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Race logic, an arrival-time-coded logic family, has demonstrated energy and performance improvements for

applications ranging from dynamic programming to machine learning. However, the various ad hoc mappings

of algorithms into hardware rely on researcher ingenuity and result in custom architectures that are difficult

to systematize. We propose to associate race logic with the mathematical field of tropical algebra, enabling

a more methodical approach toward building temporal circuits. This association between the mathematical

primitives of tropical algebra and generalized race logic computations guides the design of temporally coded

tropical circuits. It also serves as a framework for expressing high-level timing-based algorithms. This ab-

straction, when combined with temporal memory, allows for the systematic exploration of race logic–based

temporal architectures by making it possible to partition feed-forward computations into stages and organize

them into a state machine. We leverage analog memristor-based temporal memories to design such a state

machine that operates purely on time-coded wavefronts. We implement a version of Dijkstra’s algorithm to

evaluate this temporal state machine. This demonstration shows the promise of expanding the expressibility

of temporal computing to enable it to deliver significant energy and throughput advantages.
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1 INTRODUCTION

Energy efficiency is a key constraint when designing modern computers. The performance and
efficiency of modern computers, which largely rely on Boolean encoding, can be attributed to
developments across the computational stack from transistors through circuits, architectures,
and other mid- to high-level abstractions. The recent stagnation of progress at the transistor
level [32] is leading designers to make improvements at the lowest levels of the stack. These include
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Fig. 1. Graphical examples of three race logic primitive operations Q = f (A,B). The top row indicates the

correspondence between logical connectives and tropical functions; the bottom row contains waveforms of

sample calculations. The inhibit gate in the two right-hand panels, which allows input B to pass only if it

arrives before A, has no well-behaved analogue in Boolean logic.

re-imagining how data is encoded in physical states and introducing novel devices. The rationale
is simple: Making the fundamental mathematical operations required for computation more ef-
ficient can have a cascading effect on the whole architecture. However, novel encoding schemes
and devices come with new tradeoffs that differ from those of conventional Boolean computing
schemes and which are not yet well understood.

In this article, we focus on an arrival-time encoding known as race logic [45]. Since digital
transitions (edges) account for much of the energy consumption in traditional computation, race
logic encodes multi-bit information in a single edge per wire. The arrival time t of this single
edge is the value encoded by the signal. Encoding multiple bits on a single wire makes some
operations very simple to implement. Standard and and or gates naturally implement the max
and min functions; a unit delay element acts as an increment gate. A fourth logic gate, inhibit,
allows its first (inhibiting) input to block the second input signal if the inhibiting signal arrives
earlier. These operations are shown operating on examping inputs in Figure 1

The development of race-logic-based architectures has been largely ad hoc. Race logic was first
developed to accelerate dynamic programming algorithms [45], and its application space has ex-
panded to include machine learning [66] and sorting networks [51], demonstrating energy and
performance advantages. Parallel development of logical frameworks [47, 60, 68], novel device
technologies [46, 69], and fabricated chips [44] have contributed to a cross-stack effort to make
this encoding scheme technologically viable. Here, we offer two important developments.

The first development is a systematized method of building computing architectures. An im-
portant step is to identify a suitable mathematical foundation that can express problems uniquely
suited to a race logic approach. Formal logic, computation, and verification frameworks have been
developed [60, 67, 68]. Continued progress requires identifying a mathematical algebra in which
race logic algorithms and state machines are naturally expressed in the highly parallel dataflow
contexts typical of temporal computing accelerators. We propose tropical algebra to be used in
this context.

The second development is a compositional framework for programmatically linking low-level
subroutines into higher-order functions. This development expands race logic beyond one-shot
application-specific circuits. Recent work has started to explore several device concepts for effi-
ciently reading and writing time-coded signals [46, 69]. The advantage of such memories is that
they can directly interface with the temporal domain; read and write operations in such a memory
can be performed without conversion to digital encoding.
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The introduction of temporal memory technologies allows race logic to serve as an efficient
computational fabric for two distinct but compatible advances. First, because memory breaks
symmetries related to translations of the time coordinate, a temporal computer equipped with
a memory is no longer subject to the invariance constraint on time-coded functions outlined in
References [47, 60]. Lifting this restriction allows tropical algebra to serve as a coherent alge-
braic context for designing and interfacing race logic circuits. Second, memories allow us to reach
beyond specialized one-shot temporal computations. Primitive race logic operations can be com-
posed and iterated upon by saving outputs of one circuit and rerunning that circuit on the saved
state, the temporal equivalent of a classical state machine. In this article, we develop the tem-
poral state machine as an application-agnostic datapath for accelerating problems susceptible to
temporal computing.

Our contributions are:

• A description of a temporal state machine that solves temporal problems in systematized
parts, providing a clear computational abstraction for stitching larger computations out of
primitive race logic elements.

• An exposition of tropical algebra as a mathematical framework for working with temporal
vectors. We explain the mapping into tropical algebra from race logic and how it provides
a convenient mathematical setting for working with temporal computations.

• Augmentations to conventional 1T1R (1 transistor, 1 resistor) arrays that make the cross-
bar architecture natively perform fundamental tropical operations. We use this, and other
temporal operations, to create a more general feed-forward temporal computation unit.

• Demonstration and evaluation of a temporal state machine that uses Dijkstra’s shortest path
algorithm to find the minimal spanning tree on directed acyclic graphs.

The article is organized as follows: Section 2 briefly describes race logic and tropical algebra,
showing the mapping between them. Based on that mapping, we describe circuit implementations
of important tropical operations as the basic generators of higher order temporal functions. Sec-
tion 3 introduces temporal state machines, explaining time-coded states and transition functions.
We represent simple problems tropically and demonstrate how such a state machine can solve
them in discrete steps. Section 4 presents a case study implementating Dijkstra’s algorithm on a
temporal state machine and proposes a purely temporal version of the algorithm. Performance
and energy simulations follow in Section 5, followed by a comparison with previous work and
discussion in Section 6.

2 TROPICAL ALGEBRA AND RACE LOGIC: MAPPING BETWEEN CIRCUITS AND
SEMIRINGS

2.1 Race Logic and Temporal Computing

Computing with time traces back to two communities: one bio-inspired, and the other purely effi-
ciency oriented. The biological interest in precise timing relationships between spikes grew after
the seminal works by Thorpe on the processing speed of the human visual system [28, 65] and
on spike timing dependent plasticity by Bi and Poo [7]. From then, temporal wavefront compu-
tation [21, 33, 56, 70] in the biological community expanded to the machine learning and neuro-
morphic computing communities [40, 53, 54]. References [8, 50, 55, 64, 73] show state-of-the-art
performance and learning strategies in temporal neural networks, while the neuromorphic com-
puting community in References [3, 17, 19, 25, 38, 53, 57] developed hardware to emulate precise
timing relationships in spiking neural activity. More recently, precise timing-based codes in spik-
ing neural networks perform a variety of applications such as graph processing [30, 36], median

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 3, Article 28. Pub. date: May 2021.



28:4 A. Madhavan et al.

filtering [71], image processing [71], and dynamic programming [1]. For several decades, the circuit
community has independently been using time domain mixed signal analog techniques in Ana-
log/Time to Digital Converters [52, 76], clock recovery circuits, phase and delay locked loops, phase
detectors, and arbiters. With shrinking voltage levels and diminishing headroom, the tempo-
ral domain becomes attractive for analog processing. With the interest in emerging comput-
ing paradigms, this community has contributed temporal coded complementary metal-oxide-

semiconductor (CMOS) only computational approaches [15, 20, 48, 58].
Race logic sits between the aforementioned approaches in that it uses biologically inspired wave-

fronts as the fundamental data structure, while using conventional digital CMOS circuits to com-
pute. Race logic encodes information in the timing of rising digital edges and computes by manip-
ulating delays between racing events. In the conventional Boolean domain, the electrical behavior
of wires changing voltage from ground toVdd is interpreted as changing from logic level 0 to logic
level 1 at time t . In race logic, these wires are understood to encode each t as their value, since the
rising edge arrives at t with respect to a temporal origin at t = 0. In some cases, a voltage edge can
fail to appear on a wire within the allotted operational time of a race logic computation. In these
cases, we assign the value temporal infinity, represented by the∞ symbol.

