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Abstract 

Fire fighter fatalities and injuries in the U.S. remain too high 
and fire fighting too hazardous. Until now, fire fighters rely 
only on their experience to avoid life-threatening fire events, 
such as flashover. In this paper, we describe the development 
of a flashover prediction model which can be used to warn 
fire fighters before flashover occurs. Specifically, we con-
sider the use of a fire simulation program to generate a set of 
synthetic data and an attention-based bidirectional long short-
term memory to learn the complex relationships between 
temperature signals and flashover conditions. We first vali-
date the fire simulation program with temperature measure-
ments obtained from full-scale fire experiments. Then, we 
generate a set of synthetic temperature data which account for 
the realistic fire and vent opening conditions in a multi-com-
partment structure. Results show that our proposed method 
achieves promising performance for prediction of flashover 
even when temperature data is completely lost in the room of 
fire origin. It is believed that the flashover prediction model 
can facilitate the transformation of fire fighting tactics from 
traditional experience-based decision marking to data-driven 
decision marking and reduce fire fighter deaths and injuries. 

Introduction 

Fire fighters face tremendous dangers on the fire ground. 

Over the past ten years, nearly 750 fire fighters were killed 

and approximately 250,000 fire fighters were injured 

(Campbell et al. 2019; Fahy et al. 2020). Rapid fire progres-

sion, such as flashover, has been identified as one of the 

leading causes for both fire fighter fatalities and injuries. In 

a fire scenario, flashover is an extreme event. When it oc-

curs, nearly all directly exposed combustible materials, such 

as a sofa, mattress, and carpeting, in a compartment, such as 

living room or bedroom, can be simultaneously ignited. 

Consequently, gas temperature within the compartment 
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increases exponentially, and exceed more than 800 °C 

(Thomas et al. 1980). Figure 1a shows the compartment gas 

temperature profile from a flashover fire. In such a high tem-

perature condition, survival for any fully-equipped fire 

fighter is rare (Dunn 2015).  

 Although typical indicators of the onset of flashover, such 

as hot layer gas temperature achieving approximately 

550 °C to 600 °C (Peacock et al. 1999) and/or average heat 

flux at the floor level reaching 20 kW/m2 to 25 kW/m2 (Wal-

ton et al. 2016), are well known in the fire research commu-

nity, this kind of detailed information about the interior ther-

mal conditions is not available for nearly all fires. Thus, it is 

rather difficult for fire fighters to realize the potential fire 

hazards inside the fire room from outside.  

 In a structure fire, fire fighters rely on their experience in 

recognizing the potential occurrence of flashover. Accord-

ing to the most updated fire fighting training manual (Stow-

ell and Murnane 2017), rollover is one possible flashover 

indicator. Visually, it can be seen as flames spreading across 

the ceiling outside of the fire room. When rollover phenom-

enon is observed, a flashover is likely to occur. However, 

this kind of experience-based indicator is not easy to recog-

nize, and it could take many years of experience to build up 

the necessary proficiency. Therefore, if fire fighters do not 

have such a high level of situational awareness, the flasho-

ver threat presents itself as an unpredictable life-threatening 

hazard. 

 One can save a significant number of lives by developing 

a data-driven model based on temperature signals from heat 

sensors within the compartment to warn fire fighters before 

the flashover occurs. Yet, there are two primary challenges: 

(1) temperature data in multi-compartment structures are 
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complex. In a typical fire scenario, no prior knowledge is 

given to the location of the fire, the item that is being ignited, 

and the opening conditions for interior and exterior vents 

(i.e., doors and windows). For example, a window breakage 

or a damaged door can create an opening from a closed room 

allowing oxygen-rich fresh air to enhance the fire. An ex-

ample is given in Figure 1b. Given the right amount of fuel, 

oxygen, and heat (known as the fire triangle), flashover oc-

curs.  

 What makes the problem more complicated is that exist-

ing fire protection devices, such as heat sensors being placed 

at various locations within the structure, are likely to be de-

stroyed due to flame and/or elevated temperature (i.e., 

~ 150 °C to 250 °C and see Figure 1b for sensor failure) 

(NFPA 2002). If there is no temperature signal in the room 

of fire origin (refer to the green solid line in Figure 1b), no 

direct prediction about the potential flashover occurrence 

can be made. Although the remaining temperature signals 

from other compartments can be used as surrogates, since 

the interior opening conditions are unknown and it is not 

clear which temperature signals are useful (see the solid 

lines in Figure 1c in which the temperature variation across 

different compartments is substantial), the prediction will 

become highly uncertain. To the best of the authors’ 

knowledge, no empirical expressions nor models exist that 

can efficiently correlate relationships between temperature 

from non-fire rooms and flashover in multi-compartment 

structures.  

