, otherwise it was set to 0. The training data
was randomly shuffled and then split into two equal halves.
The first half was used to train the ANN and the second half
was used as validation data.



The testing dataset was built exactly with the same manner,
but on a different collected dataset. For example, for datasets
collected at NIST, dataset of one day was used to generate
training data whereas dataset of the other day was used to
generate testing data. Similarly for the UPENN dataset, a half
hour dataset was used to generate training data whereas the
other half hour dataset was used to generate test data.

E. Choosing an Appropriate ANN Architecture

We need to decide what kind of ANN architecture and
configuration are appropriate for our application. Towards that
goal, we used the binary occupancy data of channel 5 of the
NIST dataset. The first day’s data was used for training and
the second day’s data was used for testing. Table I lists the
different architectures and the corresponding results. We used
keras on a server running linux to implement our code. For
all architectures, the training was stopped after 100 epochs.
Reducing the number of neurons from one hidden layer to
the next (as we move towards the output layer) has been
reported to be a good rule of thumb for ANN architecture
[23]. Hence, we started with a Deep Neural Network based
ANN architecture with three hidden layers, the first with 20
nodes, the second with 10 and third with 5 nodes. The training
accuracy with this architecture was 78.47 %, whereas validtion
accuracy was 77.57 %. Testing accuracy, in this case, was
91.8 %. We then simplified the architecture by having only two
hidden layers. In this case, the training and validation accuracy
came down only a little, but testing accuracy increased to
95.9 %. So, we continued to simplify the architecture as shown
in the table. When we reduced the number of hidden layers
and also reduced the number of nodes in the hidden layer,
we did not see any difference in the testing accuracy, whereas
the training and validation accuracy decreased slightly. So,
we went all the way down to no hidden layer, i.e., just a
single perceptron. Even with a single perceptron, the training
and validation accuracy went down by a very small amount,
whereas the testing accuracy remained the same. Hence, a
single perceptron based architecture was deemed appropriate
for our application. So, performance evaluation of our scheme
was done with a single perceptron architecture as shown in
Figure 3. Once trained, this ANN architecture can predict
whether an SU request should be accepted or not in O(N) time,
where N is the number of inputs to the perceptron. Therefore,
run time of our DSA scheme is low with just twelve inputs.

F. Notations Used

As mentioned earlier, for the NIST data, data collected on
one day was used for training whereas the data collected on the
other day was used for testing. When NIST data is used in our
experiments, we denote a configuration as NIST_train_test,
where train and test are either day1 or day2 depending on
which day’s data is used for training and which day’s data is
used for testing. For example, configuration NIST_day1_day2
implies day1 data is used for training the perceptron and
day2 data is used for testing. Similarly, for data collected at
UPENN, the configuration is denoted as UPENN_train_test,
where train and test are either hh1 or hh2, depending on

Fig. 3: Final Architecture adopted for our application. It
consists of twelve node input layer connected to a single
perceptron with a binay output. The perceptron uses sigmoid
activation function, binary cross entropy loss function and
adam with Nesterov momentum (nadam) optimizer.

whether first half hour (hh) or second half hour data is used
for training. For example, configuration UPENN_hh2_hh1
represents UPENN data collected in the seocnd half hour used
as training data, whereas data collected in the first half hour
used as testing data.

In an earlier work, we proposed an analytical model based
on survival analysis to design a DSA system [2]. Essentially, it
computes a non-parametric estimate of survival function [24]
from the idle time distribution of occupancy data. It then
computes an estimate of cumulative hazard function. Given
an upper bound on probablity of successful transmission, it
formulates an approximate test statistic based on difference
of cumulative hazard function at two different time instants
(see Eqn (14) in [2]). This equation becomes the basis of
two prediction algorithms (predict whether a requested SU
transmission will be successful or not). We compare the
performance of our ANN-based scheme, (henceforth refered to
as DSA-ML scheme), with the survival analysis based scheme
based on Algorithm 1 (we call DSA-SA scheme) described
in [2].

G. Metrics

The following two metrics were used to evaluate the
performance of DSA-ML scheme and also to compare the
performance of DSA-ML scheme with DSA-SA scheme.

• White Space Utilization (WSU): White Space Utilization
(WSU) of an SU on a given channel is the fraction of total
idle time (or white space) used by the SU to transmit
its data. It is the ratio of total idle duration used for
transmission by an SU on a given channel to the total
idle duration on that channel.