We define race logic without memory elements as pure race logic, which accounts for most of
the extant literature. We call race logic that uses dynamic memory elements stateful or impure

race logic. Our goal here is to describe stateful race logic, but first we review issues that arise in
pure race logic. The class of functions that can be implemented in pure race logic is constrained by
physics [47, 60] through causality and invariance. The causal constraint, also called non-prescience,
requires that the output of a race logic function be greater than or equal to at least one of the
function’s inputs. Any output must be caused by an input that arrives either earlier than or simul-
taneously with that output.

The invariance constraint arises because the circuit is indifferent to the choice of tem-
poral origin. It is satisfied by race logic functions f for which f (t1 + δ , t2 + δ , . . . , tN + δ ) =
f (t1, t2, . . . , tN ) + δ ; all operations in pure race logic must obey this equality. Invariance need not
apply to impure circuits, which contain a memory or state element: Such circuits perform dif-
ferently at different times, depending on whether a memory element has been modified. From a
programming perspective, a pure function always gives the same output when presented with the
same input; an impure function is analogous to a subroutine that can access and modify global
variables.

2.2 Tropical Algebra

Named in honor of Brazilian mathematician Imre Simon, tropical algebra treats the tropical semir-
ing T . In T , the operations of addition and multiplication obey the familiar rules of commutativity,
distributivity, and so on, but are replaced by different functions. The tropical multiplicative opera-

tion is conventional addition, and the tropical additive operation is either min or max; the choice of

additive operation distinguishes two isomorphic semirings. Depending on the choice of min or max as
the additive operation, the semiring is given by T = (R ∪ {∞}, ⊕, ⊗) or T = (R ∪ {−∞}, ⊕′, ⊗);
±∞ are included to serve as additive identities.1 These symbols, and others used in this article,
are collected for reference in Table 1. That some of the generating operations of tropical algebra
correspond directly to the primitive operations of race logic suggests that it is an ideal setting for
the development of time-coded algorithms.2

1By contrast, the ring of real arithmetic is (R, +, ×).
2While tropical algebra is defined over the real numbers with infinity, a race logic circuit can practically represent only a

finite discrete set of signal timings. Race logic and tropical algebra are therefore not isomorphic, per se. Note that the same
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Table 1. List of Symbols Related to Race Logic and Tropical Algebra and Their Meanings

Symbol Meaning Description
∞ infinity additive identity in tropical algebra; edge that never arrives in

race logic
⊗ add multiplicative operation in tropical algebra; temporal delay in

race logic
⊕ min additive operation in tropical algebra; first arrival in race logic
⊕′ max alternate additive operation in tropical algebra; last arrival in

race logic
� inhibit ramp function in tropical algebra; signal blocking in race logic
= equivalence expressing equality between two statements
:= storage storing a signal in memory
:� normalized storage storing a signal in memory by first performing a normalizing

operation

Tropical algebra has found numerous applications in the computing literature particularly in
a variety of graph algorithms, such as shortest path finding, graph matching and alignment, and
minimal spanning trees. It is used as the basis of GraphBLAS (Graph Basic Linear Algebra

Subprograms) [37]. In mathematics, it is being used to explore problems in combinatorial opti-
mization [5], control theory, machine learning [80], symplectic geometry [6], and computational
biology [77].

There are some fundamental similarities between tropical algebra and race logic. Both of them
have an∞ element. In race logic, it physically corresponds to a signal that never arrives, while in
tropical algebra it corresponds to the additive identity, since

α ⊕ ∞ = min(α ,∞) = α . (1)

Such an addition does not have an inverse, since there is no value of β in min(α , β ) that would
give∞. The non-invertibility of addition means that this algebra is a semiring and fundamentally
winner-take-all in nature. Every time the additive operation is performed, the smallest number
(the first arriving signal in race logic) “wins” and propagates further through the computation.3

The multiplicative identity in tropical algebra is zero, rather than one, since α ⊗ 0 = α + 0 = α .

2.3 Graph Problems in Tropical Algebra

Tropical algebra can be especially useful for graph analytics, where it provides a simple mathemat-
ical language for graph traversal. A fundamental concept in graph traversal is the graph’s weighted
adjacency matrix A. Figures 2(a) and (b) show a directed graph and its weighted adjacency matrix,
respectively. The ith column of the weighted adjacency matrix represents the distances of the

is true of a traditional computer with respect to conventional real arithmetic. However, just as traditional computers can

operate over a large enough subring of the reals to produce useful calculations, there exists an embedding of min-based

race logic as a subsemiring of tropical algebra. Regardless of whether we work in a subset of natural numbers (clocked race

logic) or the reals (analog race logic), the fact that this mapping is well-behaved ensures that tropical algebra is a useful

mathematical landscape for understanding race logic operations.
3If we had chosen ⊕′ instead of ⊕, then the additive identity would be −∞; though, we generally prefer the min-plus

version of tropical algebra. In pure race logic,∞ corresponds to an edge that never arrived, whereas −∞would correspond

to an edge that had always been present—not to be confused with an edge that arrived at t = 0. No nontrivial function

in pure race logic can output −∞ due to the causality constraint, so the min-plus algebra has considerably more practical

utility in race logic.
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Fig. 2. Tropical matrices for graph exploration: (a) shows an example directed graph; (b) shows the equivalent

weighted adjacency matrix. Panel (c) shows the propagation of a signal originating at node b through a

delay network corresponding to the edges of the example graph. Panel (d) shows the tropical vector-matrix

multiplication corresponding to panel (c). Panels (e) and (f) repeat these representations for the case where

signals are injected at both b and c .

outward connections from node i to all other nodes in the graph, so Aji is the weight for the edge
i → j. Where there is no edge to node i from j, we assign the value Aji = ∞.

The usefulness of tropical algebra for graph traversal is seen when using A in a tropical vector-
matrix multiplication. Tropical vector-matrix multiplication (VMM) proceeds like conven-
tional VMM, but with (⊕, ⊗) instead of (+,×). As shown in Figure 2, each vector element is scaled
(tropical multiplication) before they are all accumulated (tropical addition). Extracting any single
column from a matrix can be done by multiplying a one-hot vector, as shown in Figure 2. The
tropical one-hot vector has a single zero element with all other entries set to∞; from Section 2.2.
During scaling, the columns of the adjacency matrix that correspond to the infinities of the one-
hot vector get scaled to infinity (tropically multiplied by ∞) while the remaining column, scaled
by the multiplicative identity 0, is the output. The values stored in the output vector represent
the distances from the one hot node in the input vector. This operation represents a search from
the node in question (decided by the one-hot vector) to all the connected nodes in the graph and
reports the distances along all edges of this parallel search.

Using a “two-hot” vector for input, as shown in Figure 2(d) outputs a tropical linear combination
of two vectors, corresponding to the “hot” columns of the adjacency matrix. The accumulation
phase of the tropical VMM is nontrivial; the ⊕ operation selects the smallest computed distance to
each node for the output. The tropical VMM reports the shortest distance to each node in the graph
after a single edge traversal from either of the initial nodes specified by the two-hot vector. Both
steps—the exploration of a node’s neighbors and the elementwise minimum of possible parent
nodes associated with an output—are performed in parallel by a single matrix operation.

Representing a collective hop through the graph as a single matrix operation allows a series of
matrix operations to represent extended graph traversal. The shortest traversed distance to each
node in a graph from an initial node x is

y = x ⊕ (x ⊗ A) ⊕ (x ⊗ A ⊗ A) ⊕ (x ⊗ A ⊗ A ⊗ A) ⊕ · · · . (2)

The first term represents all single-hop shortest paths starting out from x , while the second term
accounts for all the two-hop shortest paths, and so on. Hence, the tropical summation across all
the terms in y allows it to encode the shortest distances between the input node as specified by x ,
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independent of the number of hops. Performing N such hops and calculating the minimum dis-
tance across all of them is the key operation in various dynamic-programming-based shortest path
algorithms. This process makes tropical algebra the natural semiring for Dijkstra’s algorithm [49].
We use these ideas to implement Dijkstra’s single-source shortest path algorithm in a stateful race
logic system in Section 4.