 The second challenge is that temperature data in real fires 

for full-scale multi-compartment structures is limited. 

Firstly, it can be easily understood that flashover does not 

frequently happen (Ahren 2019). Even if it happens, data is 

difficult to collect, and the data quality is questionable be-

cause important information such as exact fire location, ig-

nited items, and/or vent opening conditions might not be 

well documented in case of a fire accident. Secondly, tem-

perature data associated with flashover in building struc-

tures are not available from any public data repository (i.e., 

Dua and Graff 2019). Lastly, physically conducting full-

scale fire experiments involving flashover in a multi-com-

partment structure with living room, dining room, kitchen, 

bedrooms, doors, and windows is extremely costly and time-

consuming. Given the data limitation and the numerical bot-

tleneck, the development of a data-driven model for the pre-

diction of potential flashover occurrence accounting for the 

realistic effect of fires and vent opening conditions in multi-

compartment structures requires innovative approaches. 

 In this paper, we propose the utilization of the machine 

learning paradigm with the learning by synthesis approach 

to overcome these challenges. The main contributions of 

this work are summarized as follow: 

• Problem: We engage a novel problem about fire fighting 

accounting for realistic fire and vent opening conditions 

in a multi-compartment structure. We propose to develop 

a flashover prediction model (P-Flash) which can be used 

as a potential solution to transform traditional fire fighting 

tactics from experience-based decision making to data-

driven decision making to enhance situational awareness, 

operational effectiveness, and safety for fire fighting and 

to enable smart fire fighting (Hamins et al. 2015).  

• Algorithm: We propose to use an attention-based bidi-

rectional long short term memory to capture crucial rela-

tionships between temperature data and flashover condi-

tions. The model is able to differentiate temperature in-

formation with higher significance and provide flashover 

prediction even when the temperature signal from the 

room of fire origin is completely lost. 

• Data: We provide 5041 sets of synthetic temperature data 

accounting for fire scenarios with a wide range of fire and 

vent opening conditions within a single story residential 

building. The core difference between our data generation 

process and that found in other literature is that our fire 

simulation program is validated against real-life experi-

mental data with identical settings. This validation pro-

cess helps to ensure the reliability of our synthetic data. 

Data and code are available upon request. 

• Evaluation: We evaluate P-Flash against real data ob-

tained from 13 different full-scale fire experiments with 

the occurrence of flashover (Madrzykowski and 

Weinschenk 2019). Experimental results reveal that our 

           
Figure 1: Temperature profile with flashover in a compartment from a) a fuel controlled fire and b) a ventilation controlled fire, and c) real-

istic and ideal temperature profiles for heat sensors at different compartments within a multi-compartment structure. 

 

 

 

 



proposed method is feasible and hence has potential im-

pact to real-world fire fighting.  

Related Work 

Flashover Prediction Models: Due to the technical com-

plexity associated with the collection of temperature meas-

urement for flashover conditions in full-scale experiments, 

research efforts primarily focus on single compartment 

structures. In the fire research community, correlation tech-

niques relating air temperature and heat release rate (HRR) 

are typically being used for the estimation of flashover 

(Babrauskas 1980; McCaffrey et al. 1981; Deal and Beyler 

1990; Richards et al. 1997; Overholt and Ezekoye 2012). 

The HRR can be understood as the rate of heat generation 

by a fire. Given an estimated HRR, the occurrence of flash-

over can be approximated. However, since these models are 

developed based on data obtained from small single com-

partments with approximately 16 m2 in floor area and a sin-

gle door-like vent, these models have limited applicability 

to multi-compartment structures.  

 Additional efforts are made to account for the geometric 

effect of flashover conditions (Yu et al. 2012; Zhang et al. 

2014; Li et al. 2019; Kurzawski and Ezekoye 2020). Alt-

hough their research outcomes provide substantial improve-

ment for the development of flashover prediction models in 

multi-compartment structures, their models rely on assump-

tions that over-simplify the fire scenarios. Specifically, (i) 

all interior and exterior openings, such as doors and win-

dows, are always assumed to be fully opened; (ii) fire loca-

tions are assumed to be at only one location; (iii) fire growth 

of burning items (i.e., how fast and how intensive the item 

is being combusted) is prescribed based on arbitrary func-

tions without experimental validations; and (iv) most im-

portantly, sensors being used to obtain the temperature sig-

nals are assumed to be ideal, meaning that the sensors will 

never fail. In contrast to the previous works, the realistic 

conditions involving items (i) – (iv) are considered in this 

present study. By doing so, our flashover prediction model 

is more suitable to provide flashover warnings to fire fight-

ers for fire fighting in multi-compartments structures. 