• Probability of Interference (PoI): The Probability of In-
terference (PoI) of an SU for a given channel is defined
as the probability of that the SU’s tranmission collides
with a PU transmission. Hence, it can be approximited
to be the ratio of the number of collisions with the PU



ANN Architecture Training Training Validation Validation Test
Accuracy
(%)

Loss Accuracy
(%)

Loss Accuracy
(%)

three hidden layers, 78.47 0.441 77.57 0.455 91.8
first with 20 nodes,

second with 10 nodes,
and third with 5 nodes

two hidden layers, 77.41 0.456 77.14 0.461 95.9
first with 10 nodes and

second with 5 nodes
one hidden layer 76.95 0.463 75.93 0.469 95.9

with 8 nodes
one hidden layer 76.82 0.468 75.46 0.481 95.9

with 4 nodes
one hidden layer 76.36 0.479 76.51 0.478 95.9

with 2 nodes
no hidden layer 74.96 0.500 74.99 0.500 95.9

(single perceptron)

TABLE I: Experiment results with different ANN architectures. Hidden layers were fully connected and used RELU activation
function, whereas the output node used sigmoid activation function. binary cross entropy loss function and adam with Nesterov
momentum (nadam) optimizer were employed in the ANNs. Training was stopped after 100 epochs.

NIST Dataset UPENN Dataset
day1 day2 hh1 hh2

mean idle dur (ms) 80.11 45.31 10.78 13.37
stdev idle dur (ms) 373.58 97.60 10.78 13.39

% of time channel idle 98.69 97.75 90.51 92.41

TABLE II: Some statistics of idle duration in the Datasets

transmissions to the total number of SU transmission over
a very long observation period.

V. RESULTS

In this section we present results of our experiments. We
have two sets of results, one using NIST dataset and the
other using UPENN dataset. In all our experiments, the SU
requests arrive with a Poisson distribution and the mean
interarrival time of the request is varied. Every SU request is
for transmitting for a constant duration of 2 ms (i.e., τ = 2 ms).
For NIST dataset we used the data corresponding to channel 5,
whereas for UPENN data we use the data of channel 21. Some
statistics of idle durations for the two datasets are provided in
Table II.

A. Performance Evaluation using NIST Dataset

Figure 4 compares WSU of DSA-ML and DSA-SA schemes
as mean interarrival time of SU request increases. In this case,
the occupancy data of first day (day1) was used for training
(for both DSA-ML and DSA-SA schemes) whereas the data
of second day (day2) was used for testing in DSA-ML scheme
and for running Algorithm1 in DSA-SA scheme, i.e., this uses
configuration NIST_day1_day2. For both the schemes, WSU
decreases as the mean SU request inter-arrival time increases.
As mean SU request inter-arrival time increases, the number
of SU request in the observation period decreases. Since the
duration of SU transmission is constant (2 ms), the amount of
white space utilized for SU transmission decreases. We also
notice that WSU for DSA-ML scheme is always higher than
that of DSA-SA scheme.

Figure 5 depicts the same performance comparision as Fig-
ure 4, except that day2 data was used for training whereas day1
data was used for testing (configuration NIST_day2_day1). In
this case also we see very similar results. WSU for DSA-ML
scheme is always higher than that of DSA-SA scheme. So,
DSA-ML scheme outperforms DSA-SA scheme in both the
configurations. DSA-SA scheme assumes that the channel idle
times are independent and uses a non-parametric estimate of
cumulative hazard function in its algorithms. This assumption
of independence of idle times and approximation of cumulative
hazard function adversely affect its performance. DSA-ML
scheme is able to overcome these limitations to some extent
by training its neuron on the large training dataset. Hence,
DSA-ML scheme performs better than DSA-SA scheme.
WSU for both the schemes do not change much between
NIST_day1_day2 and NIST_day2_day1 configurations. This
signifies that both the DSA schemes are robust against chang-
ing training dataset.

Figures 6 and 7 show the variation of PoI as mean
SU request inter-arrival time increases when configurations
NIST_day1_day2 and NIST_day2_day1 are used respectively.
In configuration NIST_day1_day2, PoI for DSA-ML scheme
is slightly lower than that of DSA-SA scheme and for both the
schemes the PoI does not vary much as mean SU request inter-
arrival time increases. This is a useful property which implies
that the interference to the PUs will not vary much when the
SU request arrival rate changes. The PoI for DSA-ML scheme
is 0.04 which is pretty low. With NIST_day2_day1, PoI is
even lower for both the schemes and does not vary much with
increasing mean SU request inter-arrival time. Although PoI
for DSA-ML scheme is slightly higher than that of DSA-SA
scheme, it is only 0.023, which is very low.