2.4 Circuits for Tropical Linear Algebra

Since tropically linear functions
⊕

j (aj ⊗ tj ) with the aj values constant satisfy the invariance

condition, tropical linear transformations may be carried out in pure race logic. In Section 2.1, we
describe how single rising edges can be used to encode information in their arrival time. Inter-
preting the edges as tropical scalars, we can see how or gates and delay elements are modeled by
tropical addition and multiplication. This understanding can also be extended to tropical vectors.
Section 2.3 describes how tropical vectors can be interpreted as distance vectors in graph oper-
ations. These distance vectors can be interpreted temporally as a wavefront or a volley of edges
measured with respect to a temporal origin. Other researchers have proposed using such vectors
as the primary data structure underlying temporal computations [60, 64].

Just like conventional vectors, tropical vectors have a normalization rule, but it is somewhat un-
usual. Normalization proceeds by subtracting the minimum element of a vector from all elements,
ensuring that at least one element of the normalized vector is equal to zero.4 It is common to regard
a tropical vector as equivalent to its normalized version, implying that it only encodes information
about the shape of its temporal wavefront, and not about an arbitrarily chosen temporal origin.
To accept this equivalence is to work in the projective tropical vector space, and we refer to trop-
ical vectors as being projectively equivalent if their normalized versions are elementwise equal.
Frequent renormalization has the advantage of mitigating overflow, and simple circuit modifica-
tions required to implement it are discussed in Section 3.1. We use and account for normalization
algorithmically in Section 4.1, allowing us to encode information in a principled way that would
nominally extend beyond our dynamic range.

Once a wavefront of rising voltage edges is interpreted as a tropical vector, the techniques shown
in Figure 3 can be used to implement tropical vector operations. Panel (a) shows the vectorized
version of the tropical dot product operation. Abstracting out for now implementation details of
the individual delay elements, the column delays each line of the incoming wavefront by a different
amount. This implements tropical multiplication by constants and can be seen as superimposing
the delay wavefront onto the incoming wavefront. The outputs of such a circuit are then connected
to the inputs of a pre-charge-based pullup with an or-type pulldown network followed by an
inverter. The circuit operation is divided into two phases, the pre-charge phase followed by the
evaluation phase. In the pre-charge phase, the PMOS transistor has its input connected to ground,
causing the critical node to be pulled-up (connected toVdd ). When the pre-charge phase ends, the
PMOS transistor is turned off, which maintains the potential at the critical node atVdd . During the
evaluation phase, the first arriving rising edge at the input of one of the NMOS transistors causes
the critical node to discharge to ground, hence being pulled-down to a potential of zero volts. This
behaves as a first-arrival detection circuit that outputs a rising edge at the minimum of the input
arrival times, performing the min operation. It implements tropical vector addition. Combining
the delay (multiplication) with the min (summation), we get the tropical dot product operation. By
replicating this behavior across multiple stored vectors, as in panel (b), we get the tropical VMM
operation, where the input vector tropically multiplies a matrix.

4In the max-plus tropical semiring, the vector norm would be the maximum element of the vector. This vector magnitude

operation is sometimes called the L∞ norm.
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Fig. 3. Construction of race logic circuits for tropical algebra: Panel (a) shows a composite circuit for the

tropical dot product operation. A simple array of delay elements takes an incoming wavefront and delays

its elements by the values stored in each of the delay elements. This represents the tropical element-wise

multiplication by constant operation. The output is then connected to a p-type, metal-oxide semiconductor

(PMOS) pre-charge pullup coupled with a nor-style pulldown network that behaves like a first arrival detec-

tor and performs the tropical addition operation. Panel (b) combines multiple elements of panel (a) and scales

this up to a 2D array such that it performs tropical vector matrix multiplication, the critical operation for

graph traversal, as described in Section 2.3. Panel (c) shows a detailed circuit implementation of the tropical

VMM cell. Each cell consists of two transistors, one for programming and the other for operation, and a level

shifter [46]. In the programming mode, the array is used like a conventional 1T1R array and the memristors

are written to the appropriate resistance values. In the operation mode, the programming transistor is turned

off, while the gate capacitor (shown in figure) is charged through the memristor. The level shifter is used to

make sure that the discharge time constant is determined by the memristor charging process and not the

pulldown of the transistor, by applying full swing inputs to the pulldown transistor.

To be specific, we consider versions of the tunable delay elements described in the previ-
ous paragraph that are based on memristor or resistive random access memory (ReRAM)

technology. CMOS and spintronic versions of such delay elements are discussed in Section 3.1. In
the tropical VMM such a device is used as a programmable resistor with a known capacitance to
generate anRC delay [46]. The details of these tropical vector algebra cells are shown in Figure 3(c).
The main element of this circuit is a 2T1R array composed of a pulldown transistor and a pro-
gramming transistor. During the programming phase, the programming transistor coupled with
the programming lines can be used to apply the necessary read and write voltages across the mem-
ristor, thus changing the resistance and therefore RC delay time stored in the device.5 During the
operation of the circuit, the programming transistor is turned off to decouple the programming
lines from the active circuitry. In the pre-charge phase, the output lines are pulled up toVdd through
the pullup transistor. In the evaluation phase, the input lines receive temporally coded rising edges
that charge up the gate capacitors, as shown in Figure 3. This causes the pulldown transistor to be
turned on at the time proportional to input arrival times plus the RC time constant of the coupled
memristor-capacitor in each cell, faithfully performing the tropical VMM operation.

The largest read voltage that can applied across the device without disturbing the state of the
device is approximately 600 mV. In a 180 nm process, this value is only a few 100 mV above the
transistor threshold voltage and would cause a slow and delayed leak. This leak allows multiple
inputs to affect the pulldown simultaneously, influencing the functional correctness of the circuit.
We propose two solutions to this problem. Figure 3(c) shows a level shifter added between the

5The details of the programming and precision for these devices is discussed in Section 6.
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Fig. 4. Tropically nonlinear race logic functions: Panel (a) shows the conceptual and circuit diagram for an

element-wise inhibit operator. The inhibiting input is buffered before being fed into the gate terminal of

a PMOS. As the inhibiting input turns high, the PMOS turns off inhibiting the secondary input. Panel (b)

shows the argmin operation that takes an input vector and returns a one-hot vector at the location of the

element with the minimum value. This is done by taking the first arrival signal and inhibiting everything

else but that signal. Panel (c) shows a binarizer. An input wavefront is maxed with the all n wavefront. This

takes all values to this max value, except∞, which remains as is, performing binarization.

memristor and the pulldown transistor, the full swing of which causes the pulldown transistor to
work much faster. In an alternate approach (not shown here), a medium Vth device is used for
the pulldown. Such devices ensure a small footprint as well as correct operation, provided the
fabrication process allows them.

In addition to tropical VMM based linear transformations, other primitive vector operations
are crucial in many real applications. Elementwise min and max can be performed with arrays of
or and and gates, respectively. Vectors can also be reduced to scalars by computing min or max
amongst all elements using multi-input or and and gates.

2.5 Circuits for Nonlinear Tropical Functions

Apart from circuits that allow race logic to implement tropical linear algebra, additional built-
in functions, such as elementwise inhibit, argmin, and binarization, are required to perform a
wider variety of tropical computations. Elementwise inhibit, shown in Figure 4(a), is particularly
powerful, as it allows us to implement piecewise functions. Its technical operation follows directly
from the scalar inhibit operation discussed in Section 2.1.

The argmin function, shown in Figure 4(b), converts its vector input to a tropical one-hot vector
that labels a minimal input component. An or gate is used to select a first arriving signal that then
inhibits every vector component. Only one first arriving edge survives its self-inhibition; no other
signals in the wavefront are allowed to pass, effectively sending these other values to infinity. The
resulting vector is projectively equivalent to a tropical one-hot and achieves the canonical form
with a single zero among infinities after normalization.6

The binarization operation, shown in Figure 4(c), is similar; it converts all finite components to
0 while preserving infinite components at ∞. This operation utilizes a pre-stored vector that has
the maximum finite (non-∞) value tmax of the computational dynamic range on each component.

6A variety of conventions could be taken for the case where more than one signal arrives at the same, earliest time. Note

that such a multi-hot vector can be generated by the circuit shown in Figure 4(b). When such a situation occurs, a sorted

delay vector can be used to select one of the hot input elements and convert the vector to a one-hot vector.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 3, Article 28. Pub. date: May 2021.



28:10 A. Madhavan et al.