Generation of Synthetic Dataset using Simulation Mod-

els: The idea of using fire simulation models to generate 

synthetic data have been shown useful in recent studies such 

as fire detection in tunnel (Wu et al. 2020), structural fire 

protection design (Zhang et al. 2020), and hazard assess-

ment (Lattimer et al. 2020) as it avoids the need of conduct-

ing costly experiments and facilitate parametric studies of a 

problem. For example, Wu and his coworkers (Wu et al. 

2020) used a CFD model to generate detailed smoke and 

temperature data for different heat sensors at various loca-

tions with a wide range of fire and wind conditions. The ad-

vantage is clear. However, one potential concern is that they 

had never benchmarked and/or validated the model against 

full-scale experiments with similar fire and wind conditions. 

For that, it is uncertain if the synthetic data being generated 

from the model could capture the fire behavior correctly. In 

contrast, the reliability of our synthetic data is assured. Spe-

cifically, the synthetic data generated by our fire simulation 

model are benchmarked against experimental data (McKin-

non et al. 2020) with identical settings. Therefore, we can 

quantify the accuracy of the fire simulation model in simu-

lating the corresponding behaviors of fire and vent openings 

in a multi-compartment structure.   

Multivariate Time Series Classification: Recurrent neural 

network (RNN) approaches, such as long short-term 

memory (LSTM) (Hochreiter and Schmidhuber 1997), have 

achieved much success for various tasks in different scien-

tific communities such as detection of mechanical failure 

(Guo et al. 2017), hurricane trajectory prediction (Alemany 

et al. 2019), understanding human communications (Zedeh 

et al. 2019), and early fake news detection (Liu and Wu 

2019). Although LSTM is an efficient way to encode multi-

variate time series data, it processes inputs in temporal order 

in which its outputs tend to be mostly based on previous in-

formation without making full use of available information 

(Graves and Schmidhuber 2005). For the development of a 

flashover prediction model for situations similar to that of 

shown in Figure 1b, making use of all available information 

is crucial. Moreover, the standard LSTM may not have ca-

pabilities to discriminate data with higher significance, such 

as those temperature profiles (i.e., solid lines in red and 

      
Figure 2: Plan view dimensioned drawing of a) the single story structure and b) vent openings with heat sensors (HD). 



green) in Figure 1c. In this study, we will use the state of the 

art RNN architecture, namely bidirectional long short-term 

memory (BiLSTM) (Graves and Schmidhuber 2005) to-

gether with attention mechanism (Vaswani et al. 2017) to 

facilitate the learning of inherent patterns and complex rela-

tionships between temperature signals from non-fire com-

partments and flashover from the fire origin with realistic 

fire scenarios and arbitrary vent opening conditions. 

Flashover in a Multi-Compartment 

Structure 

Consider a single-story ranch structure as shown in Fig-

ure 2a. There are six different compartments: a living room, 

a dining room, a kitchen, and three bedrooms. The overall 

interior dimensions of the structure are roughly 13.92 m x 

7.7 m with a ceiling height of 2.44 m. The detailed dimen-

sions associated with each of the compartments are illus-

trated in Figure 2a. Since fire rarely occurs in bathrooms, 

bathrooms are not considered in current layout. For interior 

finish, the walls and ceiling are covered with gypsum wall-

boards and the floor is covered by cement board.  

Figure 2b shows the relative position of vents and heat 

sensors in different compartments. For vents, there are two 

exterior doors (front and back), three bedrooms doors, a 

doorway that leads to the kitchen, and seven windows (A - 

G). For heat sensors, one heat sensor is located at each com-

partment, and they are about 0.02 m away from the ceiling. 

It is worth noting that this single story, traditional ranch style 

structure is selected because 90 % of residential buildings 

were built using this layout in the mid of 1950s 

(Madrzykowski and Weinschenk 2019). Currently, this 

structure remains the most popular style of home in 34 states 

across the United States (Mattern 2017). For that, the flash-

over prediction model developed based on this structure is 

expected to have substantial benefits for fire fighting across 

 
2 CFAST (Peacock et al. 2015) is a fire simulation program that divides 

compartments into two zones. Each zone includes a gas mixture/soot me-
dium bounded by a ceiling or a floor, and four surfaces. Conditions of each 

zone are assumed to be uniform. When there is a fire, a hot layer will form 
and the medium can be divided into an upper layer and a lower layer. If the 

the U.S. Additional efforts accounting for the effect associ-

ated with different structure layouts is underway. Findings 

will be reported in future studies. 