It is worth noting that at mean SU request inter-arrival
time of 2 ms the WSU for DSA-ML scheme for either
configuration is above 45 % while incurring very low PoI
(0.041 for NIST_day1_day2 configuration and 0.023 for
NIST_day2_day1 configuration). This indicates that our DSA-



2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

wh
ite

 sp
ac

e 
ut

iliz
at

io
n

DSA-ML
DSA-SA

Fig. 4: WSU vs inter-arrival time (config NIST_day1_day2)

2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

wh
ite

 sp
ac

e 
ut

iliz
at

io
n

DSA-ML
DSA-SA

Fig. 5: WSU vs inter-arrival time (config NIST_day2_day1)

2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y 
of

 in
te

rfe
re

nc
e

DSA-ML
DSA-SA

Fig. 6: PoI vs inter-arrival time (config NIST_day1_day2)

2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.00

0.02

0.04

0.06

0.08

0.10

pr
ob

ab
ilit

y 
of

 in
te

rfe
re

nc
e

DSA-ML
DSA-SA

Fig. 7: PoI vs inter-arrival time (config NIST_day2_day1)

ML scheme can be used to achieve reasonably high WSU with
a low PoI.

B. Performance Evaluation using UPENN Dataset

There is no performace numbers available for DSA-SA
scheme with UPENN dataset. Hence, for this dataset we only
present the results with DSA-ML scheme. Figure 8 shows
the variation of WSU as mean SU request inter-arrival time
increases for upenn_hh1_hh2 and upenn_hh2_hh1 configu-
ration. As expected, WSU decreases as mean SU request
inter-arrival time increases. We notice very little difference
between WSU values across the two configurations, which
again shows the robustness of the DSA-ML scheme for this
dataset. Figure 9 shows the variation of PoI as mean SU
request inter-arrival time increases for upenn_hh1_hh2 and
upenn_hh2_hh1 configurations. For both the configurations
PoI remains almost constant.

VI. CONCLUSIONS AND FUTURE WORK

We devised a DSA scheme based on feed forward ANN
which can be used in a system in which spectrum occupancy

of PUs can be modelled as a sequence of busy and idle periods.
We experimented with different feed forward ANN architec-
tures for opportunistic DSA using real world LTE uplink data.
Our experiments showed that a simple perceptron based ANN
produces good performance for the DSA scheme. The dataset
has high spectrum availability, i.e., percentage of idle duration
was high and the SU request was for short duration (2 ms). So,
we believe that a simple ANN architecture is adequate when
spectrum has high availability and SU requests are relatively
short. We compared our ML based scheme (DSA-ML) with a
traditional analytical model based scheme (DSA-SA) that uses
survival analysis. Our DSA-ML model performed better than
DSA-SA model in terms of WSU in all the configurations.
In terms of PoI, DSA-ML model sometimes performed better
and some other times it was slightly worse than the DSA-SA
model.

In terms of future work, we want to experiment with
different ANN architectures when the spectrum availability
may not be as high as in our collected dataset. For that, we may
have to generate synthetic data. We also want to try a support
vector machine (SVM) based model with the collected dataset



2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.15

0.20

0.25

0.30

0.35

0.40

wh
ite

 sp
ac

e 
ut

iliz
at

io
n

config UPENN_hh1_hh2
config UPENN_hh2_hh1

Fig. 8: WSU vs inter-arrival time using UPENN dataset
in DSA-ML Scheme

2 3 4 5 6 7 8 9 10
mean SU request inter-arrival (ms)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

pr
ob

ab
ilit

y 
of

 in
te

rfe
re

nc
e

config UPENN_hh1_hh2
config UPENN_hh2_hh1

Fig. 9: PoI vs inter-arrival time using UPENN dataset
in DSA-ML Scheme

and observe its performance. In this work, an SU request
was only in one dimension: time. We would like to extend
it to serve SU request in two dimensions: time and frequency.
This, in LTE parlance, is a request for physical resource block
(PRB). The SU would request for a certain number of PRBs
and we need to build an ANN which can predict whether to
grant or deny the request. If the request is granted, then the
ANN should provide the map of the allocated PRBs.

REFERENCES

[1] K. S. Tugba Erpek and D. Jones, Dublin Ireland Spectrum Oc-
cupancy Measurements Collected On April 16-18, 2007, 2007
(accessed September 21, 2020), http://www.sharedspectrum.com/wp-
content/uploads/Ireland_Spectrum_Occupancy_Measurements_v2.pdf.

[2] T. A. Hall, A. Sahoo, C. Hagwood, and S. Streett, “Dynamic spectrum
access algorithms based on survival analysis,” IEEE Transactions on
Cognitive Communications and Networking, vol. 3, no. 4, pp. 740–751,
Dec 2017.

[3] Q. Zhao, L. Tong, A. Swami and Y. Chen, “Decentralized Cognitive
MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A
POMDP Framework,” IEEE Journal on Selected Areas in Communi-
cations, vol. 30, no. 2, pp. 589–600, April 2007.