We define binarize(�x ) = tmax ⊕′ �x . Computing the elementwise max of such a vector with any
incoming vector, values that are∞ remain so while the other values are converted to the maximal
finite input value. Normalizing the result via projective storage saves a many-hot vector labeling
the finite components of the original input.

3 TEMPORAL STATE MACHINES

The finite state machine or finite state automaton is a central concept in computing and lies at the
heart of most modern computing systems. Such a machine is in one of some finite set of states S at
any particular instant in time; inputs x ∈ Σ to the machine both produce outputs y ∈ Γ and induce
transitions between these internal states. A state transition function δ : S × Σ→ S determines the
next state based on the current state and current input, and an output functionω : S × Σ→ Γ gives
the output based on the state and inputs of the machine.7

The presence of state means that there is not a one-to-one correspondence between input and
output of the machine. In the language developed above, a state machine is an impure function even
though δ and ω are pure functions. The finite state machine provides a template for composing
pure race logic functions across stateful interfaces to create more flexible processing units. The
temporal state machines we introduce below fit into this mathematical framework. They differ
from conventional automata in that the signals use temporal rather than Boolean encoding. State
is made possible by temporal memories that use wavefronts as their primary data structure. They
freeze temporal data by coupling pulse duration to device properties such as resistance. Together
with the pure race logic primitives described in previous sections, temporal memories enable end-
to-end temporal encoding in finite state automata.

Designing such a machine requires addressing several problems intrinsic to temporal logic and
memory primitives. We start this section with some brief background on temporal memories. Then,
we describe the impure tropical multiplication of two signals in race logic as an example of com-
posing pure race logic across stateful interfaces to break through the invariance restriction. Finally,
we return to the general state machine formulation and argue for the extensibility of our simple
example to more complex systems.

3.1 Temporal Memory

Temporal memories natively operate in the time domain. They operate on wavefronts of rising
edges rather than on Boolean values. Such memories can be implemented in CMOS [15, 22, 58]
and with emerging technologies such as memristors (as shown in Figure 5) and magnetic race
tracks [69]. In CMOS, SRAM-based volatile digital storage is predominantly used to select between
various delays, controlled either by varying capacitor sizes or the number of inverting stages. Writ-
ing into these memories is accomplished by time-to-digital converters or Vernier delay lines. By
contrast, the device physics of emerging nanodevice technologies provides a direct coupling be-
tween physical time and an analog device property. Regardless of delay element implementation,
memory cells are arranged in a crossbar. For the read operation, a single rising edge represented
by the tropical one-hot vector is applied to the input address line of the memory, creating a wave-
front at the output data line. For a write operation, the column of the crossbar where the memory
has to be stored is activated and an incoming wavefront is captured. Here, we adopt memristor-
based memory for concreteness. However, the algorithmic concepts presented in this article are
independent of that choice.

7This specification of a state machine is called a Mealy machine; if ω depends only on the state and not the current input,

then it is called a Moore machine. The two models are equally powerful in principle.
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Fig. 5. Memristive wavefront memory: Panel (a) shows a 4 × 4 memristive temporal memory, complete with

read and write peripheral circuits as described in Reference [46]. Note that bit-line-4 has been replaced by a

dummy line where the resistance values are fixed. The time constant of this line is governed by the parasitics

of the circuit and determines the temporal origin of the outgoing wavefront. Panel (b) shows the functioning

of a 16 × 16, 4-bit, temporal memory as simulated in our 180 nm process. Strip (i) shows the capture and

playback of a linearly varying digital wavefront, with each color representing one of the 16 lines involved.

These edges have been collapsed into a single strip for clarity. Note that small timing mismatches cause

small changes in the shape of the wavefront that is played back. Strip (ii) shows in the digital read input

applied to a captured column. Strips (iii, iv) show the source lines and bit lines internal to the memory. These

lines operate at different voltages that are shifted to Vdd with level shifters, as shown in panel (a). Strip (v)

shows the almost linear state change of the memristors as given by the memristor model in Reference [14].

Careful inspection reveals a slight convexity due to higher order terms in the exponential dependence.

The temporal information encoding in the devices varies with technology. For memristors, it is
encoded in the RC charging time constants determined by the resistance R of the memristor and
the row capacitance C , leading to a linear relationship between timing and resistance. Utilizing
a 1T1R-like structure, the shared row capacitances are the output capacitances that have to be
charged. In the write operation, the different arrival times of the edges lead to different durations
of high voltage across the memristors creating resistance changes proportional to the durations,
correctly encoding the shape of an incoming wavefront. This has the advantages of being non-
volatile and compact, having analog tunability, and requiring fewer transitions than their CMOS
counterparts, hence being potentially more energy-efficient.

Temporal memories have a disadvantage over conventional memories based on registers. In
conventional memories, a single clock tick performs two functions. It captures the next state in-
formation from the calculation performed in the previous cycle and initiates the next cycle’s com-
putation. Combinational logic is “stitched” together by register interfaces. On the other hand, tem-
poral wavefront playback and capture use the same address and data lines, shown in Figure 5, and
cannot be used at the same time. This feature of temporal memory does not exist in conventional
memories, which can be used both upstream and downstream for the same operation.

Temporal memories based on memristors have some disadvantages compared to temporal mem-
ories based on CMOS. Because they are analog,8 they possess limited dynamic range. They also

8The computing scheme discussed here can be either analog or digital. Though our evaluation (Section 5) is done assuming

analog behavior, noise, and other non-idealities determine the practical information capacity. We discuss this issue in

Section 6.
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have dead time, as shown in 5(b), that results from the charging of the parasitics of the array,
which—with growing array size—can become comparable to the delays stored. As measured from
the temporal origin of the calculation, the dead times introduce artificial delays in each compo-
nent resulting in incorrectly encoded values at a memory write input. To deal with this issue, we
introduce an extra line, which we call the clock line, that always has the minimum Ron value for
the resistor. This line serves as a temporal reference to the origin and hence behaves like a clock.
This ensures that the parasitics of the lines are accounted for and only the relative changes in the
resistance values are translated to the output wavefront. Such a reference also plays an important
role in normalization.

The dynamic range/precision of memories discussed is determined by the changes in the stored
resistances that can be distinguished. Even optimistically, the range is limited to six to seven bits
with present technologies. Given this constraint, we focus on storage of normalized tropical vec-
tors. In Section 2.2, we describe how normalization consists of subtracting from each component
the minimal value of all components. Operationally, this is performed by grounding the clock
line of our vector storage circuit in Figure 5. The clock line is used to indicate the t = 0 time, but
in its absence t = 0 is established by the first arriving edge. Grounding the clock line effectively
subtracts the value of the first-arriving edge from the entire vector, giving the normalization oper-
ation we described in Section 2.2. The algorithms explored in Section 4, are specifically designed
to be insensitive to this origin shift. Algorithms can also store the normalization constant for later
re-construction of the unnormalized wavefront.

3.2 Invariance and Temporal Addition

In Section 2.1, we describe how invariance restricts pure (stateless) race logic to tropically linear
functions. Therefore, pure race logic cannot tropically multiply two temporal signals. Static delay
elements can increment the value of a temporal signal by some fixed amount, but the raw addition
of two time codes t1 + t2 is physically forbidden by time-translational symmetry.9 The introduction
of memory breaks this symmetry in stateful race logic.

With temporal memory, tropical multiplication of two wavefronts breaks the operation into two
phases, as shown in Figure 6(a,b). Panel (a) shows the first phase, storing the incoming wavefront
in a local temporal memory using wavefront capture circuits. In the second phase, shown in panel
(b), this stored vector is temporally added to an incoming wavefront. Commutativity ensures that
the order of storage and playback does not matter. Though the state transition and output functions
within each phase are pure race logic functions, state breaks invariance across the phase bound-
aries. Using memory for tropical multiplication allows the construction of tropical multinomial
functions of arbitrary order.