Synthetic Data Collection: CData (Tam et al. 2020) is 

utilized to execute simulation runs to generate the synthetic 

temperature data for a single item ignition fire with a wide 

range of fire and vent conditions. In general, CData is a 

Monte Carlo based sampler that uses CFAST2 as the simu-

lation engine. In this study, 5041 set of cases are considered, 

and it is consisted of about 1 million data points. 

 Three realistic conditions are taken into account in the 

data generation process, and they are 1) experimental vali-

dated fire growth of single burning items, 2) various fire lo-

cations, and 3) arbitrary opening conditions of vents.  

Realistic Fire Growth of a Burning Item: Heat release rate 

(HRR) is the single most important variable in characteriz-

ing the fire growth of an item (Babrauskas and Peacock 

1991). In order to obtain the HRR, experiments are typically 

performed, and Figure 3b shows the standard HRR curve. 

Specifically, this is the t-squared HRR curve that is used to 

describe the overall burning behavior of a single item in the 

fire research community. As shown in the figure, a burning 

item might experience four different fire growth stages: 

smoldering, t-squared growth, peak, and decay. Flashover 

usually happens in approximately between the t-squared 

growing stage and the peak stage. For that, experimentally 

validated HRR curves are crucial in capturing the precise 

burning behavior of an item such that the corresponding fire 

growth can be matched closely to actual fire scenarios. Four 

items, including a flaming chair, smoldering chair, polyure-

thane foam mattress, and cotton based mattress, are consid-

ered in this study (Reneke et al. 2019). The selection of these 

items is due to the fact that these items represent the largest 

portion of first ignited item in home fires (Ahrens 2017). 

fire persists, the upper layer increases in depth and the temperature will rise. 

When openings exist, there will be natural flow through the openings al-
lowing air exchange between different compartments and zones. Figure 3a 

shows a simulation case for the single-story ranch structure with a fire in 
the living room. 

 
Figure 3: a) overview of a CFAST simulation run with a fire in the living room, b) standard t-squared fire HRR curve, and c) valida-

tion for Experiment 1 and 2 between CFAST results and measurements. 



Table 1 provides the table for the summary of HRR param-

eters associated with the four different items. 

Fire location and Vent Openings: A fire can be initiated at 

the center of either one of the six different compartments in 

each simulation. Since the fire simulation model being used 

is a zone model, the exact location of the fire does not have 

any significant impacts to the resulting temperature (if the 

fire is not attached to any walls or corners). In the current 

dataset, the number of fire cases is distributed evenly for the 

six different compartments (i.e., about 840 cases for each 

compartment). For vent openings, all doors and windows 

within the structure, except the front door, are randomly se-

lected to be either opened or closed at the beginning of a 

simulation run. For the front door, it can be opened at any 

time during a run. This arrangement accounts for the effect 

of different opening vents. In this current study, each of the 

vents is assigned to be opened for 60 % of the total cases. 

The value is chosen because we want to facilitate flashover 

conditions.  

Validation with Experimental Data: In order to make sure 

that CData can be used to generate realistic temperature data 

for different fire scenarios, validation is carried out. Specif-

ically, temperature measurements obtained from two full-

scale experiments reported in (McKinnon et al. 2020) with 

a fire initiated in the living room within the single story res-

idential structure are used to benchmark the synthetic data. 

The fire location and the HRR of the burning item for the 

two tests are the same. Yet, opening conditions of each of 

the vents are different. The details of the opening time for 

each vent is provided in table attached to Table 2. It is worth 

noting that natural gas burners are used in these experi-

ments. The reason is that the HRR of the fire can be fully 

controlled by regulating how much natural gas is being 

burned. By doing so, we can be assured that the simulation 

conditions and the experimental conditions are identical. 

 Figure 3c shows the temperature measurements (dash 

lines) and the synthetic temperature data (solid lines) from 

the living room sensor for the two experiments. The overall 

agreement is great. It can be seen that the magnitude and 

trend of the temperature profiles matches the experimental 

data for different vent opening events. This observation in-

dicates that CFAST, the simulation engine of CData, is ca-

pable of capturing both the corresponding effect of fire and 

vent openings in the single story multi-compartment struc-

ture. In terms of uncertainty, the absolute root mean squared 

error is about 30 °C and 10 °C for Exp 1 and Exp 2, respec-

tively. Therefore, it can be said that the generated data is 

reliable. 

Algorithm 

Given the synthetic set of temperature data, our model will 

have to be able to carry out the following two tasks: 1) to 

relate complex data behavior to flashover conditions ac-

counting for the effect of different fire and vent opening 

conditions and 2) to discriminate data with higher signifi-

cance (see Figure 1c) and encode contextual information.  