[4] K. W. Sung, S. Kim and J. Zander, “Temporal Spectrum Sharing Based
on Primary User Activity Prediction,” IEEE Transactions on Wireless
Communications, vol. 9, no. 12, pp. 3848–3855, December 2010.

[5] A. Plummer, M. Taghizadeh and S. Biswas, “Measurement based band-
width scavenging in wireless networks,” IEEE Transactions on Mobile
Computing, vol. 11, no. 1, pp. 19–32, January 2012.

[6] M. Sharma and A. Sahoo, “Stochastic Model Based Opportunistic Chan-
nel Access in Dynamic Spectrum Access networks,” IEEE Transactions
on Mobile Computing, vol. 13, no. 7, pp. 1625–1639, July 2014.

[7] C. Tekin and M. Liu, “Online learning of rested and restless bandits,”
IEEE Transactions on Information Theory, vol. 58, no. 8, pp. 5588–
5611, August 2012.

[8] Y. Gai and B. Krishnamachari, “Decentralized online learning algorithms
for opportunistic spectrum access,” in 2011 IEEE Global Telecommuni-
cations Conference - GLOBECOM 2011, December 2011, pp. 1–6.

[9] S. Yin, D. Chen, Q.Zhang, M. Liu and S. Li, “Mining Spectrum Usage
Data: A Large-Scale Spectrum Measurement Study,” IEEE Transactions
on Mobile Computing, vol. 11, no. 6, pp. 1033–1046, June 2012.

[10] P. Huang, C-J. Liu, X. Yang, L. Xiao and J. Chen, “Wireless Spectrum
Occupancy Prediction Based on Partial Periodic Pattern Matching,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 7,
pp. 1925–1934, July 2014.

[11] A. Sahoo, T. A. Hall, and C. Hagwood, “Optimal dynamic spectrum
access scheme for utilizing white space in lte systems,” in 2019 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE,
2019, pp. 1–8.

[12] C. Lv, J. Wang, F. Yu, and H. Dai, “A q-learning-based dynamic
spectrum allocation algorithm,” in Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering. Atlantis
Press, 2013.

[13] L. R. Faganello, R. Kunst, C. B. Both, L. Z. Granville, and J. Rochol,
“Improving reinforcement learning algorithms for dynamic spectrum
allocation in cognitive sensor networks,” in 2013 IEEE Wireless Com-
munications and Networking Conference (WCNC). IEEE, 2013, pp.
35–40.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[15] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming
communication based on deep reinforcement learning,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2087–2091.

[16] H. Rutagemwa, A. Ghasemi, and S. Liu, “Dynamic spectrum assignment
for land mobile radio with deep recurrent neural networks,” in 2018
IEEE International Conference on Communications Workshops (ICC
Workshops). IEEE, 2018, pp. 1–6.

[17] H. Jiang, H. He, and L. Liu, “Dynamic spectrum access for femtocell
networks: A graph neural network based learning approach,” in 2020 In-
ternational Conference on Computing, Networking and Communications
(ICNC). IEEE, 2020, pp. 927–931.

[18] Y.-F. Li, H.-W. Zha, and Z.-H. Zhou, “Learning safe prediction for semi-
supervised regression,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[19] M. D. Dyer, T. Murali, and B. W. Sobral, “Supervised learning and
prediction of physical interactions between human and hiv proteins,”
Infection, Genetics and Evolution, vol. 11, no. 5, pp. 917–923, 2011.

[20] R. Caromi and M. Souryal, “Detection of incumbent radar in the 3.5
ghz cbrs band using support vector machines,” in 2019 Sensor Signal
Processing for Defence Conference (SSPD). IEEE, 2019, pp. 1–5.

[21] M. Lopez-Benitez and F. Casadevall, “Methodological aspects of spec-
trum occupancy evaluation in the context of cognitive radio,” in 2009
European Wireless Conference, May 2009, pp. 199–204.

[22] S. Roy, K. Shin, A. Ashok, M. McHenry, G. Vigil, S. Kannam,
and D. Aragon, “Cityscape: A metro-area spectrum observatory,” in
2017 26th International Conference on Computer Communication and
Networks (ICCCN), July 2017, pp. 1–9.

[23] Why is it common in Neural Network to have a decreasing number of
neurons as the Network becomes deeper, 2017 (accessed August 15,
2020), https://www.quora.com/Why-is-it-common-in-Neural-Network-
to-have-a-decreasing-number-of-neurons-as-the-Network-becomes-
deeper.

[24] R. G. Miller Jr, Survival analysis. John Wiley & Sons, 2011, vol. 66.