3.3 A Sample Temporal State Machine

The invariant race logic circuits and temporal wavefront memory described above are sufficient
to build a simple temporal state machine, as shown in Figure 6(a). It consists of three banks of
temporal memory, which can receive address inputs from external sources as well as data inputs
from the output of the machine. The data outputs of the wavefront memory are multiplexed into
the computation unit. This unit contains the invariant race logic functions from Section 2.1 and

9Invariance (Section 2.1) requires that if two signals tA and tB are both shifted by a constant time δ , then the output of

a function of those signals must also be shifted by the same amount, i.e., f (tA + δ, tB + δ ) = δ + f (tA, tB ). Addition,

f (tA, tB ) = tA + tB , violates this requirement, because shifting the inputs gives tA + tB + 2δ at the output. Addition is

not temporally invariant prohibiting the addition of two temporal signals in pure race logic.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 3, Article 28. Pub. date: May 2021.



Temporal State Machines 28:13

Fig. 6. State machine operations: (a) The first phase of tropical multiplication. The state machine is parti-

tioned into two main units: the temporal wavefront memory and the arithmetic unit. Multiplexers and the

read/write modes of the memory allow operations to be performed sequentially. Depending on the oper-

ations, individual memory units can behave as either upstream or downstream memories. Storage of the

incoming wavefront is a one-argument operation; the vector is stored in the additive memory bank. (b) The

second phase of tropical multiplication. The incoming wavefront is delayed component-wise (tropically mul-

tiplies) by the stored wavefront. (c) The tropical VMM operation. (d) Other element-wise operations that can

be performed in a temporal state machine. All operations, aside from the first phase of the tropical mul-

tiplication, store an output back in the temporal memory. The element-wise operations are two-argument

operations and involve all three memories: The read memories are the upstream memories, while the write

memory is the downstream memory.

temporal memory unit for tropical VMM, as described in Section 2.4. This structure allows for a
maximum of two-operand operations to be executed at once.

ALGORITHM 1: Pseudocode for procedural computation of Equation (3)

Input: temporal vectors �b, �c , �d , and �e

�c ′ := �d ⊗ �e ; // temporal vector addition (requires two phases),

Figures 6(a,b)
�b ′ := �c � �c ′; // elementwise inhibit, Figure 6(d)

�a := �b ⊕ �b ′; // elementwise min, Figure 6(d)

return �a;

This state machine partitions calculations into phases to calculate arbitrary expressions such as

�a = �b ⊕ (�c � (�d ⊗ �e )). (3)
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Each phase is implemented serially on the state machine in Figure 6. Breaking the computation into
discrete read-compute-store transitions of a state machine allows us to represent the computation
with a procedural algorithm, Algorithm 1.

Using the regular order of arithmetic, we perform tropical multiplication first. Vectors �d and �e
reside in memories one and two. The ⊗ operation is shown in Figure 6(a,b). The first phase initiates
the computation by selecting the memory in the computation unit and applying a one-hot vector

at the input of wavefront memory 1. The memory places the vector �d on the output data bus, which
then passes it to the accumulator of the computation unit. Then, memory 3 is set up to receive the
output of the operation while being activated in write mode, shown in Figure 6(b). A one-hot vector
is applied to the input of memory 2, playing the wavefront through the stored vector, and storing
the resulting output in memory 3. This storage operation is indicated by the assignment operator
:= in the pseudocode. Tropical vector-matrix multiplication is a similar one-input operation and
can be performed in a similar way, as shown in Figure 6(c).

Both one- and two-operand operations can be performed in a single state machine. Two-operand
operations, such as elementwise inhibit and tropical vector addition, proceed similarly to one-
operand operations. Synchronized one-hot vectors are presented to the address input that triggers
output wavefronts. These wavefronts enter the computational unit where circuits for the requested
operations are multiplexed in, and the output is written to wavefront memory 3, as shown in
Figure 6(d).

3.4 A Nontrivial Example: DNA Alignment

DNA alignment using a temporal instantiation of the Needleman-Wunsch algorithm was one of
the first applications of race logic [44, 45]. In that work, the alignment matrix of the Needleman-
Wunsch algorithm is physically laid out as a planar graph, and pure race logic operations define
the scoring information at each node. Though the implementation in Reference [44] is extremely
fast and energy efficient, it requires a dedicated ASIC. Here, we sketch how Needleman-Wunsch
might be implemented with a temporal state machine.

The Needleman-Wunsch algorithm finds the shortest path through a dynamically con-
structed score matrix. Each element of the score matrix Mi j is constructed recursively as Mi j =

min{Mi, j−1 + σ ,Mi−1, j + σ ,Mi−1, j−1 +m(1 − δxi,yj)}, where σ is the cost of a genetic insertion
or deletion (an “indel”) andm is the cost of a single gene mutation.10 The Kronecker delta function
breaks the causality condition and so cannot be implemented in pure race logic.

To compute the Kronecker delta, we encode the set of four possible genes {G, A, T, C} as tem-
poral values {0, 1, 2, 3}. We then use the coincidence function [47, 60] to determine equality of
the temporally encoded gene values. Tropically the coincidence function is described as δ (t1, t2) =
(t1 ⊕ t2) � (t1 ⊕′ t2), which is equal to the inputs when they are the same,11 and∞ otherwise [47].
The coincidence function could be made a primitive operation of the state machine or could be
accomplished with multiple state transitions using ⊕, ⊕′, and �; we assume the former. Binariza-
tion followed by projective storage of δ (xi ,yj ) would save zero (tropical one) to memory when
xi = yj and ∞ (tropical zero) otherwise, resulting in a many-hot vector that indexes genewise
equality.

10The Kronecker delta δi j is defined as one when i = j and zero otherwise.
11The simple version presented in the text applies to only an idealized coincidence: the exact point where t1 = t2. In

practice [47, 60], a nonzero coincidence window can be introduced via a tolerance ϵ , by computing [ϵ ⊗ (t1 ⊕ t2)] � (t1 ⊕′
t2).
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ALGORITHM 2: Pseudocode for Needleman-Wunsch (forward pass only; computes optimal
alignment cost)

Input: gene sequences �x , �y ∈ {0, 1, 2, 3}n , indel cost σ , mismatch costm
�μ (0) := [0];

�μ (1) := [σ ,σ ];

// Upper-left triangular part [dim(�μ (k ) ) increasing]:

for k ← 2 to n do
�c ′ := δ

(
�x1, ...,k−1, �yk−1, ...,1

)
; // mismatches→ ∞, matches→ {0, 1, 2, 3}

�c :� binarize(�c ′); // mismatches � ∞, matches � 0

�a := σ ⊗ �μ (k−1) ; // apply insertion/deletion (indel) cost σ
�b := (m ⊕ �c ) ⊗ �μ (k−2) ; // apply mutation cost m for mismatches

�r := �a0, ...,k−2 ⊕ �b ⊕ �a1, ...,k−1; // find least-cost local path (Equation (4))

�μ (k ) :=
[
a0,�r ,ak−1

]
; // append boundary conditions

end

// Lower-right triangular part [dim(�μ (k ) ) decreasing]:

for k ← n + 1 to 2n do
�c ′ := δ

(
�xk−n, ...,n , �yn, ...,k−n

)
; // mismatches→ ∞, matches→ {0, 1, 2, 3}

�c :� binarize(�c ′); // mismatches � ∞, matches � 0

�a := σ ⊗ �μ (k−1) ; // apply insertion/deletions (indel) cost σ
�b := (m ⊕ �c ) ⊗ �μ (k−2) ; // apply mutation cost m for mismatches

�μ (k ) := �a0, ...,2n−k ⊕ �b ⊕ �a1, ...,2n−k+1; // find least-cost local path (Equation (4))

end

return �μ (2n) ; // this is actually just a scalar: lowest possible alignment cost

To frame the Needleman-Wunch algorithm as a tropical vector problem, we exploit the inde-

pendence of the skew-diagonals [43]. We define �μ (k ) as the kth skew-diagonal vector of M , so
�μ (0) = [M00], �μ (1) = [M10,M01], and so on. The first and last elements of �μ (k ) are kσ by construc-
tion for k ≤ n, that is, until we hit the main skew diagonal. The defining equation for Mi j is then

given through �μ (k ) by

μ (k )
j =

(
σ ⊗ μ (k−1)

j

)
⊕
( [
m ⊕ δx j ,yk−j

]
⊗ μ (k−2)

j

)
⊕
(
σ ⊗ μ (k−1)

j+1

)
. (4)

The vectorized computation of this recursion relation is presented programmatically in Algo-
rithm 2. The right-hand side of each assignment is a pure race logic computation; the left-hand
side represents a register address. As in Algorithm 1, the assignment operator �x := �y indicates stor-
age of �y to a temporal memory register represented by �x . The projective storage operator �x :� �y
assigns the tropical normalization �y −min �y to the vector register �x .