Temperature Signal Learning: In order to overcome the 

challenge associated with the 1st task, we propose the use of 

bidirectional long short-term memory (BiLSTM) (Graves 

and Schmidhuber 2005). Figure 4a shows the overall model 

architecture. It can be seen that for a temperature signal: 𝑆 =
(𝑠1, 𝑠2, … , 𝑠𝜏) and a time step 𝑖, BiLSTM includes a forward 

hidden state ℎ𝑖
⃗⃗  ⃗ and a backward hidden state ℎ𝑖

⃖⃗⃗⃗ . In this study, 

since we are interested to capture the complete behavior for 

temperature signals, we only make use of the last hidden 

state of ℎ𝜏
⃗⃗⃗⃗  and ℎ𝜏

⃖⃗⃗⃗⃗. As shown in the figure, concatenation is 

applied to yield ℎ𝜏 = [ℎ𝜏
⃗⃗⃗⃗ , ℎ𝜏

⃖⃗⃗⃗⃗] to encode temperature behav-

ior with flashover conditions. 

Sensor-Wise Self-Attention: In order to enhance the learn-

ing capability of the model in discriminating temperature 

signals with higher significance for more reliable prediction 

(i.e., neglecting bedroom 2 temperature signal in Figure 1c), 

we utilize a self-attention mechanism to model sensor-wise 

relation. For that, we will be able to extract the contextual 

temperature information of all compartments within the 

structure. It is believed that the contextual information can 

contribute to provide more accurate flashover predictions. 

 As shown in Figure 4b, our model takes the temperature 

signals from all compartments ({𝑆1, … , 𝑆𝑁}, 𝑁 = 6) as in-

puts. Using the BiLSTM, we obtain the hidden state of tem-

perature behavior (ℎ𝜏) for each signal. We then feed them 

into a sensor-wise self-attention module for sensor relation 

Table 1: HRR parameters (Reneke et al. 2019; Kim and Lilley 
2002). 

Items 
Qo 

(kW) 

Qmax 

(kW) 

t1 

(s) 
t2-t1 (s) 

t3-t2 

(s) 

Flaming 

Chair 
10 - 30 270 - 3500 

150 –  

1250 
90 - 600 

200 –  

400 

Smoldering 

Chair 
10 - 20 

250 – 

2500 

5000 – 

11000 
70 - 500 

200 –  

400 

Mattress 

(foam) 
20 – 55 

2200 – 

4700 

150 –  

1250 
200 -600 

150 –  

300 

Mattress 

(cotton) 
15 - 40 

150 – 

820 

150 – 

1250 

30 – 

1400 

250 – 

550 

 

Table 2: Event sequence. 

Event Exp 1 Exp 2 

Front Door Open 300 s 1200 s 

Back Door Open 1275 s 1860 s 

Window A Open 1260 s 1845 s 

Window B Open 1245 s 1830 s 

Window C Open 1230 s 900 s 

Window D Open 1215 s Closed 

Window E Open 600 s 600 s 

Window F Open 1200 s 1815 s 

Window G Open 1300 s 1875 s 

Fire Extinguished 900 s 1500 s 

 



modeling. Specifically, the attention weight (𝛼𝑖𝑗) of each 

pair of sensor signals (𝑆𝑖, 𝑆𝑗) is determined based on the in-

teraction of their modeled temperature behavior (ℎ𝜏
𝑖 , ℎ𝜏

𝑗
): 

𝑎𝑖𝑗 = ℎ𝜏
𝑖 𝑇

ℎ𝜏
𝑗
 (1) 

𝛼𝑖𝑗 =
exp⁡(𝑎𝑖𝑗)

∑ exp⁡(𝑎𝑖𝑘)
𝑁
𝑘=1

 (2) 

To obtain the contextual temperature information that cap-

tures the temperature behaviors of all compartments. We ex-

tract context features based on the learned attention weights. 

For a signal 𝑆𝑖, we compute its context feature as: 

𝑒𝑖 = 𝜎(𝑊𝑒ℎ𝜏
𝑖 +⁡𝑏𝑒) (3) 

𝑐𝑖 = ∑𝛼𝑖𝑗𝑒𝑗

𝑁

𝑗=1

 (4) 

where⁡𝜎 is the activation function, and 𝑊𝑒 and 𝑏𝑒 are the 

parameters of a dense layer for further encoding temperature 

behavior. We attain the final feature representation 𝑢𝑖
′ for 𝑆𝑖 

after applying one dense layer on the concatenation of its 

context feature and encoded feature: 𝑢𝑖 = [𝑐𝑖 , 𝑒𝑖] such that: 

𝑢𝑖
′ = 𝜎(𝑊𝑐𝑢𝑖 +⁡𝑏𝑐) (5) 

 We compute the representation for all temperature signals 

by the same manner to acquire the overall representation of 

the whole structure: 𝜇′ = [𝑢1
′ ,… , 𝑢𝑁

′ ]. This feature represen-

tation is used to predict whether there is a flashover occur-

rence within the coming 𝑥 seconds based on the available 

temperature signals. 