The interpreter required here is more complex than in Algorithm 1. Though we could implement
the for-loops tropically by assigning k := 1 ⊗ k and monitoring n � k and 2n � k , we are not aware
of a way to elegantly perform subarray extraction using temporal signals as indices. We therefore
imagine that k , as well as the array slicing operations, are managed digitally by the interpreter.

4 CASE STUDY: DIJKSTRA’S ALGORITHM IMPLEMENTED
IN A TEMPORAL STATE MACHINE

In Section 3, we demonstrate a simple model state machine, but it is too simple to utilize the
graph traversal logic of tropical linear algebra that we describe in Section 2.3. Though the
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Needleman-Wunsch machine in Section 3.4 performs graph traversal, it is restricted to a known,
uniform progression through a highly regular planar graph. From the discussion of Section 2.3, we
know that general graph traversal should be accessible to a tropical state machine. Here, we dis-
cuss an implementation of Dijkstra’s algorithm in a temporal state machine. We see that the core
neighbor-search operation of Dijkstra’s algorithm is naturally parallelized by the tropical VMM,
leading to very high throughput in terms of graph edges traversed per unit time, and that the in-
hibit operation together with projective storage allow the embedding of important Boolean logic
structures within the temporal framework.

4.1 Dijkstra’s Algorithm in Race Logic

We assume that the reader is familiar with the classical implementation of Dijkstra’s algorithm.
In Algorithm 3, we map the operations of Dijkstra’s algorithm into race logic, with each step a
single transition of a temporal state machine. Two trivial modifications simplify the race logic
implementation. First, instead of tracking the known distances to each node, we mask out the

distances of visited nodes with the value∞. This vector of distances to unvisited nodes is �d in the
algorithm listing, and a tropically binarized record of which nodes have been visited is recorded

in a vector �v . Second, instead of storing a parent vector directly, we define a parent matrix P̂ as
a collection of tropical column vectors where a finite entry Pi j holds the distance from node i to
node j along the current optimal path to j from the source node s . We assume that the memristors
in the VMM are already programmed to their correct values, meaning that the graph is already
stored in the arithmetic unit.

There are several apparent differences in how operations of the algorithm are performed in
this (tropical) linear algebra engine compared to a traditional programming language. There are,
loosely speaking, two “modes” in which we use tropical vectors. First, there are true temporal

wavefronts, such as �e and �d , that represent variable distances measured throughout the graph.
These flow through the data path of the algorithm. Second, there are indicator wavefronts, such

as �v and �d∗, with elements restricted to 0 or ∞. These are used along the control paths of the
algorithm to perform element lookup from data-carrying temporal wavefronts, modification of
tropically binary records such as �v , and for index selection of the parent matrix. Projective storage
plays a key role in these processes via binarization of one-hot vectors. Sometimes, quantities like
�n can play either role depending on context.

There are two primary constraints on this algorithm’s application. First, because directed edge
weights are encoded as temporal delays, negative edge weights are physically forbidden. Second,
temporal vectors are limited to a finite dynamic range and resolution constrained by the technol-
ogy in which they are implemented, and consecutive tropical multiplication could lead to dynamic
range issues. To mitigate this dynamic range issue, we arrange the computation such that no more
than one successive tropical multiplication occurs along a single datapath per state machine tran-
sition. Normalization of �u at the end of each cycle shrinks the dynamic range as much as possible
between VMMs.

The algorithm initializes by setting the vector �d of known distances to unvisited nodes to a
tropical one-hot 0s labeling the source node s . The vector �v labeling visited nodes, as well as the

parent matrix P̂ keeping track of the minimal spanning tree through the graph, have all elements

set to∞. We assume the weighted adjacency matrix Â of the desired graph has been programmed
to a VMM unit before the algorithm begins. This is a one-time cost that can be amortized over
frequent reuse of the array. The algorithm then begins by cycling the state machine through the
main loop.
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ALGORITHM 3: Pseudocode for Temporal Dijkstra’s Algorithm

Input: graph G, source node s
// Variable initializations
�d := 0s ; // distances to unvisited nodes (tropical one-hot labels source)

�v := ∞; // visited nodes (tropical zero vector)

P̂ := ∞; // parent matrix (tropical zero matrix)

Â := adjacency-matrix(G); // adjacency matrix of the graph

while
(⊕

j dj < ∞
)

do

�n := argmin(�d ); // choose node to visit

// Examine neighbors

�e := Â ⊗ �n; // VMM examine neighbors of current node
�f := �d � �e; // keep only newly found shortest paths

// Update records for the next iteration

�v := �v ⊕ �n; // record the current node as visited
�d ′ := �d ⊕ �f ; // construct new record of shortest paths
�d :� �v � �d ′; // update global unvisited distance vector

// Parent vector update process
�f ∗ :� binarize( �f ); // vector indices of found nodes

P̂ := �f ∗ � P̂ ; // delete row data of previously recorded parents for found

nodes
�P�n := �f ; // record in column �n distances �f from �n to the found nodes

end

return P̂ ; // adjacency matrix of the minimal spanning (from s) subgraph of G

In each iteration, we check to see if any unvisited nodes are available for exploration by eval-

uating the minimum element of �d . The algorithm terminates if this operation returns ∞, which
indicates that all nodes have either been visited or are unreachable. Taking the argmin (Section 2.5)

of �d nominally gives us a vector dj ⊗ 0j where j is the index of a node along a shortest path (of
those so far explored) from the source and 0j is the tropical one-hot labeling index j. This result
is a one-hot vector, because dj is always zero by construction. We store this one-hot to the vector
register �n.

The next step is to examine the directed edges to the neighbors of node �n. We use �n as the input

to a temporal VMM operation with Â, which performs a parallel traversal to all neighbors. The
result is stored in �e , which may contain shorter paths to the neighboring nodes, via node �n, than
had been previously found. Such shorter paths would manifest as elements of �e that have smaller

values than their corresponding elements in �d . Those specific nodes can be extracted by taking

an elementwise inhibit of �e by �d ; the resulting updated distance vector is stored as �d ′. We also
note that �n has been visited, and should not be visited again, by imposing the zero of �n onto �v and
saving it in memory.

If the dynamic range of our memory were boundless, then we could perform this opera-
tion repeatedly and determine the final distance vector of the algorithm. But because we are
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dynamic-range-limited,12 we have to minimize the accumulation in the distance vector. We do

this via projective storage of �d ′ into �d . We also inhibit �d ′ by �v before storage to ensure that no
nodes we have already visited are candidates for exploration in the next iteration; this also ensures

argmin(�d ) will be a magnitude-free one-hot on the next cycle. This shifts the temporal origin for

the entirety of the next iteration into the perspective of argmin(�v � �d ′); all temporal values in the

new �d are now expressed relative to the stopwatch of an observer at the argmin node.

After exploring neighbors, we update the parent matrix. The newly found nodes in �f need

to have their parents updated. A binarized version �f ∗ of �f is used to inhibit rows of the parent
matrix corresponding to the new paths in f , erasing these nodes’ now-outdated parent data. This
operation is performed row-by-row, requiring N state machine transitions to complete. The new

parent is then added to the parent matrix; �n is used to enable the appropriate column of P̂ for

writing. Vector �f is then written to this column.
Throughout this algorithm, we require dynamical indexing of memory addresses based on past

results of the temporal computation. Recall that Needlemen-Wunsch algorithm required signif-
icantly nontrivial subarray selection operations in Algorithm 2. We claimed in Section 3.4 that
these would likely need to be handled digitally. Those index selections can be statically deter-
mined at compile time, so they could merely be part of the elaborated bytecode controlling the
state machine: There is no need for data to translate back and forth between temporal and digital
domains to execute Algorithm 2. In Algorithm 3, index selections of the parent matrix are dynam-
ically determined at runtime and cannot be statically embedded in the digital controller around
the state machine. But the one-hot nature of the indexing operations offers a natural interface to
the crossbar architecture, so, again no digital intermediary is required to perform address lookup.

5 RESULTS

To evaluate this temporal state machine, we make several assumptions in its design and the sim-
ulation framework. We create models for temporal memories and the tropical operations required
by its design to understand the scaling of this architecture and the tradeoffs of our design space
and make predictions about optimization targets.