Evaluation 

Experimental Settings: Each synthetic fire experiment has 

six temperature signals (S) and each signal is corresponding 

to a compartment (i). The temperature signals from the com-

partment are denoted as 𝑆𝑖 = (𝑠0
𝑖 , 𝑠15

𝑖 , … , 𝑠𝑇
𝑖 ) where 𝑠0

𝑖  and 

𝑠𝑇
𝑖  are the first and the last temperature for an experiment, 

respectively, and 𝑇 is the total duration. The sampling 

interval for all temperature signals is 15 s and this is selected 

to facilitate the data generation process. In total, there are 

5041 synthetic fire experiments/events. 

Sliding window is applied and instances are constructed. 

An instance from a fire event is formulated as 𝐼𝑘 =
⁡{𝑆𝑘

1, … , 𝑆𝑘
6} where 𝑆𝑘

𝑖 = (𝑠𝑘
𝑖 , … , 𝑠𝑘+𝑤

𝑖 ) with k to be the first 

time step of the sliding window and 𝑤 to be the window size. 

Accounting for the sensor limit, we adopt the sensor failure 

threshold of 250 °C from (NFPA 2002). Given the thresh-

old, the sensor failure moment (𝑇𝑏
𝑖) for signal 𝑆𝑖 can then be 

determined. If time 𝑡 ≥ ⁡𝑇𝑏
𝑖, 𝑠𝑡

𝑖 is replaced by a value of 0 °C, 

representing a loss of sensor signal. A masking layer is ap-

plied to neglect the zero values. Extracting all the 𝐼𝑘 from 

all fire events, the instance set {𝐼0
1, … , 𝐼𝑘

5041, … } is obtained. 

Our task is to predict whether flashover will occur within 

the next 𝑥 seconds based on the temperature data in 𝐼𝑘
𝑒 . In 

our experiment, we evaluate the models when 𝑥 = 30 s and 

𝑥 = 60 s. These values are chosen with careful considera-

tion about the response time in actual fire fighting (Dunn 

2015). Due to movement limit (i.e., crawling to avoid exces-

sive heat from ceiling), it will take 10 s for fire fighters to 

travel for approximately 3 m in a fire scene. For that, pre-

dictions ahead of flashover occurrence is crucial in order to 

allow the fire fighters to get away from the dangerous com-

partments or find shelters. Therefore, we will examine our 

model performance for 𝑥 = 30 s and 𝑥 = 60 s. 

Each instance is labeled to form our data samples, and the 

instance is either labeled as Flashover or Non-Flashover 

based on its future temperature value. In our study, we take 

550 ̊C to be the threshold of the onset of flashover condi-

tions. In the current dataset, we have data imbalance for 

samples associated with Flashover and Non-Flashover. It 

can be understood that when 𝑥 = 30 s, we only have two 

Flashover samples in one fire event (i.e., 𝐼𝑓−15−𝑤
𝑒  and 

𝐼𝑓−30−𝑤
𝑒  where 𝑓 is the flashover moment for event 𝑒). And 

when 𝑥 = 60⁡s, the number of Flashover samples is four for 

one fire event (i.e., 𝐼𝑓−15−𝑤
𝑒 , …, 𝐼𝑓−60−𝑤

𝑒 ). However, there 

are many Non-Flashover samples. In order to overcome the 

data problem, we first take all the Flashover samples and 

randomly select two (four) Non-Flashover samples for x = 

        
Figure 4: a) Model architecture of BiLSTM and b) BiLSTM with sensor-wise self-attention. 



30s (60s) from each fire event. These samples are used to 

form our final dataset. In this experiment, we have 20164 

and 40328 data samples (from 5041 fire events) for the ex-

periment of adopting 𝑥 as 30s and 60s, respectively.  

For training and testing, we randomly split the data sam-

ples to form subsets for training, validation, and testing 

based on the fire events. Specifically, a set of 504 fire events 

worth of data samples are assigned to both validation set and 

testing set, respectively. The data samples from the rest of 

the 4033 (5041 – 2*504) fire events are given to the training 

set. The data proportion for training and testing process are 

identical to both 𝑥 = 30 s and x = 60 s. 