To achieve realistic first-order performance estimates for this temporal state machine, we de-
sign and simulate each component using commercial very-large-scale integrated circuit (VLSI)

design tools, Cadence Virtuoso for schematic and Spectre for simulation,13 with experimentally
validated nanodevice models [14, 35]. These devices exhibit voltage and current ranges typical of
other memristors fabricated by a variety of groups [11, 74, 78]. Though the voltage needed to read
these devices can be low (≈200 mV), the voltages needed to write them can be as high as 2 V to 3 V,
which puts a lower limit on the technology node we can use. To secure enough voltage headroom
for changing device states, we use the 180 nm Silterra process with a Vdd = 1.8 V. Though this
may not offer the most energy-efficient results, it does provide an understanding of the general
set of tradeoffs involved in building realistic temporal state machines. We provide a description of
scaling to lower technology nodes by referring to the scaling laws presented in Reference [62]. A
discussion on resistive switching technologies at deep-sub-micron nodes is reported in Section 6.2.

12Note that even if our memory were not range-limited, we must still choose a dynamic-range cutoff at which we assign

finite time values to ∞; otherwise, a circuit that outputs ∞ as a valid return value could never halt. In practice, though,

memory is the limiting factor. However, the finite delay representing∞ is chosen, and it limits the clock frequency of the

state machine.
13Certain commercial processes and software are identified in this article to foster understanding. Such identification does

not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that

the processes and software identified are necessarily the best available for the purpose.
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In this work, the temporal memory is memristive, as is discussed in Reference [46]. The core
cell is composed of a 1T1R structure with supporting circuits that allow temporal read and write
operations. The temporal read operation is performed by down-shifting the input voltage level
from 1.8 V to 600 mV before applying it to the 1T1R array, so the device state is unaffected. This
causes the output voltage to have a maximum value of 600 mV, which needs to be up-shifted to
1.8 V for compatibility with other functional blocks, all of which work atVdd . The write path of the
memory includes circuits for two different write modes, the conventional and normalized forms
described previously. Both these operations require similar circuits with an input first-arrival de-
tector charging the source line and level shifting circuits to the appropriate write voltages, pro-
ducing the quasilinear state write described in Reference [46].

We have computed read and write energy costs for various N × N array sizes ranging from
N = 4 toN = 32. The energy scales superlinearly with array size due to growth in support circuitry
size that scales with N , the input driver needs to be scaled up for larger array sizes; for the writing,
larger array sizes require first-arrival circuitry with more inputs. The read cost is approximately
2 pJ per line, while the write cost is around 10 pJ per line. This 5× factor between read and write
energies drives tradeoff considerations in designs.

The most computationally intensive pure race logic function is the tropical VMM, which imple-
ments a single-step all-to-all graph traversal. Such an operation naturally scales as N 2. On average,
this system ends up costing ≈700 fJ per cell, so a 32 × 32 grid consumes ≈700 pJ of energy. The
large energy cost of this operation arises from the conservative design strategy we employed. To
make sure that the or pulldown network functions properly, we have to ensure that the time con-
stants of the pulldown dynamics are not determined by the CMOS—that is, we have to ensure
that it switches quicker than the resolution of our temporal code. The low read voltage causes the
pulldown transistor to discharge too slowly, causing multiple nodes pulling down the same source
line and leading to functional incorrectness of tropical addition. To overcome this issue, we add
level shifters to each cell to boost the input voltage fromVread toVdd . These provide the necessary
overdrive for correct operation.

Other pure race logic functions such as ⊕ = min, ⊕′ = max, and � = inhibit, compound func-
tions such as argmin and binarize, and control and multiplexing circuits are implemented with
conventional CMOS gates and have a minimal energy cost for this process node. For example, for
32-channel elementwise min, max, and inhibit operations, the energy cost is approximately 1 pJ.
This is negligible compared to temporal read, write, and VMM operations. The argmin operation
has the largest energy cost among the combinatorial gates, since the first arriving input has to turn
of all of the other channels and must therefore drive circuits with a larger output capacitance.

6 COMPARISONS AND TECHNICAL CONSIDERATIONS

6.1 Comparison with Previous Work

Graph processing is a well-studied problem in computing, and a variety of solutions have been pro-
posed for it at various scales [27]. Processing of real world graphs—which can contain hundreds
of thousands of nodes and millions of edges—combines both software and hardware frameworks,
employing everything from central processing units (CPUs), field programmable gate ar-

rays (FPGAs) [79, 82], and graphics processing units (GPUs) [23, 72] to application specific

integrated circuits (ASICs) [29, 75] and processing-in-memory (PIM) solutions [12, 61, 81].
Graph operations are known to have a high communication-to-computation ratio, as the cost of
memory movement sometimes accounts for upwards of 90% of total energy expenditures. The sim-
ple temporal architecture presented in Section 4 is not developed adequately to sensibly compare
it to such highly developed systems optimized for much larger graphs. Another impediment to
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Fig. 7. (a) The energy costs of vector operations for a size 32 array, on a log scale. Basic operations such

as min, max, inhibit, and argmin consist only of simple Boolean primitives; consequently, their have low,

picojoule energy costs. Their energy scales linearly with the array size. The VMM energy scales quadrati-

cally with problem size, involving 1,024 memristive delay elements for the size 32 array. The energy costs of

the read and write operations also scale linearly with problem size. (b) The energy cost and inverse latency

of a 32 × 32 temporal kernel and state-of-the-art GPU, ASIC, and temporal ASIC designs. GPU designs (a,

b) correspond to MapGraph [23] and Gunrock [72], respectively. ASIC designs (c, d) correspond to Graphi-

cionado [29] and GraphDyn [75]. For both of these ASIC-based approaches, we neglect data movement cost

from memory—typically about 90% of the energy expenditure—to allow fair comparisons between kernel

operations. Temporal ASIC designs (e, f, g) correspond to wavefront expansion techniques [22], race logic

DNA alignment arrays [44], and a time-domain dynamic time warping ASIC [15]. While such approaches

show state-of-the-art performance, they are limited to specific graph topologies. Finally, the red points show

simulation results from our 180 nm process as well scaling to more advanced nodes following the procedure

described in Reference [62].

fair comparison, echoed by the authors of Reference [27], is that much of the extant literature re-
ports relative improvements against other implementations without providing absolute numbers
for comparison. This makes comparison with PIM implementations especially difficult. The pur-
pose of this work is to demonstrate the viability of temporal computing as an general approach
using a well-studied example, not to compete with the best graph processing engines.

Therefore, we take the following approach: We do not compare against performant CPU and
FPGA approaches that leverage 3D-stacked high-bandwidth memory (HBM) or hybrid mem-

ory cube (HMC), since these approaches rely on the memory management system for their per-
formance advantages. GPU and ASIC approaches with domain-specific kernel implementations
amortize the costs of these memory accesses much more effectively and are more popular. For ex-
ample, MapGraph [23] and Gunrock [72] (points (a, b) in Figure 7(b)) are examples of GPU-based
graph analytics packages commonly used as a baseline when reporting performance. More re-
cently, domain-specific accelerators have emerged that have custom datapaths, scheduling strate-
gies, scratchpad memory, and other techniques specifically designed to alleviate the irregularities
associated with graph analytics. The literature on these approaches effectively reports the memory
versus processing costs [29, 75], allowing us to compare just the performance of our kernel with
the performance of other state-of-the-art graph kernels (points (c, d) in Figure 7(b)). Under this
analysis, one could imagine swapping in temporal state machines for existing subgraph kernels
and measuring changes in overall performance metrics. More recently, temporal ASICs have also
been proposed that solve specific graph problems with restricted topologies. Though not designed
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for arbitrary graph topologies, they result in superior performance to conventional ASICs. Specific
works we compare against are References [15, 22, 44] (points (e, f, g) in Figure 7(b)).