Model Configurations: We set the dimension of both the 

forward and backward LSTM as 28. The output dimension 

of our BiLSTM module is 56. We adopt 28 and 16 as the 

output dimension of the first and second dense layer in our 

model. Dropout is applied in the network with a dropout rate 

of 0.2. In order to evaluate the efficiency of the proposed 

sensor-wise self-attention module, we compare the perfor-

mance of the BiLSTM model with attention (refer to it as 

BiLSTM-Attention) and the BiLSTM model without atten-

tion (refer to it as BiLSTM) in our experiments. 

Experimental Results: Table 3 shows the model perfor-

mance for flashover prediction made in 30 s and 60 s. Based 

on the accuracy and F1 scores, it can be shown that the pro-

posed attention-based BiLSTM outperforms the original 

BiLSTM. It is worth noting that the attention-based model 

also yields a significantly better recall score, indicating the 

benefits of including the sensor-wise self-attention mecha-

nism. This is extremely important for life saving purpose in 

fire events.  

As shown in Table 3, the overall performance for predic-

tion of flashover occurrence with x = 60 s is generally better. 

One possible reason is due to the fact that it has a larger set 

of training samples. For future work, we will keep collecting 

data to train a better prediction model for both scenarios. 

Precision-recall curves are illustrated in Figure 5. In real-

life application, we would like to maximize the value of true 

positive for prediction of flashover occurrence with minimal 

or even zero false positive to avoid disturbance to fire fight-

ers. As shown in Figure 5, it is observed that the attention-

based model can obtain a precision value of approximately 

85% with the recall value being above 90% (for 60 s). Gen-

erally, our proposed attention-based models (both 60 s and 

30 s) can achieve higher recall with higher precision. The 

overall performance of the attention-based model is there-

fore more robust than those without the attention mecha-

nism. The success of the attention-based model is built upon 

its ability of determining the relation of different sensor sig-

nals for different vent opening conditions.  

 Figure 6 illustrates the learned attention weights between 

sensor signals in fire origin room and other compartments: 

kitchen (K), dining room (D), living room (L), and bedroom 

1 to 3 (B1, B2, B3), for two door opening conditions: all 

opened denoted as Open and all closed denoted as Close. 

Our attention-based model can discover the spatial relation 

between sensor signals from different compartments. For in-

stance, when fire occurs in kitchen, the signal of dining 

room and living room are determined as the most discrimi-

nating surrogate signals by the model (Figure 6a). And those 

from dining room and kitchen are taken as the most useful 

surrogate signals, when it comes to predicting flashover in 

living room (Figure 6b). These consist of the spatial rela-

tions of dining room, kitchen, and living room. The sensors 

placed in these three rooms are very close to each other. 

Hence, the model can predict flashover in one of them via 

modeling signals from the other twos, even when the doors 

are closed. On the other hand, the signals from dining room 

and kitchen are barely important for our model when fire 

occurs in bedroom 1, regardless of the door opening condi-

tions (Figure 6c). This also agrees with their spatial relations 

Table 3: Performance of flashover prediction. 

x Model Acc. Prec. Rec. F1 

60s 
BiLSTM 81.80% 86.88% 74.90% 80.45% 

BiLSTM-Attention 86.46% 84.54% 89.24% 86.82% 

30s 
BiLSTM 78.17% 76.94% 80.46% 78.66% 

BiLSTM-Attention 81.75% 79.47% 85.62% 82.43% 

 

 
Figure 5: Precision and recall curves. 

 

 
Figure 4: Learned attention for (a) Kitchen, (b) Living room, and 

(c) Bedroom 1, under different door opening conditions. 

 

 

 



that the sensors in dining room and kitchen are farer away 

from that in bedroom 1. 

 Moreover, different door opening conditions may also in-

fluence the relations of the sensor signals. Our attention-

based model can also capture that. For example, our model 

determines that signal in living room has stronger relation-

ships with that of bedroom 1, 2 and 3 when all the doors are 

opened, compared to the situation of closing all the doors 

(Figure 6b). Also, our model can find that for predicting 

flashover in bedroom 1, signals of living room, bedroom 2 

and 3 are more useful when all the doors are opened than 

closed (Figure 6c). 

 The learned attention weights indicate that our attention-

based model can successfully determine the relationships 

between different sensor signals under different door open-

ing conditions. This results in extracting the most discrimi-

nating signals and contextual information. Based on that, a 

more reliable flashover prediction can be provided.  

Towards Prediction in Real Fire Event: Given a flashover 

prediction model trained based on synthetic data (BiLSTM-

Attention with 30 s), it is necessary to examine its perfor-

mance against real-life fire scenarios. In this evaluation pro-

cess, 13 sets of full-scale experiments reported in 

(Madrzykowski and Weinschenk 2019) are utilized. The 

building structure is identical to that of shown in Figure 2a. 