The metric widely used to make speed or latency comparisons is the edge traversal rate, com-
monly reported as giga-edge traversals per second (GETS) in the literature. For energy effi-
ciency, we speak of edges traversed per unit energy—giga-edge traversals per joule (GETJ) in
the literature. Figure 7(e) shows the performance comparison of this work against GPU and ASIC
approaches. A single 32 × 32 kernel in a 180 nm technology node has an edge traversal rate of
10 ns−1 (10 GETS) and the energy efficiency is about 1 nJ−1 (1 GETJ), which compares favorably
with the state-of-the-art. Using scaling projections from Reference [62], we estimate that a sin-
gle kernel can theoretically surpass state-of-the-art kernel performance. When scaled up to larger
N × N array sizes, such as N = 128 or N = 256 (not an uncommon core size for memristor cross-
bars), we can expect massive performance improvements. Note that the state-of-the-art for graph
processing engines when energy is of no concern is on the order of 100s of GETS, which our
analysis indicates to be feasible for temporal designs.

Independent but parallel work on graph problems is being undertaken by the neuromorphic
computing community. Dijkstra’s algorithm has been studied by researchers in neuromorphic
computing as a benchmark application for the field [1, 18, 30]. State-of-the-art industrial research
spiking neural network platforms [19] use Dijkstra’s algorithm to establish performance metrics
for their systems. Reference [59] uses single-source shortest path computation to demonstrate their
spiking neuromorphic chips and details their energy-per-spike costs: Implementing an operation
equivalent to the tropical VMM costs approximately 2.5 nJ in a 65 nm process. By comparison,
combining both the memory and VMM primitives, race logic performs the same operation for 1 nJ
in a 180 nm process.

6.2 Technical Considerations

6.2.1 Scaling from 180 nm to Newer Technology Nodes. Previous work with race logic has
demonstrated that most of the energy expended in race logic architectures is spent in the dis-
tribution of timing information, such as in clock trees or analog voltages [44]. To get an energy
advantage over those approaches, the present work relies on novel technologies such as memris-
tors to locally generate a programmable delay, which has the advantage that the energy cost is
limited by the capacitor. Hence, we are limited by today’s memristor technology, which requires
large write voltages (1.2 V to 6 V). This requires that we use a relatively old technology node.
The development of memristor technology is being driven toward the goal of CMOS compatibil-
ity at advanced technology nodes, which require lower read and write voltages [16]. Companies
are exploring low write voltage ReRAM and embedding it into 22 nm fin field-effect transistor

(FinFET) stacks [26, 34].
Maturing technology has great promise for the designs proposed in this work. As CMOS tran-

sistors become smaller, the area, energy, and speed all improve. For example, when moving from a
180 nm CMOS to 14 nm FinFET, using a fan-out-of-4 inverter as a benchmark, the area, energy, and
latency numbers improve by 100×, 190×, and 19×, respectively [62]. As memristor technologies
become compatible with lower voltages, the energy of the read and write operations are expected
to decrease. The write energy, determined by the voltage and current needed to alter the mem-
ristive state, changes less than the read energy, which follows the inverter characteristics. The
scaling performance of race logic systems is easy to estimate, since the spatial nature of the in-
formation flow ensures that the architectures in various technology nodes all have similar design
and activity factors. We expect the dynamic energy cost to follow the energy trend of the inverter
as described in Reference [62]. Though latency and area are determined by other factors such as
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memory dynamic range and functional correctness, the overall advantage in energy-delay-product
from scaling to a lower node could be as high as three orders of magnitude.

6.2.2 Memristor Device Non-idealities. There are a variety of device non-idealities that affect
the design. In the high resistance regime, filamentary memristors suffer from large variations due
to the dependence of the tunneling rate on the behavior of only a few ions. Such devices, when
measured at low biases, demonstrate random telegraph noise with variability as large as 50% to
100%. In the low-resistance regime, these devices are much more robust, and some groups have
demonstrated a programming error of as low as 1.4%, with a closed loop feedback write process [4,
74]. This variability affects the precision and hence the dynamic range that can be encoded with
such devices. References [41, 74] demonstrate dynamic ranges of 5 bits to 8 bits. With the memris-
tor model used in this article, we can extract up to 5 bits of precision. Practical implementations
have even lower precision. One way to increase precision is to use extra wires to encode higher
precision bits as done for Boolean logic. A similar idea has been proposed in References [15, 39].
Future studies may involve analysis of stacking delay-element-based computational units one af-
ter another and analyzing the error properties. A preliminary analysis assuming simple statistical
properties of device variation indicates that delay-chaining N stages results in an increase of the

mean delay by N but of the standard deviation by
√
N . The relative variation therefore improves

with the number of stages as 1/
√
N .

Another impediment to smooth operation in our circuits is the linearity requirement of the
memristor write process. A truly linear write would increase the dynamic range of our operations
and ensure a clear mapping between the read and write processes. This linearity requirement has
been a major topic of research for the neuromorphic VMM community with significant implica-
tions for the hardware training of large scale neural networks [10, 63, 74]. Considerable effort has
been dedicated to this effort. Various groups show highly linear behavior by operating in the high
conductance regime with proper compliance control [41], exploring new materials [13], and using
three terminal lithium devices [24]. An alternate approach utilizes highly linear trench-capacitor
based storage [42]. Recently, a temporal magnetic memory has been proposed that exhibits linear
dynamics [69]. This proposal re-purposes magnetic configurations in racetracks such as domain
walls or skyrmions to encode temporal information spatially within the race track.

6.2.3 Future Design Considerations. Scaling to larger graph sizes: Graph processing of large-
scale graphs containing trillions of nodes and edges, such as the Internet and social networks,
has always been hard to accelerate regardless of hardware choice. Conventional approaches to
analyzing these networks rely on graph partitioning, wherein a large graph is partitioned into K
subgraphs with a minimal number of edges cut. The K subgraphs can be fit into local processors,
with minimal communication between processors. The partitioning problem itself is NP-hard and
relies on heuristics for speedup. Various techniques exist for solving such problems: multi-level
graph partitioning (involving coarsening, initial partitioning, and fine-tuning) [2], edge or vertex
based partitioning [31], breadth-first-search-based partitioning [9], and others. Though graph par-
titioning is beyond the scope of this work, we intend to extend the circuits described here toward
implementation of efficient kernels for accelerating post-partitioned local graph processing.

Chaining of temporal operations: Temporal computation leads to unconventional architectures
that come with their own design constraints. The cost of primitive operations (aside from the
VMM) in temporal computing is cheap compared to memory access operations. This points to
utilizing strategies that amortize the cost of memory accesses over multiple feed-forward op-
erations. Future systems would greatly benefit by performing many such operations in a single

phase. In Algorithm 3, for instance, neither �e nor �d ′ need to be stored in memory. A sophisticated
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compiler could detect optimally long compositions of pure race logic functions and only use mem-
ory where invariance or causality need to be broken. Though such a state machine would need
additional control logic with separate clock and dummy lines, the energy savings accrued by this
sort of optimization would be significant.

Simple versus complex computational units: As higher-level algorithms become more clearly ex-
pressible, an important question would be, what kind of complexity of operations would we want
in our designs? A design with simpler fundamental primitives could be more flexible, but might
sacrifice performance. An example of that can be seen in the parent matrix update of Algorithm 3.
A 2D update array similar to the VMM could amortize the cost of N extra operations, and hence
save on N memory reads and writes, in just a single operation. Hence, a more complex operation
would have smaller energy and delay, which would be very favorable—at the cost of specialized
circuitry. The sensibility of such tradeoffs is an open question that needs to be addressed.

7 CONCLUSION

The utility of temporal computation in solving problems expressible by dynamic programming
has been widely noted. Though the first race logic work was proposed as a hardware acceleration
for dynamic programming algorithms, it was constrained in its design: a limited topology and a
feed-forward memoryless structure. Only the length of the shortest path was reported, with extra
circuitry nominally required to report the path itself. Since then, other designs with state-of-the-art
performance have been proposed, but they similarly suffer from an ad hoc design approach.

In this work, we attempt to make the first steps at generalizability of temporal computing. We
provide a problem-agnostic datapath and a mathematical algebra, expanding the logical frame-
work of race logic. This leads to novel circuit designs that are informed by higher-level algorithmic
requirements. The properties of abstraction and composability offered by the mathematical frame-
work coupled with native storage from the temporal memory lend themselves to generalization.
We design a state machine that can carry out both specialized and general graph algorithms such
as the Needleman-Wunsch and Dijkstra’s algorithm. The potential for graph accelerators built on
temporal computing motivates further exploration of temporal state machines.
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