In these experiments, a single item is first ignited in either 

living room, kitchen, or bedroom 1. Temperature measure-

ments are obtained and videos from thermal image cameras 

are recorded. Important information for each of the experi-

ments is summarized in Table 4. As shown in the table, 

 
3 For standard experiments, an item is ignited in a room temperature envi-
ronment. Therefore, the pyrolysis process is sustained due to its own com-
bustion and the enclosure effect due to room temperature is relatively small. 

although a number of tests are repeated, the fire growth is 

rather different. It should be noted that our model never sees 

any of the experimental data. 

 Due to the nature of the experiments, data associated with 

flashover and non-flashover conditions are imbalanced. In 

order to provide a fair comparison, the model performance 

is assessed based on 4 selected instances. With that, the 

model will make predictions about 15 seconds (Instance I) 

and 30 seconds (Instance II) prior to the flashover occur-

rence. These two instances are labeled as true for flashover 

occurrence. The exact time of flashover is obtained from the 

experimental data. The Instance III and IV are the non-flash-

over instances.  

 Table 5 shows the prediction accuracy for the instances 

associated with all 13 experiments and the 3 individual test 

series. It can be seen that the model performance for kitchen 

fire and bedroom 1 fire associated with either Instance I or 

II is substantially different. Fundamentally, this deficiency 

is primarily due to the fact that the HRR curves obtained 

based on standard experiments do not account for the enclo-

sure effect (Ramesh and Venkateshan 1999). In principle, 

the high temperature environment surrounding the ignited 

item will enhance its pyrolysis process (Garrido and Font 

2015), increasing the release rate of combustible gases, and 

accelerate the burning of an item. This combustion process 

is not being captured in current experiments3 for HRR de-

termination. For that, although experimentally validated 

HRR curves for foam mattresses is used during the data gen-

eration process in this study, the corresponding temperature 

behavior is substantially different. The rate of increase of 

temperature observed from the full-scale experiments is 

nearly double as compared to that of seen in our training 

data. For the kitchen fire, since wooden materials are the 

primary burning items, they have less influence with the en-

closure effect. For that, the experimental temperature data 

are within the range of our synthetic data. Therefore, the 

flashover prediction is excellent. This observation is encour-

aging, and this is because a reliable flashover prediction 

model can be built even with synthetic temperature data if 

correct HRR curves accounting for the enclosure effect are 

applied. Also, it is believed that when the new data is avail-

able, the model performance for the flashover prediction 

model can be greatly enhanced.  

Conclusion 

In this paper, we present the development of a flashover pre-

diction model for a multi-compartment structure using an 

attention-based BiLSTM with validated synthetic tempera-

ture data. This is the first work in which the realistic effects 

of fire locations, burning behavior of ignited items, vent 

Table 5: Model performance against real data. 

  Instance I Instance II Non-Flashover 

All 64% 54% 89% 

Living room 80% 60% 80% 

Kitchen 100% 100% 100% 

Bedroom 1 25% 0% 100% 

 

Table 4: Key information for each of the experiments. 
Exp # Fire Location Ignited item Ventilation 

1 Living Room Sofa All Vent Closed 

2 Living Room Sofa All Vent Closed 

3 Living Room Sofa Front Door Open 

4 Living Room Sofa Front Door Open 

5 Living Room Sofa 
Front Door and Bedroom 3  

Window Open 

6 Kitchen Cabinet All Vent Closed 

8 Kitchen Cabinet All Vent Closed 

10 Kitchen Cabinet Front Door Open 

11 Kitchen Cabinet Front Door Open 

7 Bedroom 1 Mattress All Vent Closed 

9 Bedroom 1 Mattress All Vent Closed 

12 Bedroom 1 Mattress 
Front Door and Bedroom 1  

Window Open 

13 Bedroom 1 Mattress 
Front Door and Bedroom 1  

Window Open 

 



opening conditions, and data limitation due to sensor failure 

are being accounted for at the same time. Our model 

achieves promising performance. For synthetic datasets, it 

has the accuracy of ~ 86 % and ~ 82 % with the F1 score of 

~ 87 % and ~ 82 % for prediction of flashover occurrence 

within the next 60 s and 30 s, respectively. The model per-

formance is also tested against real data with flashover con-

ditions in full-scale fire experiments. The overall accuracy 

for prediction of flashover occurrence is ~ 75 %. In the fu-

ture, we will carry out physical experiments to account for 

the enclosure effect in HRR determination. Also, we are in-

terested in developing a more generic flashover prediction 

model that can be used in any single story structure layout. 

It is believed that the flashover prediction model can help to 

save lives by enhancing situational awareness, operational 

effectiveness, and safety for fire fighting and enable smart 

fire fighting.  
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